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Abstract 
A natural extension of the Lorentz transformation to its complex version was 
constructed together with a parallel extension of the Minkowski M4 model for 
special relativity (SR) to complex C4 space-time. As the [signed] absolute val-
ues of complex coordinates of the underlying motion’s characterization in C4 
one obtains a Newtonian-like type of motion whereas as the real parts of the 
complex motion’s description and of the complex Lorentz transformation, all 
the SR theory as modeled by M4 real space-time can be recovered. This means 
all the SR theory is preserved in the real subspace M4 of the space-time C4 
while becoming simpler and clearer in the new complex model’s framework. 
Since velocities in the complex model can be determined geometrically, with 
no primary use of time, time turns out to be definable within the equivalent 
theory of the reduced complex C4 model to the C3 “para-space” model. That 
procedure allows us to separate time from the (para)space and consider all the 
SR theory as a theory of C3 alone. On the other hand, the complex time de-
fined within the C3 theory is interpreted and modeled by the single separate 
C1 complex plane. The possibility for application of the C3 model to quantum 
mechanics is suggested. As such, the model C3 seems to have unifying abili-
ties for application to different physical theories. 
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1. Introduction 

1) Two main aspects of this work related to some contemporary physics lite-
rature’s features are worth emphasizing at the beginning. 

The first aspect is related to the way of using complex numbers and models in 
physics. 

Of course, they are applied widely in many areas of theoretical physics, but al-
most always are only treated as convenient mathematical tools having no physical 
meaning. Almost always the results of calculations involving complex numbers 
and functions are real, either as the real and imaginary parts of complex outcomes 
or, eventually, as their [signed] absolute values. 

Very seldom one tries to interpret physically complex results when obtained. 
Some exceptions to this rule can be found in [1]. 

Generally, however, there is a chronic lack of trust in any physical interpreta-
tion of complex (and especially purely imaginary) numbers’ related results or 
models. 

In association with that, considerably little attention among physicists is paid 
to the complex spacetimes, which, nevertheless, are present in the literature (see, 
for example, [2]-[9]) although rarely. It’s very common to view them as mathe-
matical notions only with no real physical meaning, even if sometimes there is a 
strong suggestion that the real physical phenomena have causes situated some-
where inside of the complex interior of the complex space. It looks as if some, 
not directly observable, “complex matter” was included outside of the real space 
causing real physical processes in a predictable manner. An interesting example 
of that kind of phenomenon can be found in [1]. 

This may suggest that our real physical space is emersed in a wider (nonreal 
complex) environment, which is not directly observable and eventually may be 
[or not?] of some, say “paraphysical” (not just mathematical) nature. 

The second aspect of this paper is that, as it turns out, a proper use of complex 
models for the physical space and for the time very dramatically simplifies some 
underlying physical theories, first of all, special relativity. 

In this theory, considered as theory of the constructed complex model, all the 
relatively complicated tensor calculus can simply be omitted as well as many of 
calculus’ descriptions can be replaced by simpler algebraic and trigonometric. 
Moreover, any unidimensional motion with various constant velocities (that ARE 
typically considered in SR) can be pictured on a complex plane emersed in C3 
(see Figure 1 in coming text), essentially more transparently than it is done us-
ing the typical plane, emersed in the Minkowski’s M4, whose vertical coordinate 
is the time coordinate. 

This “para-space’s” motion representation provides a very clear picture of what 
happens with the motion when velocities change. From that point of view, it is 
important for clarity of the description that motion with each particular speed 
has a different trajectory while the trajectories only differ by simple circular ro-
tations. In turn, the angles of such rotations are strictly determined by underly-
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ing changes in speeds. Unlike with the real Minkowski’s model description, all 
this can be “seen” in the same coordinate system with the vertical axis being the 
imaginary distance (instead of time axis). In turn, any imaginary “distance” may 
(also) be understood as an amount of kinetic energy that makes a given physical 
body move. 

Dramatic simplification of mathematical apparatus can be achieved not only 
for special relativity, when modeling, but possibly also one could model quan-
tum mechanics by the C3 para-space. For that, hypothetical, possibility, see [10], 
Appendix 3, page 75. 

Realize that, it is commonly known that mathematical tools as contemporarily 
applied in theoretical physics are overblown in their complexity. This often causes 
the physical content to be almost lost so that, as it is customary to say: “no phy-
sicist (really) understands quantum mechanics” with its current mathematical 
descriptions. 

For many physicists, it might be attractive to use functional analysis and ad-
vanced abstract algebra for their beauty, but that is very far from simplicity which, 
in turn, is of another, perhaps even higher, esthetic value. 

Besides, it seems to be obvious that the researchers should be aware of what 
they really want to investigate: physical phenomena or beauty of mathematical 
structures. 

As it is typical, in cases like that, it may turn out in the end that the abnormal 
growth of complexity of physical theories in their mathematical descriptions is 
the result of a hidden error that was committed sometime in the past at the very 
beginning of modern physics. 

Perhaps, among others, that error results from too strong “believe in real num-
bers”. 

It was not necessarily true, as it appeared to some physicists or mathemati-
cians from the beginning of twenty century (see, Von Neuman for example), 
that “new physics”, especially quantum physics, must act parallelly to the “new 
mathematics” [i.e. set-theoretical approach in functional analysis, abstract alge-
bra, topology and others], often unnecessarily merging the two while overlook-
ing other, simpler, and more efficient possibilities. All this, probably, caused that 
the special role of complex numbers and models for the new physics was not fully 
recognized. 

Nota bene, it is common for any research that, in general, simplicity indicates 
correctness while constantly growing complexity is the signal that, probably, 
“something went wrong”. 

Thus, maybe somewhen in the past, more relevant for the “new physics” 
would be transition from real to complex mathematical models (like, roughly 
speaking, Rn → Cn, for n = 1, 2, …, ∞) rather than to new mathematics with, 
mostly real, functional analysis as the starting point. The underlying complex 
models are much less “complex” than too high levels of abstraction, and, first of 
all, complexity of modern mathematics whose role could be reasonably limited 
by the “complex option”. In my opinion, the only (but very serious) obstacle for 
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choosing complex models is the ontological fear of many to fully understand and 
adopt the idea of true “complex modeling”. 

2) Of course, it is fundamental that proper application of complex models re-
quires proper construction of them. Not every construction of complex space-time 
may yield fruitful physical consequences. It is not enough to just add to a real 
quantity an imaginary part nor to extend real models to complex ones via ana-
lytical continuations. 

Typically, the construction should be “right” to be fruitful. 
I hope that the extension from real to complex models, for example, the way 

proposed in this paper, taking as the starting point and extension of the Lorentz 
transformation to its complex version, is right. 

After the first step was done (completing the coefficient cosθ (which was de-
fined as equal to the reciprocal of the Lorentz factor) by its so natural comple-
ment “isinθ”), the physical consequences of that movement were striking. First of 
all, the “mysterious” phenomenon of the Lorentz contraction found immediate 
simple explanation as the result of a rotation in the so-created complex plane. 

Other striking consequences also justify the choice of the so-obtained simple 
model for both SR with no tensors (!), and classical Newtonian mechanics. Name-
ly, the real parts of the underlying complex quantities satisfy classical (real) SR 
theory while their signed absolute values satisfy the Newtonian (with one ex-
ception, namely velocities composition was slightly different than the arith-
metic sum). 

Moreover, there are strong indications that the same model may also serve 
(through complex values) as a model for quantum mechanics (QM) and possibly 
for other areas of quantum physics. 

Also, as I would anticipate, it was a good model for classical electrodynamics. 
Anticipating further, I strongly hope that the complex model described in this 

paper may be a good candidate as an elementary model for the unified physics. 
In the proposed model for SR theory, all the theorems of Einstein’s SR are 

preserved while many intuitively difficult-to-grasp facts and “paradoxes” (such 
as the universality of the speed of light or the twin paradox) look much clearer in 
this complex framework. 

The construction of the model has two stages. At first, the complex C4 space-
time is constructed through an extension of the Lorentz transformation to its 
complex version. Then it turns out that time can be defined within the theory of 
the “para-space” C3. Consequently, time turned out not to be a primitive notion 
and the time transformation can be obtained from the spatial part of the com-
plex Lorentz. The time definition within the SR theory of C3 was possible be-
cause all velocities in that theory can easily be defined geometrically with no pri-
mary use of time. 

Anticipating, at this stage, the following text let me give a short and simple 
explanation of the important fact of the possibility of determining speeds and 
velocities (in macroscale framework) geometrically with no use of time (which 
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therefore can be defined as simple ratio of a distance and speed (for example, the 
speed of light c). Thus, since we may always substitute inverse to the Lorentz 
coefficient by cosθ, where, after naturally completing it to: cosθ + isinθ, θ turns 
out to be an angle of rotation (say, of the real x-axis) in the so-constructed com-
plex plane, we follow the fact that in this framework sinθ = u/c, where u is speed 
corresponding to the angle θ while c is the speed of light. Now any speed u may 
be defined as csinθ with no time involved in this definition. On the other hand, 
speed of light c can also be defined geometrically according to the geometrical 
notion of orthogonality. Namely, c = 1 = sinπ/2. As it will be discussed in the 
paper, the natural [“Galilean”] direction of light is the vertical direction, i.e. pa-
rallel to the imaginary axis. 

