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Abstract 
Ross’ epidemic model describing the transmission of malaria uses two classes 
of infection, one for humans and one for mosquitoes. This paper presents a 
stochastic extension of a deterministic vector-borne epidemic model based 
only on the class of human infectious. The consistency of the model is estab-
lished by proving that the stochastic delay differential equation describing the 
model has a unique positive global solution. The extinction of the disease is 
studied through the analysis of the stability of the disease-free equilibrium state 
and the persistence of the model. Finally, we introduce some numerical simula-
tions to illustrate the obtained results. 
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1. Introduction 

Stochastic differential equations (SDEs) in various modifications as descriptions 
of stochastic dynamical systems have been used in biological and medical prob-
lems [1] [2], financial and economic problems [3] [4], etc., in which significant 
uncertainty is present. In some real-world applications, many phenomena stu-
died do not only depend on the present state, but also on the past ones (see [5] 
[6] [7]). For instance, people infected with an infectious disease usually develop 
symptoms on average a few days or weeks (or even years for AIDS) after infec-
tion [8]. Stochastic delay differential equations (SDDEs) have been widely used 
to model such systems (see, e.g. [9] [10]). 
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The SIRS epidemic model is used to describe the evolution of an endemic in-
fection in which any infected person either dies or recovers from the disease and 
becomes temporarily immune [11]. This model relies on a linear incidence rate, 
which may not account for the saturation of effective contacts between infected 
and susceptible individuals due to the presence of already infected individuals (see, 
e.g. [12] [13] [14]). Consequently, to capture some of the real characteristics of 
the infection process, non-linear incidence rates need to be taken into account. 

Vector-borne diseases are one of the most dangerous diseases with more than 
223 million cases and 700,000 deaths worldwide in 2020 [15]. However, many 
vector-borne diseases can be prevented through the application of protective 
measures. Mathematical modeling to study vector-borne diseases has a long his-
tory dating back to 1911 with the Ross model [16], subsequently, important ex-
tensions were proposed by MacDonald [17] [18]. Since then, there have been 
numerous extensions and adaptations, such as the inclusion of acquired immun-
ity proposed by Dietz, Molineaux and Thomas [19]. Some works have also in-
cluded environmental effects [20] [21], the spread of drug resistance [22] [23], 
the treatment and impact of vaccination strategies [24], as well as the timing of 
the period incubation [25]. Authors have also taken into account the effects of 
individual protection measures, such as the use of impregnated mosquito nets or 
repellents [26] [27] [28], spatial dynamics [29], the heterogeneity of hosts [30], 
seasonality [31], stochasticity [32] [33] and control [34]. The Ross epidemic model 
describes the dynamics of malaria transmission using two classes of infection, one 
for human hosts and the other for mosquito vectors. Another perspective for 
studying epidemic patterns for vector-borne diseases, such as malaria, is to ap-
proximately transform infectious mosquitoes in Ross-Mcdonald type model into 
infectious hosts by means of time-scale transformation. This way, we only need 
to study the transmission dynamics of the disease in the host population (see [35] 
[36]). For example, Enatsu et al. [7] consider an endemic delayed epidemic model 
with nonlinear incidence rates in the form: 

 ( ) ( ) ( )( )max

0
dS t A t

τ
ρ τ τ τΘ Ψ −∫  (1) 

where ( )S t , ( )A t  and ( )R t  denote respectively the fractions of susceptible, 
infective and recovered individuals at time t and Ψ, a nonlinear function satisfy-
ing some assumptions. This incidence rate is used to study the transmission of 
disease, which is caused by a pathogenic germ carried and inoculated by vectors 
that have an incubation time to become infectious. According to [36], the vec-
tors can be omitted from the equations by including a delay in the force of infec-
tion. Other authors (see [32] [37]) have studied a stochastic model describing 
malaria transmission dynamics with compartments based solely on human host 
population. As mentioned in the annex of [37], Wanduku considers a stochastic 
malaria epidemic model that is an extension of the model proposed in [35] [36]. 
But does not link the parameters of the proposed model to the parameters of the 
Ross-McDonald epidemic model from which it is derived nor the necessary hy-
potheses. 
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This paper deals with a delayed stochastic epidemic model with non-linear 
incidence rate describing the transmission dynamics of a vector-borne disease 
that is a stochastic extension of the model studied in [7]. Based on the results 
and assumptions in [36], we linked the model parameters to the parameters of 
the corresponding Ross-MacDonald model. Furthermore, the practice of protec-
tive measures by part of the population is taken into account. The stochastic de-
lay differential equation describing the model is obtained from a deterministic 
model by introducing noise into the contact rate due to environmental varia-
tions. We assume that the intensity of the stochastic disturbance is proportional 
to the number of infective individuals. Our study is broken down into three stages. 
First, we establish the consistency of the stochastic epidemic model by proving 
the existence of a unique global positive solution of the stochastic differential 
equations with delay describing the model. To study the extinction of disease, we 
secondly analyze the stability of the disease-free equilibrium point of the sto-
chastic model under the condition 0 1R < . Where R0 designates the reproduc-
tion number of the underlying deterministic model. In the third step, we study 
the persistence of the solution when the disease-free equilibrium is unstable. We 
conclude our study with numerical simulations to illustrate the importance of 
personal protective measures in disease control. 

The remainder of the paper is structured as follows. In Section 2, we introduce 
the model and some preliminary definitions. In Section 3, we establish the exis-
tence and uniqueness of a global positive solution of our stochastic model. Sec-
tion 4 deals with the stability of the disease-free equilibrium E0, which is the 
unique equilibrium state of the stochastic model obtained. In the case where the 
disease-free equilibrium state is effectively unstable, the persistence of the stochas-
tic model when 0 1R >  is established in Section 5. In Section 6, some numerical 
simulations are given to illustrate the mathematical results. Finally, we conclude 
and propose some perspectives in Section 7. 