Thus, any speed is defined as equivalent to the pair of angles π/2 and θ whose 
geometric nature is obvious and no time is needed. One can then conclude that 
the primary phenomenon in the Nature is motion [or, somehow more generally, 
“energy” to which, mathematically, probably corresponds “imaginarity”] while 
time is the derivative of the motion. 

Since in the obtained version of complex Lorentz transformation C4 → C4 (see 
Formula (23)) time part became separated from the space part I obtained, as the 
conclusion, the complex version of the Lorentz transformation as a C3 → C3, spa-
tial only transformation (see (26*) and (26**)) from which the common real Lo-
rentz M4 → M4 transformation can be recovered. 

The quite exciting hypothetical fact is a possibility to model with C3 a single 
elementary particle, actually, with no use of operators nor the underlying Hilbert 
spaces. Again, see [10], Appendix 3, page 75. 

In short, the particle’s analytical description can be given as the complex, 
time-dependent, value rexp[iωt] where r, ω are positive reals and t is real time. 
The value may be considered, for example, as a complex eigenvalue of a normal 
(instead of Hermitian) operator being, say, an extended “momentum operator” 
on the Hilbert L2(C3) space and not on the Hilbert L2(R3). 

Physically, in the complex paraphysical space C3, the considered value could 
be pictured as a small “stick” of length r [or one of its endpoints] vibrating with 
the angular velocity ω within a single complex plane. 

As the first approach, such a stick can be considered a “particle” but more likely 
it would represent one of the three (sticks) interconnected quarks, each rotating 
in a separate complex plane. 

The actual structure of those three “sticks” formatting the particle may not be 
straightforward but anyway that structure would represent a complex “particle”. 

On the other hand, the projections of shapes of the rotating sticks on the un-
derlying real axes x, y, z will be given in their lengths as their real parts 
Re{riexp[iωit]} = “ricosωit” (i = 1, 2, 3), which apparently are observed as waves. 

Additionally, the projections of the considered three complex quantities on 
corresponding imaginary axis are “risinωit” (i = 1, 2, 3) which may represent free 
particle velocity’s coordinates, easily obtainable from the given lengths (a reasona-
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ble assumption seems to be that ri = r, ωi = ω, for i = 1, 2, 3). 
Such a simple formalism may, eventually, clarify “dark” basic notions and dif-

ficulties in QM such as wave-like nature of the particles and the Heisenberg’s 
uncertainty principle. It seems then that the Heisenberg’s rule only works in real 
models. For that and for more details, see again [10] in Appendix 3. 

3) In Section 2, we extend the real Lorentz transformation M4 → M4 to its 
complex C4 → C4 version, together with the extension of the real Minkowski M4 
spacetime to the complex Minkowski C4 spacetime. 

As mentioned, in Section 2.3, we introduce geometric definition of speeds (as 
coordinates of underlying velocities) with no use of time. 

We obtain there both the relativistic observed speeds and the unbounded, 
unobserved, complex speeds whose [signed] absolute values gain the Galilean 
(Newtonian) speeds interpretation. The latter is known in SR as “proper speeds” 
but with no reference to Galilean kinematics. 

We stress at that point the natural relationship between the Newtonian clas-
sical theory and SR, both having the same complex model. This topic is further 
developed in Section 3. 

In Section 4, time transformation is discussed. As the result of deriving Gali-
lean (proper) speeds on one side and the invariance of the absolute value of 
complex lengths (distances) on the other, we arrive at the notion of proper time 
along the radial line in the interior of the complex plane [say, within the moving 
“rocket”] of time. 

The proper time’ phenomenon inclined us to adjust the time transformation 
within the complex Lorentz transformation. 

In Section 5, we found it necessary [for preservation of the metrics] to ines-
sentially reduce the C4 spacetime model to the C3 “para-space” model with the 
time complex plane “eliminated” or rather separated. 

What is important, however, in the SR theory of C3 is that all facts taking place 
in the C4 reality are recoverable as the complex time is definable and the fourth 
row of the complex Lorentz turns out to be obtainable from the spatial part of 
the transformation. 

Under all that, the final form of the C3 → C3 Lorentz transformation is given in 
Section 5 by Formulae (26*) and (26**). 

At the end, in Section 6, we discuss (Euclidean) isometric properties of the 
new complex Lorentz. 

(Compare these considerations with [11].) 
Some discussion on the nature of the complex time was provided in Section 4. 

See especially Formulae (15) and (16). 

2. Preliminary Descriptions 
2.1. Lorentz Transformation and Its Complex Extension 

To build up a new SR framework, first recall the formula for the common (real) 
Lorentz transformation M4 → M4, where M4 is the Minkowski real space-time with 
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the invariant hyperbolic Lorentz norm. 
Unless stated otherwise, we restrict the attention to uniform motion along the 

real x-axis, with a constant speed u. Consider the following Lorentz transforma-
tion: 

 

( )

( )

1 22 2

1 22 2 2

1

1

x ut x u c

y y
z z

t ux c t u c

′− = −

′=
′=

′− = −

 (1) 

where t and t' denote times at rest and within the moving object, respectively. 
Under the trigonometric substitutions: 

 ( )1 22 21 cos and sinu c u cθ θ− = = , (A) 

Formula (1) becomes: 

 

2

cos

cos

x ut x
y y
z z
t ux c t

θ

θ

′− =
′=
′=

′− =

 (2) 

where, initially, a geometric and an associated physical meaning of the “angle” θ 
are not yet known. 

An initial assumption only is that θ is a circular real angle in the Euclidean 
sense. 

That assumption follows the simple fact that: 

( )1 22 20 1 1u c≤ − ≤ , 

while, in general, coshθ > 1 and sinhθ can be arbitrarily high. 
For that reason, θ is not an imaginary nor hyperbolic angle. 
An educated guess may incline one to test the following hypothesis: 
Does any significant physical meaning results when the “coefficient” cosθ in 

(2) will be completed by its very natural, from a pure mathematical viewpoint, 
term to the expression cosθ + isinθ, where i2 = −1. 

But as cosθ + isinθ = exp[iθ], geometrically, the right-hand sides of the first 
and fourth rows in Formula (2) become exactly the circular rotations by the an-
gle θ in the so-constructed complex plane, which extends the real x-axis and the 
real t-axis of the former M4. 

Of course, in the same manner (for the full form of the Lorentz transforma-
tion) one may extend the y-axis and the z-axis to their corresponding complex 
planes. This results with C4 space-time with the hyperbolic Lorentz-like norm. 

Anticipating further constructions, as C4 will later be reduced to C3 [for a 
“time free model”], realize that in that case the hyperbolic metric essentially re-
duces to the Euclidean on the corresponding C3. 

According to my first [false] impression (see [2]), time (like position x) will 
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also be rotated by the nonnegative angle |θ| in the “complex time” plane. 
According to the above assumption, the Lorentz transformation (2) becomes 

extended to its complex form: 

 

[ ]

2

exp

exp

x ut x i
y y
z z

t ux c t i

θ

θ

′− =

′=
′=

′− =   

 (3) 

where π/2 < θ < π/2 and |θ| denote the absolute value of the angle θ (presence of 
that absolute value in fourth row is dictated by the fact that time “goes” in one 
only (say, positive) direction). 

As, however, deeper analysis revealed (see [12]) the last row of (3) was not yet 
correct. This problem was the main reason for me to write [12] in order to give 
justification (and to correct the error committed in [10]) for the new complex 
version of (2). 

This version of the complex extension of the real Lorentz transformation (1) 
or (2) initially is given by what follows: 

 

[ ]

( )2

exp

cos exp

x ut x i
y y
z z

t ux c t i

θ

θ θ

′− =

′=
′=

′− =   

 (3*) 

Further Anticipation: 
Unfortunately, (3*) still turned out not to be totally correct since [relativistic] 

speeds u and c in (3*) must be replaced by bigger [“Galilean”] real speeds Uθ 
and Cθ (known under the name “celerity”) which will be defined by Formulae 
(8) and (9) in the text below, and explained in Section 2.3. Here notice only, 
the “direction” of the speeds Uθ and Cθ is along the line OB' in Figure 1 in be-
low, i.e. within the interior of the proper complex plain and not along the real 
axis. 

Thus, one will obtain the correct C4 → C4 formula for the “complex Lorentz 
transformation” by replacing (3*) by the following (here just anticipated) For-
mula (3**): 

 

[ ]

( )

, ,

2
, ,

exp

cos exp

c c

c c

x U t x i
y y
z z

t U x C t i

θ θ θ

θ θ θ θ

θ

θ θ

′− =

′=
′=

′− =   

 (3**) 

where the meaning of the complex position xc,θ is explained in the text following 
Figure 1 and the meaning of the complex time tc,θ in Figure 3. 

Formula (3**) will be explained throughout this paper. In my opinion, how-
ever, it is purposeful to introduce it here to signal the difference between the 
correct version (3**) and the not yet quite correct Formula (3*) as present in 
[12]. So, (3**) need not yet necessarily be entirely understood at this stage of 
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the paper. 
Anticipating a bit, for the complex quantities (all having the argument θ): the 

position xc,θ, time tc,θ, the considered complex speed of a physical body Uc,θ, and 
the corresponding to it complex speed of light Cc,θ, we denote: 

,cx xθ θ= , 

,ct tθ θ= , 

,cU Uθ θ= , 

,cC Cθ θ= , 

where the operator .  is the absolute value of any considered complex quanti-
ty. 

Thus, for the real [“Galilean”] speeds Uθ and for the real [“semi-Galilean”] 
speeds of light Cθ in the direction determined on the underlying complex plane 
by the angle θ, one, in general, has: 

andU u C cθ θ> > . 

Moreover, in the real case, i.e. when θ = 0, we have: 

0 0andU u C c= = , 

where u is the considered real relativistic speed in the direction of x'-axis while c 
is the common [relativistic] speed of light in the real subspace of the complex 
space. 

The symbols xc,θ and tc,θ are applied in (3**) instead of the symbols x, t in (3*) 
and, in both cases, denote complex position and complex time, respectively, 
while x' and t' are the real position and real time as present in Figure 1 and 
Figure 3. 

Notice also that: 

[ ], expcx x iθ θ θ= , 

, expct t iθ θ θ=    , 

[ ], expcU U iθ θ θ= , 

[ ], expcC C iθ θ θ= , 

are the complex, say (para)-physical, quantities. 
For more detailed justification of (3*), see [12]. 
In this paper, the reasoning for the (3**)’s validity will be given in Section 4, 

and for further development of (3**) towards its equivalent C3 → C3 versions 
(26*) and (26**), see Section 5. � 

Remark 0. Now, notice that, actually, (3*) and (3**) are no more (complex) 
“Lorentz transformations” since the space-time interval, as defined in SR, is no 
longer preserved under (3**). Nevertheless, realize that the common real Lorentz 
transformation can be recovered from (3**) by taking real parts from both sides 
of spatial and the absolute value of the fourth row of (3**). 

The unpleasant fact of the space-time interval noninvariant behavior can be 
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amended since, as we will see, the fourth row turns out to be dependent (pro-
portional to the first) and thus redundant. This allows to reduce the C4 model to 
an equivalent C3, and so the hyperbolic norm to the Euclidean. Under this cir-
cumstance the Euclidean geometry, with Euclidean metric preserved, is recov-
ered in the (para)physical C3 model. 

The final form of the complex “space-velocity Lorentz transformation”, as 
equivalent to space-time transformation, is given by (26) in coming text. � 

Consider the spatial part of transformation (3**) which in this particular case 
reduces to the first row. 

Now, the question is what is the physical meaning of this row? 
To answer this in a simple way, consider only the special case when tc,θ = 0. 
Then, the spatial part of (3**) reduces to: 

[ ],  expcx x iθ θ′= , 

where, after the rotation, x' represents the new real axis [now lying horizontally 
in place of the former x-axis] and xc,θ represents the complex [“slant”, “radial”] 
“axis”, after transforming it from its previous position that was along the former 
x-axis. 

Since the above represents a circular rotation about the origin of the complex 
plane, its radius x', which here may represent the physical length of a considered 
moving body, is invariant! 

The analytic counterparts of the geometric fact, of the rotation, in the case 
Uθtc,θ = 0, are the following equalities: 

 [ ], expcx x x i xθ θ θ′ ′= = = . (4) 

Notice: When tθ > 0, i.e. tc,θ ≠ 0, the rotation will be performed about the 
complex point Uθtc,θ (corresponding to the known in the literature real value ut), 
which fact would unnecessarily spoil clarity and simplicity of the above consid-
erations. 

Realize too, that according to the first row of (3**) Uθ is real and tc,θ is com-
plex, and thus their product is complex. 

Nevertheless, in the general case, when Uθtc,θ ≠ 0 the length is preserved too.  
The conclusion from both geometric and analytic facts is that in this complex 

version of SR the, originally real, length x [after rotation becoming the length xθ 
of a rocket] is preserved as the absolute value of its complex representation and 
is a real constant independent on θ, i.e. or, equivalently, on the speed u. 

Thus, in a sense, the Lorentz contraction is eliminated when length is consi-
dered within the complex “reality”. The contraction only takes place in the real 
part of the complex plane. 

The length, as “observed” in the real space by physical instruments [if such a 
measurement ever would be performed], is only equal to Re xc,θ, i.e. to the real 
part of the complex chord xc,θ. 

Thus, in this complex version of SR, the Galilean (Newtonian) length inva-
riance is recovered! 
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In my opinion, this recognition, and other described later, motivate the need 
of the extension of the real Lorentz transformation (1) to its complex form (3**). 
The form of time transformation in (3**) will be derived and explained later or 
see [12]. 

The fact of the “length invariance” with respect to the regular Euclidean norm 
in C3, without any time involvement (impossible in Minkowski’s M4), suggests 
the possibility and need to return to the regular Euclidean (norm) geometry, in-
stead of the somewhat less natural hyperbolic Lorentz geometry in M4 (see [11]) 
with the necessity of time involvement. 

This invariance on each of the three basic spatial coordinate complex planes 
of C3 model [which form the algebraic basis of C3] is the same. 

As this is argued later, the C4 model (where one of the four base complex 
planes is the “complex time plane”) reduces to its spatial C3 part as time turns 
out not to be a primitive notion, but instead is definable within the [SR] theory 
of the C3 model (never within R3 model alone). 

Thus, the so obtained C3 model of the “para-space” is just the regular complex 
Euclidean space with the usual complex Euclidean geometry. 

Remark 1. Anticipating a bit actual consideration that leads to the C4 reduc-
tion to C3, here only notice that all velocities, within any complex plane, can be 
defined geometrically (see Formula (5)) with no reference to time and therefore 
time can always be defined as usually by means of distances and speeds (espe-
cially “proper speeds”) which are given in advance. 

2.2. Some Graphic Illustration of Unidirectional Uniform Motion 
across One Complex Plane 

As now we restrict the motion to one real direction only along the real x-axis (or 
just within R3) with constant speed u, we analyze the complex counterpart of this 
motion on one complex plane of the positions, whose real axis is the mentioned 
x-axis. The extension of this motion to the whole C3 is immediate as the rules 
of the motion (with velocity’s coordinates, say ux, uy, uz in place of only one ux 
= u considered here) on each of the three complex coordinate planes are the 
same. 

The (“first”) complex coordinate plane that the considered motion takes place 
in is illustrated in the following Figure 1. See also discussion for the same Figure 
1 in [10]. 

According to the analytical counterpart of Figure 1, i.e. the first row of (3**) 
with tc,θ = 0, the former real x-axis (now being the xc,θ line, where the subscript 
“c, θ” will always mean: “… complex with the argument θ”, while subscript “θ” 
alone means: “absolute value of a considered complex quantity whose corres-
ponding geometric segment’s (here OB') angle of inclination is the argument θ”. 
Realize that the segment OB was subjected to the rotation “exp[iθ]” from its orig-
inal horizontal position by the angle θ, whereas in place of it, at horizontal posi-
tion, we now have the new, formerly complex, horizontal, x'-axis. The metric of 
the x'-line is (according to moving observer, i.e. “situated” along OB' line)  
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Figure 1. Real (A) and radial (B') motions across the complex plane. 

 
contracted by the constant (at all points of x') coefficient cosθ. 

Geometrically, this contraction is due to orthogonal projection of the “new” 
complex xc,θ-axis [i.e. “radial axis” along OB' line], with invariant [according to 
the moving observer] metric, to the real x'-axis. This projection geometrically 
explains the Lorentz contraction phenomenon. 

For each single motion with speed u, consider two distinct trajectories in the 
complex model illustrated by Figure 1. 

One is the observed path along the real 0A line and the other along 0B' line 
within the interior of the complex plane. The direction of the first we will call the 
“observable [real] direction” and of the second the “natural direction” which, 
nevertheless, is beyond the reach of human senses and of physical instruments 
while still present within the easily accessible mathematical model. 

If we consider motion of a rocket, our assumption is that, at the initial time 
epoch tc,θ = 0, its actual, unobserved, length spreads out between the points 0 and 
B', whereas the observed “image” of this rocket’s length spreads between 0 and 
A. 

According to the Lorentz contraction, as illustrated by Figure 1, the image is 
shorter than the actual rocket by the proportion |0A|/|0B'| = cosθ where, ac-
cording to primary assumptions (A), 

( )1 22 2cos 1 u cθ = − . 