2. Model Description 
2.1. Deterministic Model Description 

In this work, we propose to study an epidemic model of vector-borne disease 
transmission which makes it possible to take into account the effects of protec-
tive measures. The is We assume that the human population is subdivided into 
four compartments named SARB where S designates the class of individuals 
susceptible to infection, A the class of individuals affected by the pathogen after 
being bitten by infectious mosquitoes, R is the class of individuals treated and 
cleared of the pathogenic agent and who become susceptible again after a certain 
period of immunity, finally, B designates the class of individuals completely with-
drawn from the epidemic process by using protective measures such as the use of 
insecticide-treated musketeers. 

We recognize that the vector population is divided into two groups named 
susceptible and infectious. The size of the population of the vectors vN  is con-
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stant so that the death and birth rates are the same vµ . Susceptible mosquitoes 
are affected by the pathogen after biting an infectious human and will only be 
infectious after a certain latency period. An infectious mosquito stays infectious 
until it dies. Let N0 be the average number of humans in the model such that  

0 1
v

N
N
 . Tτ  the latency period for an infected mosquito to become infectious is  

distributed according to the probability distribution of density function Θ. vβ  
denotes the contact rate between infected people and susceptible vectors such. 

We make the following assumptions about the model: 
• Bed net use hypothesis: Many efforts are made in the population to ensure 

that infection from infectious humans to susceptible vectors is low, so that 

0 1vN β ≈ . 
• Insecticide use hypothesis: Many measures are implemented in the popula-

tion to significantly reduce the vector population using insecticides or traps, 

so that vµ  is chosen large enough such that 
( )e 1

v T

v
v

τµ

ε
µ

−

= 



. 

Based on the works carried out in [36], by using a time-scale transformation 

under the condition 
( )e 1

v T

v
v

τµ

ε
µ

−

= 



, the vectors can be omitted from model  

equations by including a delay in the force in affected subgroup “A” such that 
the model can be described by the following flowchart (see Figure 1). 

Using the non-linear incidence rate (1) proposed by Enatsu et al. [7] which is 
a generalization of such a class of model. Therefore, the differential system de-
scribing the model is given by: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

max

max

1 1 0

2 20

3 3

1 2 3 4

d
d ,

d
d

d ,
d

d
,

d
d

,
d

v v h

v v h

S t
b S t m S t A t R t

t
A t

m S t A t b A t
t

R t
A t b R t

t
B t

b S t b A t b R t B t
t

τ

τ

φ µ ε β τ τ τ ν

ε β τ τ τ µ γ

γ µ ν

µ


= − + − Θ Ψ − +




= Θ Ψ − − + +

 = − + +

 = + + −

∫

∫
 (2) 

the initial value of the model is given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ]( )

1 2 3 4

max

, , , ;

0 0, ,0 ; for 1,2,3,4.i i

S A R B

i

θ η θ θ η θ θ η θ θ η θ

η η τ +

 = = = =


> ∈ − = 
 

In this model, φ  is the rate at which new individuals appear in the suscepti-
ble compartment. The mortality rates of susceptible, affected, recovered and 
bed net use individuals are , 1, 2,3, 4i iµ =  respectively, with the assumption 

{ }1 2 3 4min ,µ µ µ µ≤ . The parameter hβ  denotes the disease contact rate be-
tween susceptible people and infected vectors, and γ  is the rate at which in-
fected individuals recover from infection. ν  is the rate at which recovered 
individuals lose their immunity and become susceptible again. The parameters  
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Figure 1. The chart flow of the model representing the different links between the com-
partments. 

 

1 2 3b b b≤ ≤  are the rates at which susceptible, infectious and recovered individ-
uals, respectively, use disease protection practices. At last, maxτ  is the upper 
bound of the latency period in affected vectors. These parameters are assumed to 
be non-negative. 

The functions Ψ and Θ satisfy the following conditions: 
• (C1) Θ is a probability density function with support [ ]max0,τ . 
• (C2) Ψ is Lipschitz and strictly increasing function on [ )0,∞  with  

( )0 0Ψ = . 
Therefore, ( )x xΨ ≤ , 0x∀ ≥ . 

• (C3) Ψ is differentiable on [ )0,+∞  such that ( )0 1′Ψ = . 
In deterministic framework, the threshold that indicates if the disease persists 

in the population in large time or simple disappear is given by the reproduction 
number R0 [38]. For this model, 

( )
( )( )0

1 1 2 2

0
.v v hm

R
b b
ε β φ

µ µ γ
′Ψ

=
+ + +  

By a simple analysis we obtain that system (2) has a disease-free equilibrium 

( ) ( )
1

0 0 0 0 0
1 1 4 1 1

, , , ,0,0,
bE s i r b

b b
φφ

µ µ µ
 

= =   + + 
. We will see in the following that 

E0 is the unique equilibrium point of the stochastic model studied. 
Recently many authors have studied a stochastic delayed epidemic model with 

perturbed parameter in various aspects (see, e.g. [37] [39] [40]). The aim of this 
work is to study the stability analysis and the persistence of a stochastic version 
of model (2) by introducing noise in the contact rate. 

2.2. Stochastic Model Derivation 

Let’s consider a stochastic basis { }( )0
, , ,t t≥

Ω P   with a filtration { } 0t t≥
  

satisfying the usual conditions, on which are defined all random variables consi-
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dered throughout this work. The contact process is inevitably affected by ran-
dom perturbations due to stochastic environmental factors that can be modeled 
by a random variable hβ  with average value β  and variance 2Ξ . Using the 
same ideas as in [41] [42], the potentially infectious contacts dh tβ  made by each 
infected individual with each susceptible in the small time interval [ ], dt t t+  is 
approximately given by: 

( )d d d ,h ht t W tβ β= + Ξ

 
where W is a standard Brownian motion. On the other hand, we assume that, 
the increase in the number of infectious occurs with some spatial dispersions 
that increase the variability of contact processes. To take into account this situa-
tion, here we assume that the noise intensity at time t, depends on the infectious 
population size ( )A t . We obtain the stochastic model by replacing dh tβ  in 
(2) system by ( ) ( )d d dh ht t A t W tβ β σ= + , where σ  is a positive real. Then, the 
model is described by the stochastic delay differential equation: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

2 2

3 3

1 2 3 4

d , d

, d ,

d , d , d ,

d d ,

d d ,

S t b S t S t O A t R t t

S t A t O A t W t

A t S t O A t b A t t S t A t O A t W t

R t A t b R t t

B t b A t b S t b R t B t t

φ µ ρ ν

σ

ρ µ γ σ

γ µ ν

µ

 = − + − +  
 −
 = − + + +   


 = − + +  


= + + −   

 (3) 

where, for all 0t ≥ , 

( ) ( ) ( )( )max

0
, d and .v v hO A t A t m

τ
τ τ τ ρ ε β= Θ Ψ − =∫  

The description of the parameters is the same as in the deterministic model 
(2) with the same assumptions. 

The initial condition is given by: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( )

1 2 3 4 max

4
1 2 3 4

, , , , ,0 ,

, , , .

S A R Bθ η θ θ η θ θ η θ θ η θ θ τ

η η η η η

 = = = = ∈ −


= ∈ I
 (4) 

Let I  be a compact and connected subset of  

( ){ }1 1, , : 0, , 0n n
n nx x x x+ = ∈ ≥ ≥    and ( )

1
2 2

1
n

ikx x
=

= ∑  the Euclidean 

norm on n . Then, ( )n I  denotes the set of 0 -measurable [ ]( )max ,0 ;τ− I

-valued random variables such that ( )2η < ∞  where  

[ ] ( )
max ,0supθ τη η θ∈ −= . 

2.3. Definitions and Preliminary Results 

Let [ ]( )max: ,0 ; nF τ− →I   be a n-dimensional functional and  

[ ]( ) ( )max: ,0 ; n mG τ ×− →I    be a n m× -matrix-valued functional. The func-

tions F and G are Borel measurable. 
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Let ( )( ) 0t
B B t

≥
=  be a m-dimensional Brownian motion process. Consider 

the following n-dimensional stochastic system with time delay: 

 ( ) ( ) ( ) ( ) ( )0d d d and ,n
t tX t F X t G X B t X η= + = ∈ I  (5) 

where ( ) [ ]{ }max, ,0tX X t θ θ τ= + ∈ −  is viewed as a [ ]( )max ,0 ; nτ +−  -valued 
stochastic process with ( ) ( )0tX X t= . Let ( ){ }, : 0X t tη ≥  the solution with 
initial value 0X η=  of the stochastic system (5). 

Let [ ) ( ): 0, nU ∞ × →I   be a functional. The generating operator   of 
system (5) is defined (see, e.g. [10] [43]) by the formula: 

( )
( )( ) ( )

0

, | ,
, lim .t tU t X X U t

U t
η η

η +∆

∆→

+ ∆ = −
=

∆




 
Suppose that the functional U can be written in the form: 

( ) ( )( )0, , 0 , ,U t U tη η η=  

where 0U  is a  -valued functional defined on [ ) ( )0, n n∞ × × I . 
For any ( ) [ ), 0, nt x ∈ ∞ ×  and any ( )nη ∈ I , we put: 

( ) ( )0, , , ,U t x U t xη η=  

where ( ) ( )0x X tη= =  and tXη = . 
Let D be the class of all functional V for which functions ( ),U t xη  are con-

tinuously twice differentiable in x and once in t. For functionals in D, the gene-
rating operator   of system (5) becomes: 

 
( )

( )( ) ( )( ) ( )

( ) ( )( ) ( )

T

T 2

, 0
, , 0

1 , 0 ,
2

U t
U t U t F

t

trace G U t G

η
η

η

η
η η η

η η η

∂
= +∇

∂

 + ∇ 


 (6) 

where 

( ) ( ) ( ) ( ) ( )2
2

1

, , ,
, , , , , .

n i j n n

U t x U t x U t x
U t x U t x

x x x x
η η η

η η

×

 ∂ ∂ ∂ 
∇ = ∇ =      ∂ ∂ ∂ ∂   



 

The following theorem, which is a corollary of Theorem 3 in [44], provides 
sufficient conditions for the stability of trivial solutions of system (5). 

Theorem 1. Assume that both F and G satisfy the local Lipschitz condition 
and suppose that there exists a functional ( ),U t Dη ∈  such that: 

( ) ( ) ( ) ( )2 22
1 20 , and , 0 ,c U t c V tη η η η α η≤ ≤ ≤ −  

where 1 2,c c  and α  are positive constants. Then for all ( )nη ∈ I , there ex-
ists a positive constant q such that the solution of system (5) satisfies: 

( )( )1lim ln , a.s.
t

X t q
t

η
→∞

< −
 

That is the trivial solution of (5) is almost surely exponentially stable. 
Now, consider the following system formed by the first three equations of 

system (3): 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

2 2

3 3

d , d

, d ,

d , d , d ,

d d ,

S t b S t S t O A t R t t

S t A t O A t W t

A t S t O A t b A t t S t A t O A t W t

R t A t b R t t

φ µ ρ ν

σ

ρ µ γ σ

γ µ ν

 = − + − +  
−


= − + + +   

  = − + +  

 (7) 

with the initial condition 

 
( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( )

1 2 3 max

3
1 2 3

, , , ,0 ,

, , .