As one can say, the measured [if that ever “happened”], by physical instru-
ments, length |0A| of the rocket is just the length of the observed “rocket’s sha-
dow” whereas its “true” invariant length is |OB'| = |OB|. 

2.3. On Galilean Speeds along the Natural (Complex) Directions 

Let us now reinterpret a bit (Figure 1). Instead of the “rocket” spread out be-
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tween some points consider a classical particle at the moment t = 0 situated at 
point B' while its real “image” has position A. 

The image of this particle moves along the real x'-axis with the relativistic 
speed u. 

In accordance with the first assumption of (A), which follows Formula (1), we 
have: 

 sinu c θ= . (5) 

The question now is, what is the speed of the “actual particle” as it moves 
along the radial line 0B’? 

To answer this, notice two facts, one of geometric and the other of analytic 
nature. 

First, the “two objects” (actually it is the same particle considered at point A 
and at point B' separately) are “instantaneous” in at least two meanings: geome-
tric as both always lying on the same vertical line connecting them and analytic, 
since for the real parts we always have: 

Re B Re A A′ = = . 

Second, the ratio of the distances is: 

 OB OA secθ′ = . (6) 

The conclusion from these two facts is that the [real] speed Uθ along the 
[complex] radial xc,θ-axis 0B' (known in literature as the proper velocity or celer-
ity, but with no complex space framework nor geometric interpretation) is big-
ger than u and from (6) it follows that: 
 secU uθ θ= , (7) 

where according to the admitted convention if θ = 0, then 

 0u U= . (7*) 

Realize that since, in accordance with (A), secθ equals the Lorentz factor, the 
proper velocity Uθ here was obtained geometrically with no use of [proper] time. 

Remark 2. The premises for conclusion (7) are both the geometric and ana-
lytic “instantaneity” described above. 

The above considerations do not yet require any primary use of the concept of 
time since the instantaneity is defined independently of this concept. 

Nevertheless, as it will be shown later, the times which elapse for either of the 
“two” objects to shift from 0 to A and from 0 to B', will turn out to be the same. 
Thus, the instantaneity in the sense of “same time” also takes place but will be a 
conclusion rather than a premise. For more on that, see [12].  

Combining (7) with (5), we obtain: 

 tanU cθ θ= .  (8) 

As mentioned, the real speed Uθ = |Uc,θ|, is known as the “proper speed”, where 
Uc,θ = Uθ exp[iθ] is the corresponding “complex speed”. 

As for the complex speed Cc,θ of a light beam that is sent ahead from the rock-
et, which itself moves with speed Uθ in 0B' radial direction, the same as before 
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geometric argument yields to the conclusion that since |0B'|/|0A| = secθ, we 
have: 

 , seccC C cθ θ θ= = , (9) 

where c is the ordinary relativistic [“small”] speed of light in vacuum of the real 
subspace. 

Consequently, we have, for the complex speed of light: 

 [ ], expcC C iθ θ θ= . (9*) 

In the complex quantities’ framework, an overwhelming suggestion yields to 
the conclusion that the proper speeds Uθ as defined by (7) or (8) and Cθ defined 
by (9) should be considered “Galilean” or “Newtonian” since they are speeds of 
(para)-physical bodies which move along complex paths such as the 0B' path. 
The metrics of the paths are invariant [no Lorentz contractions], so each of the 
radial trajectory [as seen by observers situated on them] is a Euclidean line. 

Notice, that the source of boundness of the relativistic speeds u [including 
speed c of light in R3] is the Lorentz contraction of distances, which, geometri-
cally, are projections of Euclidean distances in any OB'-like radial line onto the 
real x'-axis. Parallelly, any speed Uθ or Cθ along that radial line projected (or, 
analytically, multiplied by cosθ) into the real x' direction results in its bounded 
relativistic counterparts u or c. Realize that c as the projection of Cθ is always 
the same, regardless the angle [speed] θ. This and the Euclidean character of 
all the radial lines inclines one to treat the speeds Uθ and Cθ as Galilean (or New-
tonian). 

The relativistic speeds and contracted distances may roughly be considered as 
deformations of the Galilean and the Euclidean, respectively. 

Notice that each Galilean (proper) speed Uθ is finite but unbounded. As θ → 
π/2, we have, according to (5) and (8), u → c and Uθ → ∞. 

In the papers [10] [12], the last infinite limit, I considered to be the [actual] 
“Galilean speed of light” Cπ/2 = C = ∞. This just is in spirit of the Newtonian 
theory and supports the “Newtonian version” of Einstein’s universality of speed 
of light (any finite speed Uθ is “infinitely smaller” than the infinite speed of light 
C = Cπ/2.). The “direction” of this (full) speed of light is vertical since, in this 
case, θ = π/2. 

As mentioned, the Galilean speeds Uθ, are known in SR under the name “prop-
er” but the novum of this presentation relies on different [basically geometric] 
derivation of them and, first of all, on their Newtonian interpretation. 

They do not exceed the corresponding semi-Galilean speeds of light Cθ, for 
any θ such that: 

|θ| < π/2. 

Recall that, unlike the (infinite) “Galilean speed of light” Cπ/2 = ∞, we call all 
finite speeds of light Cθ, for |θ| < π/2 “semi-Galilean” treating them as the slant 
projections of the infinite Galilean into the OB'-like slant radial lines. Physically, 
they are the same as speeds of the light sent ahead or backwards from the rocket 
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that moves along that slant line with the speed Uθ,. 
Their magnitudes are defined by (9). 
This semi-Galilean speed of light is known in SR as the time-like coordinate of 

four-velocity. 
In this case, we always have Cθ > Uθ, and the “difference” between the two is 

(independently of θ) the same in the sense that we always have: 

 2 2 2C U cθ θ− = . (10) 

For more on that, see [10] or [12]. 
Notice too that, in SR terminology, the left hand side of (10) represents the 

[invariant] squared hyperbolic norm of four-velocity. In the framework pre-
sented here, (10) relates to the universality of semi-Galilean speed of light as the 
squared “difference” between the two speeds is always the constant c2. Thus, (10) 
represents the “generalized Einstein’s universality of the velocity c”. 

3. More on Velocities 

In SR, the proper velocities [or speeds, here Uθ, and Cθ] are obtained in a quite 
different way than we did (geometrically), by purely analytic considerations, as 
the convenient convention with no explicit reference to Newtonian theory. 

Recall, shortly, some basic facts to compare the ideas presented here, associated 
with the complex Euclidean C3 model for SR, with the common “hyperbolic” ap-
proach to SR as related to its M4 model. 

For simplicity, we will consider one real direction motions, and thus we ana-
lyze the C1 model in place of C3 and M2 (with one axis being the time axis) in 
place of M4. So only one coordinate Uθ of the velocities (Uθ, 0, 0) will now be 
analyzed. 

As the starting point for the comparison of both approaches to [the same] SR, 
consider any pair (c, u), where c is the usual relativistic speed of light and (u, 0, 
0) any relativistic (with u bounded by the speed of light c) velocity, which in this 
unidimensional case reduces to its speed u. 

In SR [considered as the M4’s theory], there is adopted the following hyper-
bolic trigonometric speed’s representation u = ctanhλ, where the “rapidity” λ is 
the hyperbolic angle corresponding to speed u. 

By contrast, in association with our Euclidean model (here the complex plane 
C1), we applied the trigonometric substitution u = csinθ, where θ is the circular 
angle, the argument of a corresponding complex physical quantity (here the com-
plex Galilean speed Uc,θ so that Uθ = |Uc,θ| and θ = arg(Uc,θ)). 

As it is the common procedure with the full four-dimensional M4 develop-
ment of SR, the four-velocity (Cθ, Uθ1, Uθ2, Uθ3) is obtained from the quadruple 
(c, u1, u2, u3) (where the triple (u1, u2, u3) denotes an ordinary relativistic veloci-
ty) by multiplying (c, u1, u2, u3) by the Lorentz factor: 

( ) ( )( )21 1u u cγ = − . 

With the simplified two dimensional versions of the SR models, we have in-
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stead (for “two-speeds”): 

( ) ( )( ), ,C U u c uθ θ γ= , 

and depending on the model (M2 or C1) applied, we may substitute: 

( ) ( )cosh or secu uγ λ γ θ= = . 

The two representations of the same Lorentz factor must be equal, although 
the corresponding hyperbolic and circular angles λ and θ are not and are differ-
ent kinds of mathematical objects. 

The question may occur which of the two representations brings more infor-
mation on the nature of the obtained velocities Uθ and Cθ. 

It should be clear that the second representation as Uθ = ctanθ and Cθ = csecθ 
(see (8) and (9)) reveals the Galilean (Newtonian) nature of Uθ and Cθ, while the 
first does not suggest anything like that. 

In the first case, however, the invariance of the “two-speeds” with respect to 
its magnitude immediately follows as according to the (hyperbolic) squared 
norm’s definition in M2, we have: 

 ( ) 2 2 2 2, constant, indepently of
h

C U C U cθ θ θ θ θ= − = =  (B) 

due to the mathematical identity cosh2λ − sinh2λ = 1. 
In C1, the norm has a different definition, but Equality (B) holds too, this time 

due to the trigonometric identity sec2θ − tan2θ = 1. 
However, in the latter case, Equality (B), instead of the squared norm, expresses 

the universality of speed of light in its generalized form in any of the complex 
plane directions θ. For more on this, see [10]. 

In both cases the right-hand side of Equality (B) does not depend on velocity 
Uθ nor Cθ, but in the second (“circular”) case, (B) seems to bring some addition-
al information (some generalization of the basic axiom of SR, between others) ex-
hibiting, in possibly new way, the association between the relativity principle [the 
independence from θ, i.e. from the speed] and the speed of light universality. 

The association is then expressed both by the hyperbolic version of SR and by 
the speed of light universality in the second (circular) version here being under 
the consideration. 

The latter seems to indicate existence of “logical” dependence [implication] of 
the universality of the speed of light on the relativity principle. 

4. On Time Transformation 

Return now to Figure 1. Recall that according to the second interpretation of 
this figure, a classical point-like particle moves across this complex plane. It goes 
along the radial line 0B' while its observed “image” [or “shadow”] goes along the 
real line 0A to the right. We may assume that whenever the “complex particle” is 
positioned, say, at B' its real image is at A. The actual [proper] distance traveled 
by the particle from 0 to B' is invariant and equals its real counterpart OB = 
||0B'||. On the other hand, its speed Uθ is increased if compared with the ob-
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served relativistic speed u in the real direction so that for the speeds ratio we 
have Uθ/u = secθ, where the angle θ is equivalent to both speeds according to (5) 
and (8). 

Denote the invariant [proper] distance ||0B|| = ||0B'|| by d. 
This distance is traveled by the real particle with the speed u whereas the same 

distance is traveled by the complex particle with speed Uθ. Denote the time that 
elapsed when the real particle changed its position from point 0 to point B on 
the real axis by t, and by τ the time the complex particle traveled between 0 and 
B'. 

Then, we have: 

 d ut Uθτ= = . (11) 

From (11), it follows that: 

 ( )  cost u U tθτ θ= = . (12) 

( )1 22 2cos 1 u cθ = − . 

Time t is observed by the “earth” (real) observer at rest, while the shorter [due 
to the Einstein’s time dilation phenomenon] time τ, as measured by a “proper 
clock” on the rocket, is the familiar “proper time”. 

So, while the distances in both real and radial directions are the same, the 
times are different. This phenomenon relates to the proportion: 

 t u Uθτ = . (13) 

Relation (11) indicates that within the complex Lorentz transformation, time 
transformation must be different than the spatial part of the transformation which 
is simply the rotation. 

According to the complex Lorentz transformation first version (3), also see 
[10] time, like distance, was only subjected to a rotation in the complex time 
plane. Such [pure] rotation was illustrated in [10] by the following Figure 2. 

 

 
Figure 2. Rotation of time in the complex plane. 
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This, unfortunately, was wrong since in such a case time (actually, the abso-
lute value of the complex time) would be invariant (as ||Oβ|| = ||Oβ'||), and then 
the speeds u and Uθ would be equal and this is impossible by the geometric ar-
guments (the “geometric instantaneity”) and by the inequality ||0A|| < ||0B'||). 
What really happens in the time plane is the composition of the rotation by the 
angle θ in that complex time plane, and, at the same time, dilation of the rota-
tion’s radius by the coefficient cosθ. 

Graphically, this [correct] time transformation is illustrated in the following 
Figure 3, which depicts the underlying plane of the complex time. 

In accordance with the above quantitative considerations, any real time epoch 
β (here treated as a positive real variable) is transported by the complex time 
transformation [the fourth row of (3**)] to the complex time epoch α' on the 
radial line of, say, the absolute values of time tθ = |tc,θ|. 

Here, of course, the complex time satisfies tc,θ = tθexp[i|θ|]. 
Figure 3 is a graphical illustration of the “Lorentz complex time-transformation” 

which relies on the “generalized rotation” by the angle |θ|, which is the composi-
tion of the ordinary rotation and radius contraction by the coefficient cosθ. This 
composition analytically is expressed by the product “cosθexp[i|θ|]” and, finally, 
turns out to be just the orthogonal projection of the real line t' onto the radial 
(complex) line tc,θ as determined by the speed-equivalent argument θ. 

All these recognitions yield the fourth row of Formula (3**) for the second 
improved version of the complex Lorentz transformation. The situation ex-
pressed by Figure 3 is described by the fourth row of (3**), under the assump-
tion that xc,θ = 0. Otherwise, the vertex of the rotation (the origin, when xc,θ = 0) 
will be at the complex point 2

,cU x Cθ θ θ  (corresponding to the, known in the 
literature, real point ux/c2) on the same plane, which is a complex number as xc,θ 
is nonzero complex and Uθ real. 

 

 
Figure 3. Time transformation in the complex plane. 
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So, finally, we have arrived at Formula (3**). 
For more detailed analysis of these facts, see [12]. 
Remark 3. Derivation of the Galilean speed Uθ, as determined by its relativis-

tic counterpart u and by (7), was based on the introduced above equivalent no-
tions of geometric and analytic instantaneity of the particle positions A and B' 
(Figure 1). 

Recall, the analytical instantaneity of the “events” A and B' relies on equality 
Re B' = Re A, while its equivalent geometric description relies on both points ly-
ing on the same vertical line. 

No time concept for these two notions of instantaneity was applied. However, 
these two equivalent notions of the instantaneity stand as a premise for the (pa-
ra) physical concept of the Galilean speed Uθ. 

Finally, the concept of proper time τ was based on two above considered con-
cepts: that of u and Uθ magnitudes, and the distance d invariance, with the latter 
statement being a geometric fact. 

Everything was then based on the (Euclidean) geometry of the C1 plane. 
It is a nice fact that, after all the geometric constructions, it turns out that the 

introduced geometric instantaneity implies the ordinary [physical] “time instan-
taneity”. 

Namely, the time elapsed when the particle shifts it from 0 to B' equals the 
proper time τ = tcosθ, whereas, since the time of the real shifting from 0 to B is t, 
the time for the observed real shifting from 0 to A [with speed u] equals “t × 
||0A||/||0B||” = tcosθ, which is the same for both shifts (O to B' and O to A), 
proper time τ. 

The time instantaneity follows the equality τ = tcosθ, and, as was expected, the 
geometric and the temporal concepts of instantaneity of the “events” B' and A 
turned out to be equivalent.  

Remark 4. Figure 3 represents the complex plane of time which can be con-
structed using the model C3 for the full SR theory. This (algebraically) three- 
dimensional complex model does not explicitly contain the time plane. 

In this version of SR theory, time is not a primitive notion and is not used for 
defining velocities or speeds. The latter definitions were based on the geometry 
of the complex (para)-space C3. 

The geometric concepts, applied for speeds definitions (5) and (8), are the an-
gles θ, i.e. the arguments of complex physical quantities such as, in this case, 
lengths. The quantity c (the real speed of light in vacuum) accompanying these 
formulas one can identify as the right angle or as the (geometric) concept of or-
thogonality (with the assumption that c = 1). 

Thus, time definition [within the SR theory of C3] can be based on the geome-
trically derived concept of speed. This definition actually is trivial as relying on 
arithmetic division of distances by speeds (especially by real c or by semi-Galilean 
speeds Cθ of light). 

Here, recall the common fact that time can be measured in distance units. 
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On the other hand, the relativistic speed of light (when the convention c = 1 is 
adopted) can be characterized as c = 1 = sin(π/2) and all the speeds u can be 
represented by sines of some acute angles. Also, the corresponding Galilean speeds 
can be represented as tangents of the same angles whereas the semi-Galilean 
speeds of light as secants of these angles. 

In such a way, we gain a purely geometric interpretation of speeds and con-
sequently times. 

Finally, as for the construction of the “complex time” plane, i.e. for the ines-
sential extension of the C3 SR model to the C3 x C1 = C4 space-time model for the 
same SR theory, we proceed as follows: 

1) For the real time t', we divide the real distance variable, say x' (Figure 1) by 
the real part u of the complex speed, say Uc,θ = u + iu*, where u* is the imaginary 
part of the complex speed, and 

2 *2
,cU u u Uθ θ= + =  

so that: 
t x u′ ′= .                          (14) 

Here, the variable x' is assumed to be any distance traveled with the speed u. 
2) Suppose the point B' on the “distances plane” (Figure 1) satisfies: B' = x' + 

ix*. 
Then, the imaginary time is defined as: 

* * *it ix u= .                         (15) 

3) The complex time is then defined as t' + it*, where t' is given by (14) and it* 
by (15). 