S A Rθ η θ θ η θ θ η θ θ τ

η η η η

 = = = ∈ −


= ∈ I
 (8) 

It’s straightforward to see that, 
( )

1
0

1 1 4 1 1

,0,0,
bE

b b
φφ

µ µ µ
 

=   + + 
 and  

*
0

1 1

,0,0E
b

φ
µ

 
=  + 

 are the disease-free equilibria of system (3) and (7), respec-

tively. 
Note that the first three equations of system (3) are independent of the 

fourth. In the following result, we prove that, the study of system (3) with ini-
tial condition (4) can be reduced to the study of system (7) with initial condi-
tion (8). 

Lemma 2. Let assume that all component of the solution of the reduced system 
(7) with initial condition (8) are positive and ( )4 0η θ ≥ , for all [ ]max ,0θ τ∈ − . 
Then, 

1) Any solution of system (3) with initial condition (4) is positive. 
2) The almost sure stability of the disease-free equilibrium *

0E  of the reduced 
system (7) with the initial condition (8) implies the almost sure stability of the 
disease-free equilibrium 0E  of system (3) with initial condition (4). 

Proof. 
1) Given the assumptions of the lemma, ( ) 0S t ≥ , ( ) 0A t ≥ , ( ) 0R t ≥  and 

4 0η ≥ . By comparison theorem of ordinary differential equation, it follows that: 

( ) ( ) ( ) ( ) ( )( ) ( )1 2 3 4 4d d d ,B t b S t b A t b R t B t t B t tµ µ= + + − ≥ −
 

that is ( ) ( ) 40 e 0tB t B µ−≥ > . 
1) Now, let assume that the disease-free equilibrium *

0E  of the reduced sys-
tem (7) with the initial condition (8) is stable, that is: 

( ) ( ) ( )( )
1 1

, , ,0,0 a.s.S t A t R t
b

φ
µ

 
→  +   

Therefore, for all 0ε > , there exists a real * 0t >  enough large, such that: 

( ) ( ) *
1 4

1 1

d d for all .B t b B t t t t
b

φ ε µ
µ

  
= + − ≥   +    

It follows that: 

( ) ( ) ( )
41 1

4 1 1 4 1 1

0 e a.s.tb bB t B
b b

µφφ ε
µ µ µ µ

−  
= + + −    + +     
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Consequently, by letting 0ε → , we obtain that: 

( ) ( ) ( ) ( )( ) ( )
1

1 1 4 1 1

, , , ,0,0, a.s.
bS t A t R t B t

b b
φφ

µ µ µ
 

→   + + 
  

The stochastic model (7) with the initial condition (8) can be written in the 
form of (5) where ( ) ( ) ( ) ( )( )* **, ,B t W t W t W t=  is a three-dimensional Brow-
nian motion process. For any [ ]( )3

max ,0 ;η τ +∈ −  , we have: 

( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

max

max

0
1 1 1 1 2 3

0
1 2 2 2 2

2 3 3 3

0 0 d 0

0 d 0

0 0

b

F b

b

τ

τ

φ µ η ρη θ η θ θ νη

η ρη θ η θ θ µ γ η

γη µ ν η

−

−

 − + − Θ − Ψ − 
 = Θ − Ψ − + + 
  − + + 

∫

∫

 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
max

max

0
1 2 2

0
1 2 2

0 0 d 0 0

.0 0 d 0 0

0 0 0

G
τ

τ

ση η θ η θ θ

η ση η θ η θ θ

−

−

 − Θ − Ψ 
 = Θ − Ψ 
  
 

∫

∫

 

3. Consistency of the Model 

In this section, we study the existence and uniqueness of global positive solution 
for model (3). To do this, we will first establish the existence and uniqueness of 
global positive solution for system (7) and conclude using Lemma 2. Under the 
assumptions (C1 - C3), the coefficients of system (7) are locally Lipschitz conti-
nuous. We therefore deduce that, for any initial condition ( )3η ∈ I , system (7) 
has a unique local solution on [ )0, et ϑ∈ , where eϑ  denotes the explosion 
time (see, e.g. [9] Theorem 2.8 on page 154). In order to prove that the local so-
lution is global and positive, we will first establish the existence and uniqueness 
of positive local solution. Therefore, we deduce that this solution does not ex-
plode towards infinity in a finite time, i.e. eϑ = ∞ . Let us set: 

( ) 3

1 1

, , / 0, 0, 0,x y z x y z x y z
b

φ
µ

 
∆ = ∈ > > > + + < 

+ 


 
and ( )4 ∆  be the class of 0 -measurable and [ ]( )max ,0 ;τ− ∆  valued ran-
dom variables. 

Let ( ) ( ) ( ) ( )t S t A t R t= + +  be the total population excluding the group 
of isolated people at time [ [max , et τ ϑ∈ − . 

We consider the following stopping times: 

[ ) ( ) ( ) ( ){ } ] [{ }{ } inf 0, ,min , , 0, ,t S t A t R tϑ − = ∈ ∞ ∉ ∞
 

[ ) ( ) ( ) ( ){ }0
1 1

inf 0, ,min , , 0, ,t S t A t R t
b

φϑ
µ

   = ∈ ∞ ∉  +     

[ ) ( ) ( ) ( ){ }
1 1

1inf 0, ,min , , , ,n t S t A t R t
n b

φϑ
µ

   = ∈ ∞ ∉  +     
for all integers 0n n≥ , where 0n ∗∈  is such that  
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( ) ( ) ( ){ }
0 1 1

1min 0 , 0 , 0 ,S A R
n b

φ
µ

 
∈  + 

, with the convention inf ∅ = ∞ . 

In the following lemma, we establish that { }
eϑ ϑ− = , which means the positiv-

ity of the local solution of model (7) described above. We also establish the con-
vergence of the sequence of stopping times { }*

0: andn n n nϑ ∈ ≥  towards the 
explosion time eϑ  which will be used to establish that eϑ = ∞ . 

Lemma 3. Let us assume that the initial condition η  of (7) belongs to 
( )3 ∆ . Then, 

1) { }
eϑ ϑ− ≥  a.s. 

2) [ ) ( )
max ,

1 1

sup
et t

bτ ϑ
φ

µ∈ − ≤
+

  a.s. 

3) Moreover { }
0 eϑ ϑ ϑ−= =  a.s. 

The sequence of stopping times ( )
0n n n

ϑ
≥  converges to 0ϑ  a.s. 

Proof. Obviously, for { }
max , et τ ϑ ϑ − ∈ − ∧  , ( ) ( ) ( ){ }min , , 0S t A t R t > . In 

view of Itô’s formula for all { }
max , et τ ϑ ϑ − ∈ − ∧  , we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( )
( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3

3

1 20
1

2 2
2 2

30

0 0

ln ln 0 0 0

, , d

, , d
2 2

, d , d .

t
i

i

t

t t

S t A t R t B t

R s S s
b O A s O A s s

S s S s A s

A s
A s O A s S s O A s s

R s

A s O A s W s S s O A s W s

η η η

φ µ ν ρ ρ µ γ

σ σγ µ ν

σ σ

=

−      
 

= − − + − + − + 
  
 

+ − + − − 
  

− +

∑∫

∫

∫ ∫

 

It follows that: 

 

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )
( )

{ }

{ }

{ }

1 2 3

3

1 2 30
1

2
2 2 2

0

0

ln ln 0 0 0

, d

, d
2

, d

.

e

e

e

t
i

i

t

t

S t A t R t

b O A s s

I s S s H I s s

S s A s O A s W s

J t

ϑ ϑ

ϑ ϑ

ϑ ϑ

η η η

µ µ γ µ ν ρ

σ

σ

−

−

−

∧ ∧

=

∧ ∧

∧ ∧

−      
  ≥ − + + + + + −  
  

− +

+ +

=

∑∫

∫

∫

 (9) 

Assume that { }( ){ } 0eϑ ϑ− < >P . By continuity of the solution of system (7), 
we have on the event { }{ }

eϑ ϑ− < : 

( ) ( ) ( ){ } { } { } 0.S A Rϑ ϑ ϑ− − − =
 

Hence, 

 ( ) ( ) ( )
{ }

lim ln .
t

S t A t R t
ϑ −→

= −∞    (10) 

Combining (9) and (10), we have on the event { }{ }
eϑ ϑ− <  that ( ){ }J ϑ −−∞ ≥ . 

Therefore, 

{ } ( ){ }{ } { } .e Jϑ ϑ ϑ− −< ⊂ −∞ ≥
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Since ( ){ }J ϑ −  is finite on { }{ }
eϑ ϑ− < , we have a contradiction. So necessar-

ily { }( ){ } 0eϑ ϑ− < =P  and 1) is proved. 
For any initial condition ( )3η ∈ ∆ , the total size of the population ( )t  

at time [ [max , et τ ϑ∈ −  is described by the equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1 2 2 3 3

1 2 3

d d ,

0 0 0 0 .

t b S t b A t b R t tφ µ µ µ

η η η

 = − + − + − +


= + +




 

In view of 1), for any [ )max , et τ ϑ∈ − , we see that ( ) ( ) ( ){ }min , , 0S t A t R t >  
a.s. 

Since { }1 1 2 2 3 3min ,b b bµ µ µ+ ≤ + + , we get: 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )

2 2 1 1 3 3 1 1

1 1

1 1

d

d

d ,

t b b A t b b R t

b t t

t b t t

φ µ µ µ µ

µ

φ µ

= − + − − − + − −
− + 
 = −Φ + − + 






 

where ( ) ( ) ( ) ( ) ( )2 2 1 1 3 3 1 1 0t b b A t b b R tµ µ µ µΦ = + − − + + − − > . 
Therefore, by virtue of a comparison theorem, we obtain that for any  

[ )0, et ϑ∈  and ( )
1 1

0 0,
b

φ
µ

 
∈ + 

 : 

( ) ( ) ( )1 1

1 1 1 1

0 e a.s.b tt
b b

µφ φ
µ µ

− + 
≤ − + + + 

 
 

It follows that [ ) ( )0,
1 1

sup
et t

bϑ
φ

µ∈ ≤
+

  which leads to { }
eϑ ϑ− ≤  a.s. since 

( ) ( ) ( ){ }
1 1

max , ,S t A t R t
b

φ
µ

<
+

 a.s. 

Hence, the solution might explode only toward −∞ , which implies that  
{ }

0 eϑ ϑ ϑ−= =  a.s. Therefore, we have 2). 