In short: 

( ) ( )* * *\t it x ix u iu′ ′+ = + + ,                  (16) 

where the latter “division” “\” is defined as “coordinate-wise” (real part divide by 
real part and imaginary by imaginary, the way it is defined in (14) and (15)) 
which is different from the usual arithmetic division “/” in the field of complex 
numbers. 

In words, the imaginary time definition (15) is an answer to the question of 
how much [imaginary] time will elapse to cover the imaginary distance ix* with 
the real speed u*, where u* is the imaginary part of the complex speed Uc,θ = u + 
iu*. 

Notice, the above determination of complex time did not require any [earlier] 
primary concept of time. 

Remark 5. In the time definitions (14) and (15), speeds u and u* were arbi-
trary, including as particular case, speeds of light. The distances denoted by x 
and x* were the distances “traveled” by some particle with those speeds. 

One can (without necessity, however) instead of any moving particle consider 
a photon as a particle of light, and x', ix* as distances traveled by that photon. 
This convention will unify definitions (14) and (15) reducing them to the fol-
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lowing: 
 t x c′ ′=  (14*) 

 * * *it ix c= , (15*) 

where the complex speed of light has the form: 

 *
,cC c icθ = + , (17) 

where c* = ctanθ and c is the ordinary real speed of light. 
Notice also that Formula (17) can be rewritten into the form: 

 [ ], expcC C iθ θ θ= , (17*) 

where Cθ is the [real] semi-Galilean speed of light in the radial direction OB' 
(Figure 1). 

Resuming above, the geometric definition of the complex speeds combined 
with the geometric concept of distance do not require any primary time concept, 
and are sufficient to define the real and complex time. 

This assertion possibly sheds some more light on genesis of the time concept. 
The conclusion is that “physical time” relies on the phenomenon of some 

combination of a complex Euclidean geometry and motion as changes of a posi-
tion. So that space and motion seems to be prior to time. On the other hand, it 
seems that the “imaginarity” of (part of) the C3 space is a source of motion (or, 
more generally, of “energy”). 

Thus, the need for using complex space models in physics seems to be essential. 
As for practical (in some wider sense) applications of introducing complex 

and imaginary time, besides theoretical and especially philosophical benefits, 
first realize that for more strictly practice we mostly use real measures of the 
time such as real part of complex time but even more importantly its absolute 
value which turns out to be the so obtained [real] proper time (interval (O α’) in 
Figure 3). 

Recall, this “proper time” was obtained, in classical SR [understood as the 
theory of Minkowski’s M4 model], in a quite different, I would say less intuitive, 
method. Besides, some relativistic phenomena that involve time can be seen as 
more transparent on a plane. As an example [Here, I must refer to my “paper” 
that I did not finish yet but the same results can easily be obtained eventually by 
those who would follow the model here presented] the famous “twin paradox” 
finds very clear geometric illustration on the complex planes [of time and of 
space]. Especially, the “what will happen” when one of the twins [the traveling 
one] starts to return to the Earth is pretty clearly seen as geometrical facts seen 
on the plane. 

These, I hope, make quite useful, also from practical viewpoint, introducing 
the complex model and, in particular, the complex time. 

5. Further Options for Reduced Complex Lorentz  
Transformation on C3: Time “Elimination” 

The obtained by us form (3**) of the complex “Lorentz” C4 → C4 transformation 
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is already “correct”, but, because of this new [comparing to (3)] form of the time 
transformation, the “spacetime interval”, i.e. the “square” of the hyperbolic norm 
of quadruples (x, y, z, t) ∈ C4 will not be preserved under (3**). 

Therefore, the complex quadruples (x, y, z, t) are not four-vectors anymore. 
This situation, occurring whenever the complex model C4 is introduced, forces 

us to resign from the four-vector formalism and from the hyperbolic geometry 
[11]. Our goal then is to recover Euclidean geometry and the Euclidean metric to 
describe SR theory by means of some other (the C3) complex model in which the 
(Euclidean) metric is preserved under a reduced complex 

C3 → C3 Lorentz transformation (as given further by (26*) and (26**). 
As one will see, that procedure will not reduce the SR theory as primarily go-

verned by (3**). 
To achieve the goal, i.e. proper reduction of the C4 model to C3, and the ac-

companying proper reduction of the complex Lorentz transformation to a new 
one, we proceed with the following steps: 

STEP 1. In this step, we finally will explain why we applied in (3**) the bigger 
Galilean and semi-Galilean speeds Uθ and Cθ, respectively, instead of the relati-
vistic speeds u and c, where c is, say “small” speed of light. 

The reason is, as it is well seen from (3**), that those “large speeds” (Uθ and 
Cθ) are the speeds of a considered body in the complex directions of xc,θ and tc,θ, 
whereas for u and c the real directions x' and t' must be “reserved”. 

That is why Formula (3*), unfortunately, also was wrong, see [12]. 
One can consider it as an intermediate step on the way to obtain the correct 

Formula (3**). 
An additional argument for applying the speeds Uθ and Cθ in (3**) instead of 

u and c is contained in the following Step 2. 
STEP 2. Consider the last row of (3**). 
First notice that, according to the convention x = ct, we have in our case: 

 ,cx c tθ ′= . (K) 

Multiplying both sides of the convention (K) by cosθ, one obtains the equality: 

 ( ), sec coscx c tθ θ θ′= , (18) 

where the product t'cosθ, is the proper time τ elapsing as measured within the 
rocket moving in the θ-direction on the positions’ complex plane. 

Recall, that csecθ = Cθ.. 
Under the assumption on time (generalized) “rotation” about the plane’s ori-

gin 0 (when 2
, 0cU x Cθ θ θ =  for xc,θ = 0 in Figure 3), the fourth row in (3**) is 

equal to: 

( ) [ ], cos expct t iθ θ θ′= . 

Getting back to “full reality”, we subtract from the left-hand side of latter equal-
ity present in (3**), expression 2

,cU x Cθ θ θ . 
Realize that: 
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 ( )( ) ( )2
, , ,sinc c cU x C U C x C tθ θ θ θ θ θ θ θθ= = . (19) 

Finally, one obtains the last row of (3**) in the form: 

 ( ) ( ), 1 sin cos expct t iθ θ θ θ′− =    , (20) 

which explicitly is “spatial part free” formula. 
This means (20) is a “pure” time transformation. 
Now, realize that: 

sinU C u cθ θ θ= = , 

so here the speeds Uθ and Cθ “work” in the same way as u and c. However, the 
presence of Cθ (instead of c) in the fraction xc,θ/Cθ is essential for obtaining the 
above time tc,θ = xc,θ/Cθ whose absolute value is contracted as the proper time. 
Otherwise, if to apply (3*), the fraction xc,θ/c would express the noncontracted 
time t' = |xc,θ/c| which was wrong. This is that additional argument (signalized 
yet at step 1) for using in (3**) speed Cθ instead of c. 

This, in turn, agrees with the fact of the necessity of the presence of the coeffi-
cient cosθ at the right-hand side of the fourth row of (3**). Recall, this multipli-
cation by cosθ was necessary for the existence of the Galilean and semi-Galilean 
speeds as well as directly for the existence of the proper time. 

STEP 3. Now, look at first row of (3**). First realize that we have the relation: 

 , ,c cx t Cθ θ θ= , (21) 

but not 

, ,c cx t cθ θ= . 

This follows from the fact that |xc,θ| is not contracted while |tc,θ| is, by the coef-
ficient cosθ. 

This time contraction makes the quotient |xc,θ|/|tc,θ| increased by secθ com-
paring to c with the latter only be present if no time contraction took place. 

Thus, the true value of the proper quotient is csecθ = Cθ. 
Next, realize that from (21), we also have: 

 ( )( ) ( ), , ,sinc c cU t U C C t xθ θ θ θ θ θ θθ= = . (22) 

Combining (22) with first row of (3**), we obtain this row in the form: 

( ) [ ], 1 sin expcx x iθ θ θ′− = , 

and thus, we finally arrive at the complex Lorentz C4 → C4 transformation (3**) 
(with the reduced second and third rows) in the form: 

 

( ) [ ]

( ) ( )

,

,

1 sin exp

1 sin cos exp

c

c

x x i
y y
z z

t t i

θ

θ

θ θ

θ θ θ

′− =

′=
′=

′− =   

 (23) 

 
Resuming, in the above three steps procedure, we have obtained the C4 → C4 

transformation (23) as equivalent to (3**). 
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Realize that transformation (23) is more uniform than (3**). So, first of all, 
time is not anymore explicitly present in the first row, and the space-like part is 
not (explicitly) present in the time transformation, so here time and space be-
came separated! 

This feature of (23) gives sufficient reason to “split” the Lorentz C4 → C4 
transformation (23) into the C3 → C3 (para)space transformation (the first three 
rows of (23)) and, separately, C1 → C1 time transformation (the fourth row), the 
latter being derivable from the C3’s SR theory. 