For 0n n≥ , let set 
1 1

1 ,nF
n b

φ
µ

 
=  + 

 a sequence of real intervals. ( )
0n n n

F
≥  

is increasing ( 1n nF F +⊂ ) and converges to 
0

1 1

0,nn n
F

b
φ

µ≥

 
=  + 



. Therefore, 

the sequence of stopping time ( )
0n n n

ϑ
≥  is increasing and there exists  

[ [ { }0,ϑ∞ ∈ ∞ ∞  such that limn nϑ ϑ→∞ ∞= . Since for any 0n n≥ ,  

1 1

0,nF
b

φ
µ

 
⊂  + 

, we have 0ϑ ϑ∞ ≤ . In particular, if ϑ∞ = ∞  then 0ϑ ϑ∞ = = ∞ . 

Now, let us assume that ϑ∞ < ∞  and put ( ) ( ) ( ) ( ){ }min , ,Y t S t A t R t= , for 

any [ [0, et ϑ∈ . Since for all 0n n≥ , ( )n nY Fϑ ∉  and ( ) ( )nY Yϑ ϑ∞→ . It fol-

lows that ( )
1 1

0,Y
b

φϑ
µ∞

 
∉  + 

. Hence 0ϑ ϑ∞ ≥  which gives 3). 

We complete the proof of the consistency of model (3) by establishing that the 
sequence of stopping time 0,n n nϑ ≥  converges to +∞ , using stochastic calcu-
lus and absurdity reasoning. 
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Theorem 4. For any initial condition ( ) ( )3
1 2 3, ,η η η η= ∈ ∆ , system (7) ad-

mits a unique solution ( ) ( ) ( )( ), ,S t A t R t  on 0t ≥ , and this solution remains 
in Δ with probability 1. 

Proof. In view of Lemma 3, for any initial condition ( )3η ∈ ∆ , system (7) 
has a unique local positive solution ( ) ( ) ( )( ), ,S t A t R t  on [ )0, et ϑ∈  and  
limn n eϑ ϑ→∞ = . In order to establish the existence and uniqueness of a global 
positive solution, it is enough to prove that limn nϑ→∞ = ∞ . 

Let 0n ∗∈  such that ( ) ( ) ( ){ }1 2 3
0

1min 0 , 0 , 0
n

η η η > . Consider the function 

Q defined for any vector ( ) 3
1 2 3, ,x x x x += ∈  by: 

( ) ( ) ( ) ( )1 1 1 1 1 2 1 1 3ln ln ln .
b x b x b x

Q x
µ µ µ

φ φ φ
+ + +     

= − − −     
       

By virtue of Itô’s formula and ( ) ( ) ( ) ( )( ), ,X t S t A t R t= , we get that for any 
[ )max , et τ ϑ∈ − : 

( )( ) ( )
( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

2
2

1 1

2 2 3 3

2
2

d , ,
2

,

, d , d .
2

R t
Q X t b O A t A t O A t

S t S t

A t S t
b b O A t

R t A t

S t O A t t O A t S t A t W t

φ σµ ν ρ

γ µ γ µ ν ρ

σ σ


= − + + − + +


− + + + + + + −


+ + −

  

Since for any [ )max , ns tτ ϑ∈ − ∧ , ( ) ( ) ( )
1 1

1, , ,S s A s R s
n b

φ
µ

 
∈  + 

 a.s. There-

fore, for all 0n n≥ , we obtain that: 

( )( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

3

1 2 30
1

2
2 2 2

0

0

0 , d

, d
2

, d .

n

n

n

t
n i

i

t

t

Q X t Q X b O A s s

A s S s O I s s

S s A s O A s W s

ϑ

ϑ

ϑ

ϑ µ µ γ µ ν ρ

σ

σ

∧

=

∧

∧

 ∧ ≤ + + + + + + + 
 

+ +

+ −

∑∫

∫

∫  
Then in view of (C1 - C2), for any [ [0, ks t ϑ∈ ∧ , we have: 

( ) ( ) ( )( ) ( )max

max 0
1 1 1 1

, d d a.s.
s

s
O A s s z A z z z z

b b
τ

τ

φ φ
µ µ−

= Θ − Ψ ≤ Θ =
+ +∫ ∫  (11) 

So, we get: 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )0 0
0 , dnt

n nQ X t Q X C t S s A s O A s W s
ϑ

ϑ ϑ σ
∧

∧ ≤ + ∧ + −∫  (12) 

where 
4

3 2
0 1

1 1 1 1

3 iiC b
b b

φ φµ γ ν ρ σ
µ µ=

 
= + + + + +  + + 

∑  and  

{ }1 2 3max , ,µ µ µ µ= . 

On the other hand, in view of (11), we have: 

( ) ( )( ) ( ) ( )
0

, d 0.nt
S s A s O A s W s

ϑ∧ − =  ∫
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It follows from (12) that for any 0t ≥ : 

 
( )( ) ( )( )

( )( )
0

0

0

0 .

n nQ X t C t Q X

C t Q X

ϑ ϑ ∧ ≤ ∧ + 
≤ +


 (13) 

Now, since ( ) ( ) ( ), ,n n nS t A t R tϑ ϑ ϑ∧ ∧ ∧  are in 
1 1

1 ,
n b

φ
µ

 
 + 

, we have 

( )( ) 0nQ X t ϑ∧ > . 

Therefore, we get: 

( )( ) ( )( ) { } ( )( ) { }

( )( ) { } .

n n

n

n n nt t

n t

Q X t Q X t Q X t

Q X t

ϑ ϑ

ϑ

ϑ ϑ ϑ

ϑ

≤ >

≤

    ∧ = ∧ + ∧     
 ≥ ∧ 

  



1 1

1
 

In view of Lemma 3, for all ( )3η ∈ ∆ , we see that: 

( ) ( ) ( ){ }
1 1

min , , .n n nS t A t R t
b

φϑ ϑ ϑ
µ

∧ ∧ ∧ <
+  

It follows that ( ) ( ) ( ){ } 1min , ,n n nS A R
n

ϑ ϑ ϑ =  on { }n tϑ ≤ , which implies 

that ( )( ) 1 1lnn
bQ X

n
µ

ϑ
φ
+ 

≥ −  
 

. 