Nevertheless, time is implicitly (and not directly) present in the first row. The 
space-like part of the transformation is implicitly present in fourth row of (23). 
The “common cause” of this implicit dependence is the argument θ present in 
both rows. Recall, the angle θ is uniquely equivalent to speeds, both relativistic 
and Galilean as well as to the semi-Galilean speed of light. The speed informa-
tion θ allows to recover both time from the first and the space-like part of the 
transformation from the fourth row. 

However, this new linear form (23) of the same (3**) affine transformation 
does not preserve the space-time interval, so both (3**) and (23) are not isome-
tries in the hyperbolic sense. This is, roughly speaking, because space and time 
(first and fourth rows) transform slightly differently. Moreover, (the separate) 
time C1 → C1 transformation is a similarity but not a Euclidean isometry. 

To recover the idea of isometry with the complex model we are forced to re-
duce the C4 model to C3 with the Euclidean metric which, as we will see in the 
next section, will be preserved under the new form of the complex Lorentz C3 → 
C3 transformation. This inessential reduction of the model’s dimension is possi-
ble also because, for a fixed value of the speed u, the fourth row in (23) is pro-
portional to the first with the real proportionality coefficient cosθ only depend-
ing on an arbitrary θ, which is assumed to be fixed. 

To check this, divide both sides of first row of (23) by the corresponding sides 
of the fourth. Then we obtain: 

 , , cosc cx t x tθ θ θ′ ′= . (24) 

Since both the complex numbers xc,θ, tc,θ have the same argument, we have for 
their exponential representations: 

, , , ,c c c cx t x t Cθ θ θ θ θ= =
 

on the left of (24). 
Here, realize that |tc,θ| is the proper time, i.e. the time along the radial (com-

plex) direction and the distance |xc,θ| is invariant. 
On the other hand, since x'/t' = c, we have: 

cos secx t cθ θ′ ′ =  

on the right. 
So, we arrived at the obvious identity: 

 secC cθ θ= , (25) 
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which only depends on [by assumption arbitrary fixed] θ. 
Thus, after the division, the so obtained Formula (25) is the equality of two 

constants [of the proportionality] for every fixed value of θ. 
Recall at this point that it is customary in SR to consider an arbitrary fixed 

value of the velocity. 
Now, combining (23) with (25), we obtain the following Lorentz C3 × R1 → C3 

× R1 transformation: 

 

( ) [ ], 1 sin exp

sec

cx x i
y y
z z
C c

θ

θ

θ θ

θ

′− =

′=
′=

=

 (26) 

Transformation (26) is equivalent to both (23) and (3**)! 
The “unnecessary” fourth row of (23) and of (3**) can be obtained back from 

(26) by dividing the first row of (26) by the identity (of constant real numbers) 
Cθ = csecθ, which always holds. 

The latter fact inclines one to drop this identity as “obvious” [i.e. known al-
ways to hold] and now one obtains the FINAL VERSION of the complex Lo-
rentz C3 → C3 transformation: 

 
( ) [ ], 1 sin expcx x i

y y
z z

θ θ θ′− =

′=
′=

 (26*) 

This formula, however, only describes the simplified [but very common in li-
terature] version of the transformation under the assumption that the real part 
of the motion takes place exactly along the x'-axis, while the full motion is within 
the x' + ix* complex plane. Now, we provide an inessential (from the theory 
viewpoint) extension of (26*) by taking under consideration motion along a 
straight line in an arbitrary direction in R3 with a velocity, say (ux, uy, uz) such 
that 2 2 2 2

x y zu u u u+ + = , where u is the corresponding this velocity speed. 
Now, we have: 

sinx xu c θ=  
siny yu c θ=  
sinz zu c θ=  

and (26*) is replaced by its more general C3 → C3 form: 

 

( ) [ ]
( )
( ) [ ]

,

,

,

1 sin exp

1 sin exp

1 sin exp

x

y

z

c x x

c y y

c z z

x x i

y y i

z z i

θ

θ

θ

θ θ

θ θ

θ θ

′− =

′  − =  
′− =

 (26**) 

where the triple ( ), , ,, ,
x y zc c cx y zθ θ θ  is an arbitrary point in C3. 

Notice that in this general framework the (complex) semi-Galilean light ve-
locity is given as: 

( ) [ ] [ ]( ), , ,, , exp , exp , exp
x y z x y zc c c x y zC C C C i C i C iθ θ θ θ θ θθ θ θ =   , 
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where the real coordinates vector ( ), ,
x y z

C C Cθ θ θ  corresponds to the light speed 

we previously considered as Cθ (with 2 2 2 2
x y z

C C C Cθ θ θ θ= + + ). 

Realize too that time one can always recover from any of the three rows of 
(26**) using one of the real speeds 

x
Cθ , 

y
Cθ , 

z
Cθ  (see the fourth row of (26)). 

Namely, we have: 

 , , , ,x x y y z zc c c cx C y C z C tθ θ θ θ θ θ θ= = = , (R1) 

where tc,θ is the common for all rows “complex proper time”, while 

 ( )1 22 2 2arcsin sin sin sinx y zθ θ θ θ= + +  (R2) 

under the assumption c = 1. 
Also notice, that the eventual “fourth row”, which can always be added to 

(26**), can be recovered, and will have the form: 

 ( ) ( ), 1 sin cos expct t iθ θ θ θ′− =    , (R3) 

where the complex time tc,θ is given by (R1) and the common speed’s argument θ 
is given by (R2). 

As now is evident, time complex plane and time transformation (R3) on it, 
can always be derived from the C3 → C3 spatial transformation (26**), but may 
be considered separately. 

This means (26**) contains all the information about (R3) so in this sense (R3), 
as the fourth row, became “redundant”. 

On the other hand, it is obvious that transformation (26**) can always be re-
duced to (26*) by proper change of the coordinate system, setting the real part of 
the motion’s direction along the x'-axis. 

Hint: As above mentioned, an additional argument for the validity of the re-
duction of the C4 model to C3 is the fact that, in the equivalent version of the 
complex Lorentz transformation (23), space-like variables in the first three rows 
of (23) and time-like variables in the fourth row are explicitly separated, and, 
therefore, there is no necessity to consider them jointly as a C4 → C4 transforma-
tion. Such necessity obviously exists when the space and time variables are es-
sentially “mixed”, as takes place in the case of the real transformations M4 → M4, 
see (1) or (2). 

So, in our framework, time can be treated as any other physical quantity such 
as velocity, mass, energy, temperature, and so on, i.e. separately from the more 
“basic” (para)space behavior. 

6. Complex Lorentz Transformation as Euclidean Isometry 

The time “elimination” (or rather “separation”) that we performed above, re-
duced our primary (hyperbolic) model C4 to a more proper model C3 with the 
usual Euclidean metrics. Now, the isometric (in Euclidean sense) character of 
transformation (26**) and all the more reason of (26*) can readily be seen ar-
guing as follows. 
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Consider transformation (26**) as transport from any point (x', y', z') belong-
ing to the real subspace R3 ⊂ C3 (of rest states) to some point  

( ),
3

, ,, , C
x y zc c cx y zθ θ θ ∈  at which the considered physical object continues moving 

on with the complex velocity vector ( ), , ,, ,
x y zc c cU U Uθ θ θ . 

Now realize that the considered transformation is the composition of (first) 
the circular rotations (27), corresponding to [“quickly”] setting a particle from 
the point (x', y', z') into the motion: 

 

[ ]

[ ]

,

,

,

 exp

exp

exp

x

y

z

c x

c y

c z

x x i

y y i

z z i

θ

θ

θ

θ

θ

θ

′=

′  =  
′=

 (27) 

and (second), after some real time tθ elapses, the translation along the complex 
vector: 

( ), , ,sin , sin , sin
x y zc x c y c zx y zθ θ θθ θ θ . 

Obviously, the circular rotations, translations, and their compositions as the 
isometries preserve the Euclidean distance. 

As it is customary, one may extend the notion of Lorentz transformation 
from, say, (26**) to any isometry in C3. 

Notice. At this point realize that, in the C3 framework, the so called in SR 
boosts, geometrically, do not differ from other isometries (as compositions of 
[circular] rotations and translations only, with no reflections nor time reverse) 
in C3. The kinematic character of the boosts is, in a sense, “absorbed” by the geo-
metric notion of [circular] rotations. 

Of course, finite compositions of rotations in coordinate complex planes (and 
not in the R3 subspace) correspond to boosts, but, mathematically, need not nec-
essarily be considered in terms of speeds. 

One then can say that all the Lorentz (also all the Poincare) transformations 
(but in C3 instead of C4) belong to complex geometry, rather than [only] to me-
chanics. By this purely geometric interpretation more uniformity of the theory is 
gained. 

In this framework, only some of the rotations [in complex planes, but not in 
R3], correspond to speed changes, but, geometrically, do not differ from other 
[no boost] rotations.  

As for the translation, both the complex point ( ),
3

, ,, , C
x y zc c cx y zθ θ θ ∈ , as de-

termined by (27), and the origin (0, 0, 0) are shifted by the same value so their 
mutual distances after that shift remains the same. 