Hence, 

 
( )( ) ( )( ) { }

( )1 1ln .

nn n t

n

Q X t Q X t

b t
n

ϑϑ ϑ

µ
ϑ

φ

≤
  ∧ ≥ ∧   

+ 
≥ − ≤ 

 

1 


 (14) 

Combining (13) and (14), for any 0t ≥ , we get that: 

( ) ( )( )0

1 1

0
.

ln
n

C t Q X
t

n
b

ϑ
φ

µ

+
≤ ≤

 
 + 



 
By letting n →∞ , we obtain for any 0t ≥ , ( )0 0P tϑ ≤ = . Consequently, 
( )0 1P ϑ = ∞ = . Now, since 0eϑ ϑ=  a.s., we obtain that eϑ = ∞  a.s. 
Based on Lemma 2, we have the following result on the global positivity of 

model (3). 
Corollary 1. For any initial condition ( ) ( )4

1 2 3 4, , ,η η η η η += ∈ ∆× , system 
(3) admits a unique solution ( ) ( ) ( ) ( )( ), , ,S t A t R t B t  on 0t ≥ , and this solution 
remains in 4

+  with probability 1. 

4. Extinction of the Disease 

In mathematical modeling in epidemiology, one of the main questions is the de-
termination of the conditions which ensure the disappearance of a disease within 
a population or to control its spread to a bearable level otherwise. Generally, the 
study of the extinction of a disease described by an epidemic model is carried 
out by analyzing the stability of the disease-free equilibrium point [10] [7] [39]. 
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The basic reproduction number 0R , defined as the average number of second-
ary cases produced by an infectious individual in a completely susceptible popu-
lation, is a key indicator of whether a disease is becoming endemic in a popula-
tion. The condition 0 1R <  ensures the extinction of a disease in the determi-
nistic framework [38]. The authors also studied the extinction of the disease de-
scribed by a stochastic delay epidemic model under the condition 0 1R <  in 
addition to a condition on the intensity of the noise σ  [33] [40]. But, consi-
dering only the equation describing the size of the infection in the model, Wan-
duku [37] establishes the extinction of the disease described by a delayed SIERS 
stochastic model under the sole condition 0 1R <  as in the corresponding de-
terministic case. 

In this section, we investigate the stability of the disease-free equilibrium  

( )
1

0
1 1 4 1 1

,0,0,
bE

b b
φφ

µ µ µ
 

=   + + 
 of model (3) through the stability analysis of 

the disease-free equilibrium *
0

1 1

,0,0E
b

φ
µ

 
=  + 

 of model (7) based on Lemma 

2. 
We will first establish that the trivial solution of the stochastic delay differen-

tial equation describing the size of infectious individuals in model (7) is expo-
nentially stable almost surely, i.e. ( )lim 0t I t→∞ = . From there, we deduce the 
almost surely stability of the disease-free equilibrium point *

0E  under the con-
dition 0 1R < . This result is obtained by combined Lyapunov function tech-
nique and martingale convergence result (see, e.g. [45] [46]). The stability of the 
disease-free equilibrium E0 leads to the extinction of the disease described by 
model (3). 

Theorem 5. Let 0 1R < , then the disease-free equilibrium *
0

1 1

,0,0E
b

φ
µ

 
=  + 

 

of model (7) is asymptotically almost surely stable for any initial condition 
( ) ( )3

1 2 3, ,η η η η= ∈ ∆ . 

Proof of Theorem 5. We will first prove separately the almost sure asymptot-
ic stability for every component of the solution ( ) ( ) ( )( ), , , 0S t A t R t t ≥  of sys-
tem (7) and then conclude. 

For any ( ) 3
1 2 3, ,x x x ∈ , let us put ( )2 1 2 3 2, ,Pr x x x x= . It follows that the in-

fectious size A(t) of model (7) is described by the following equation: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 2d , d

           , d ,

A t S t O A t b A t t

S t A t O A t W t

ρ µ γ

σ

= − + +

+
           (15) 

with initial condition 2 2Pr η η=  where ( ) ( )3
1 2 3, ,η η η η= ∈ ∆ . 

In this equation, ( )( ) 0t
S t

≥
 is considered as an adapted process and almost 

surely bounded by 0
1 1

s
b

φ
µ

=
+

. Let us consider the functional: 

( ) ( ) ( ) ( )3
2 1 2 2 2, , , for all ,U t Pr U Pr U t Prη η η η= + ∈ ∆     
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where ( ) ( )1 2 2 0U η η= , ( ) ( ) ( )( )
max

0
2 2 2, dU t

τ
η ϖ θ η θ θ

−
= Θ − Ψ∫ , 

and ( ) ( )2 A tη θ θ= + , [ ]max ,0θ τ∈ − . 

In view of Theorem 4, for any 2η  such that ( ) ( )3
1 2 3, ,η η η η= ∈ ∆ , we get 

that: 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )max

1 2 2 2

0 2 20

,

d .