It can be shown closer that transformation (26**) as well as (26*) preserve all 
Euclidean distances. 

Thus, after the three rotations (27) (one rotation on each coordinate plane) 
about zero of the point: 

( ) 3 3, , R Cx y z′ ′ ′ ∈ ⊂  toward the point ( ),
3

, ,, , C
x y zc c cx y zθ θ θ ∈  
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as it is given by (27), we have that: 

( ) ( ) [ ] [ ]( ) ( ), , ; 0,0,0 exp , exp , exp ; 0,0,0x y zd x y z d x i y i z iθ θ θ ′ ′ ′ ′ ′ ′ =      , 

i.e. the distance from zero is preserved. 
For this, realize that: 

[ ]exp xx i xθ′ ′= , 

exp yy i yθ′ ′  =  , 

[ ]exp zz i zθ′ ′= . 

Next, realize that for the superposition of that rotation with a translation we 
have the equality: 

[ ] [ ]( ) ( )

[ ] [ ]( ) ( )
( ) ( )

, , ,

, , ,

exp , exp , exp ; 0,0,0

exp , exp , exp sin , sin , sin ;

0,0,0 sin , sin , sin

x y z

x y z

x y z

x y z c x c y c z

c x c y c z

d x i y i z i

d x i y i z i x y z

x y z

θ θ θ

θ θ θ

θ θ θ

θ θ θ θ θ θ

θ θ θ

 ′ ′ ′   
 ′ ′ ′ = + 

+


(28) 

Here, the semicolon (;) was used to separate the two variables of the metric 
function d(;). 

Realize too, that according to (26**), the point (0, 0, 0) is transported by the 
shift to the point ( ), , ,sin , sin , sin

x y zc x c y c zx y zθ θ θθ θ θ , whereas it is fixed under 
the pure rotation. 

Recall, that our term “rotation” means the composition of three rotations, 
each on a separate (complex) plane. As such, composition (27) is an isometry. 
Also, according to (28), (26**) is the Euclidean isometry as the composition of 
two Euclidean isometries. 

This isometry was temporarily viewed as a transformation R3 → C3 - R3 since 
the points of R3 are considered as “rest points”. However, this transformation 
can easily be extended to a whole C3 → C3 complex Lorentz transformation. One 
achieves this by substituting in (26**) the vector ( ), , ,, ,

x y zc c cx y zθ θ θ  in place of 
(x', y', z'), and a new vector, say ( ), 1 , 1 , 1

, ,
x y zc c c

x y z
θ θ θ∗ ∗ ∗  in place of the previous 

vector ( ), , ,, ,
x y zc c cx y zθ θ θ  now with some “new” angles (speeds), say xθ

∗ , yθ
∗ , 

zθ
∗ . 
In the C3 case, the associated (full) Lorentz group is to be defined as the group 

of all linear isometries of C3 which contains all the boosts, say (27). The bigger 
Poincare group of the affine (hence, in general, nonlinear) isometries, one ob-
tains when adding all the translations in C3 to the elements of the Lorentz group. 

Recall again, that here all the boosts as given by (27) are just rotations. The 
latter recognition provides more uniformity into the (SR) theory of C3. 

Remark 6. Elimination of time in (26**) [comparing to (3**)] may give an 
impression that the underlying translation is somewhat not clear towards the 
end or artificial as dependent on the vector ( ), , ,, ,

x y zc c cx y zθ θ θ  that is translated. 
To provide more clarification, consider (26*) as simpler and all that now can be 
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said about (26*) can be directly extended to the more general case (26**). 
It, however, becomes quite clear if we realize that the first row of transforma-

tion (26*) is equivalent to the first row of (3**) where time is explicitly present. 
So let me show again that for the underlying shift in (26*), we have: 

 , ,sinc cx U tθ θ θθ = . (29) 

As we stressed, time is always recoverable from either transformation (26*) or 
(26**). 

Realize then that, as sinθ = Uθ/Cθ, we obtain from (29): 

 ( ) ( ), , ,sinc c cx x U C x C Uθ θ θ θ θ θ θθ = = , (30) 

which determines the other equivalent expression for the same shift. 
Perhaps it would be more transparent if one rewrites (26**) into another 

equivalent form: 

 

( ) [ ]

( )
( ) [ ]

,

,

,

1 exp

1 exp

1 exp

x x x

y y y

z z z

c x

c y

c z

x U C x i

y U C y i

z U C z i

θ θ θ

θ θ θ

θ θ θ

θ

θ

θ

′− =

′  − =  

′− =

 (31) 

which is also time-free. 
Remark 7. A second benefit of introducing the C3 model for SR is the possi-

bility that this model has also a chance to serve as a proper model for quantum 
mechanics or even for some more general quantum physics. That may set a bridge 
between these two theories. 

For more on that, see [10] in Appendix 3. 

7. Conclusions 

1) As already mentioned in Section 1, it seems to be worth revising the role and 
use of some complex (number) mathematical models. Namely, it may turn out 
that, often, applying them instead of some existing real models such as, between 
others, R1, R3 or M4 may simplify physical theories such as SR, QM and possibly 
others. 

The only price for the possibility of extremely dramatic simplification and cla-
rification of physical theories and problems is a need for a more literal under-
standing of complex physical quantities. 

(See, for example, the concept of the macroscopic “imaginary mass” [meas-
ured in “i kilogram”] as described in Section 8 of [2].) 

This may create ontological questions on the status of the introduced entities 
and epistemological problems on some new relations between mathematics and 
physics (or “para-physics”). 

On the other hand, in contemporary physics, the situation of “exponentially” 
growing levels of abstraction and first of all growing complexity of mathematical 
tools, actually, darkens the investigated physical content. This should incline one 
to make a “one step” ontological effort to overcome a kind of superstition when 
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considering some use of complex numbers or models in place of real. 
The use of mostly real number-based models [such as the real domain R3 for 

the elements of the Hilbert spaces, so L2(R3) instead of, say, L2(C3) and Hermitian 
operators, instead of normal on them] may turn out not to be an actual simplifi-
cation nor necessity. As often happens, “cheaper” may turn out to be more ex-
pensive. 

New complex models that admit new approaches to complex physical quanti-
ties (like space, time, or mass) may bring a dramatic simplification to physics and 
not many actual difficulties. 

2) As an example, such simplification and clarification of many key SR prob-
lems and phenomena are possible if the real Minkowski’s M4 model is replaced 
by the alternative C3 complex “para-space” model. 

Notice that the new theory of the C3 para-space contains all the SR theory and 
possibly some extension of it as well. 

It allows for an easy reach to some facts difficult to understand within SR as 
the theory of M4. An example of that is an explanation of the universality of the 
speed of light which, within the real SR is an axiom that seems to require more 
clarification as being not very intuitive (see [10], Section 6). 

3) Also, this paper (together with Reference [10]) seems to promise some ap-
plications to other physical areas, first of all, toward quantum mechanics. 

On the other hand, it seems that, at least partially, the C3 model may also 
serve as a model for classical mechanics [12] with possibly only one exception 
when velocity addition is of concern. Such mechanics, we propose to name 
“semi-Newtonian”. It seems that the semi-Newtonian mechanics only differs from 
the Newtonian by the nonarithmetic addition of velocities which for “small” ve-
locities [approximately] reduces to the arithmetic. 

As we will argue in our next paper such “semi-Newtonian theory” may turn out 
to be the “true Newtonian” as different properties of high velocities non-arithmetic 
addition could simply be overlooked by eighteen and nineteenth centuries scien-
tists (but with no actual harm to their results). The reason probably was that, for 
relatively small Galilean velocities, being that time the only at hand, arithmetic 
addition seemed to be the natural and proper operation with no experimental 
evidence available that it was different. 

As it turns out, however, the “true addition” of the Galilean velocities is gen-
erated by the Lorentz-Einstein addition of relativistic velocities. 

4) As a byproduct, this work may open some, possibly new, ontological ques-
tions and perspectives related to the nature and ontological status of the space, 
(complex) time and all the reality that as modeled by the nonreal interior of the 
C3 seems to be transcendent to the real physical space, which, in classical theo-
ries, is usually modeled by R3. 

There emerge several possible interpretations of, say, new “transcendental” 
reality that is beyond the human senses as well as beyond the reach of physical 
instruments, but, nevertheless, easily accessible, directly, by human mind through 
some simple mathematical structures. 
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Among two major interpretations, the one that first comes to mind, is “dyna-
micity”, here understood as the source of motion or of energy. In the light of the 
above theory: anything to move must have some imaginary part. 

In turn, this interpretation may [but not necessarily] imply a spiritual [3] un-
derstanding of that reality or even personalistic, see [3]. To be careful, however, I 
would choose as the name for that reality “paraphysical”. 

Nevertheless, the ontological as well as epistemological problems seems to be 
open, but whatever would be an interpretation the physics of that reality will, 
basically, remain the same. 
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