U S t O A t b A t

s A t b A t
τ

η ρ µ γ

ρ τ τ τ µ γ

= − + +

≤ Θ Ψ − − + +∫



 

Let us put 0sϖ ρ= . In view of C3, we have: 

( ) ( ) ( ) ( )( )max
2 2 0 0

, d .U t s A t A t
τ

η ρ τ τ τ ≤ − Θ Ψ −  ∫
 

Finally, we get: 

( ) ( ) ( )2 2 2 0 2, 0 .U t b sη µ γ ρ η≤ − + + −
 

Then, by virtue of Theorem 1, when 0
0

2 2

1
s

R
b

ρ
µ γ

= <
+ +

, we have: 

( )( )1lim ln a.s.,
t

A t p
t→∞

< −
 

where p is a positive constant. That is, there exists two positive constants 1p  
and 2p  such that: 

 ( ) ( )1 2exp for any 0 a.s.A t p p t t< − ≥  (16) 

Now, consider the third equation of model (7). From the well-know variation 
of constants approach, we obtain: 

( ) ( ) ( ) ( ) ( )( )3 3 3

0
0 e e d .

tb t s tR t R A s sµ ν µ νγ− + + + −= + ∫  

In view of (16), for all 0ε > , there exists ( ) 0T ε >  such that for any 

( )t T ε> , ( ) 3 3b
A t

µ ν
ε

γ
+ +

< : 

 
( ) ( ) ( ) ( ) ( )( )

( )( ) ( )

3 3 3

3 3

0
0 e e d

0 e ,

tt b s t

b t

R t R A s s

R

µ ν µ ν

µ ν

γ

ε ε

− + + + −

− + +

= +

≤ − +

∫  (17) 

By letting 0ε → , we have: 

( ) ( ) ( )3 3lim lim 0 e .b t

t t
R t R µ ν− + +

→∞ →∞
≤

 

Hence, 

( )lim 0 a.s
t

R t
→∞

=
 

Let us now prove that ( )
1 1

lim 0t S t
b

φ
µ→∞

 
− = + 

. From the first equation of 

model (7), we get: 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0
1 1 1 1

1 10
1 1

0

0 , d

d

, d .

t

t

t

S t S S s O A t s
b b

b S s R s s
b

S s A s O A t W s

φ φ ρ
µ µ

φµ ν
µ

σ

− = − +
+ +

  
− + − +  +   

+

∫

∫

∫

 (18) 

In view of Theorem 4, Hölder inequality and (16), we obtain: 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )( )

max

max

0 0

0

1 0 2 max 20

lim d d

lim d d

exp lim exp d ,

t

t
t s

st

t

t

S s A s s

S s s u A u u s

hp s p C s s

τ

τ

ρ τ τ τ

ρ

ρ τ

→∞

−→∞

→∞

Θ Ψ −

≤ Θ −

≤ − < ∞

∫ ∫

∫ ∫

∫
 

and 

( )
1 1

0 a.s.S t
b

φ
µ

− ≥
+  

Therefore, by virtue of the non-negative semimartingale convergence result 
established in Liptser and Shiryayev ([47], Theorem 7, p. 139), we get from (18): 

( )
1 1

lim
t

S t
b

φ
µ→∞

 
− < ∞ + 

 and 

( ) ( ) ( )1 10
1 1

lim d a.s.
t

t
b S s R s s

b
φµ ν

µ→∞

  
+ − + < ∞  +  

∫
 

Since ( )R t  and ( )
1 1

S s
b

φ
µ

−
+

 are positives for all 0t ≥ , we get: 

 ( ) ( )
0 0

1 1 1 1

lim d d .
t

t
S s s S s s

b b
φ φ

µ µ
∞

→∞

   
− = − < ∞   + +   

∫ ∫  (19) 

Assume that ( )
1 1

S s
b

φ
µ

−
+

 does not converge almost surely to 0. Then there 

is a set 1Ω ⊂ Ω  with ( )1 0P Ω >  such that for all 1ω∈Ω : 

( ) ( )
1 1

liminf , 0.
t

S t
b

φ ω τ ω
µ→∞

 
− = > +   

Then, there exists a 0T >  such that ( ) ( )
1 1

1,
2

S t
b

φ ω τ ω
µ

− >
+

 for all t T≥ . 

It follows that: 

( )

( ) ( )

( )

0
1 1

0
1 1 1 1

1 1

lim , d

, d , d

, d .

t

t

T

T

T

S s s
b

S s s S s s
b b

S s s
b

φ ω
µ

φ φω ω
µ µ

φ ω
µ

→∞

∞

∞

 
− + 

   
= − + −   + +   

 
≥ − = ∞ + 

∫

∫ ∫

∫
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Therefore, 1 2Ω ⊂ Ω , where ( )2
1 1

, , d
T

S s s
b

φω ω
µ

∞   Ω = − = ∞  +   
∫ . Hence, 

( )2 0P Ω > , which contradicts (19). So, we have: 

( )
1 1

lim 0 a.s.
t

S t
b

φ
µ→∞

 
− = +   

Finally, we obtain that, when t →∞ , then 

( ) ( ) ( )( )
1 1

, , ,0,0 a.s.S t A t R t
b

φ
µ

 
→  + 

  

Considering the previous result in Theorem 5 and Lemma 2, we get the fol-
lowing result. 

Corollary 2. Under the condition 0 1R < , the disease-free equilibrium 

( )
1

0
1 1 4 1 1

,0,0,
bE

b b
φφ

µ µ µ
 

=   + + 
 of model (3) is globally asymptotically almost 

surely stable for any initial condition ( ) ( )4
1 2 3 4, , ,η η η η η += ∈ ∆×  . 

5. Persistence When R0 1>  

The stochastic model (3) obtained from the deterministic system (2) has a single 
equilibrium position which is the disease-free equilibrium E0. However, even if it 
does not admit endemic equilibrium, it is interesting to understand the asymp-
totic behavior of the solution of the stochastic model when 0 1R > . In the fol-
lowing results, we establish the persistence of the solution of the stochastic mod-
el (7) when 0 1R >  since the persistence of model (3) follows by Lemma 2. Re-
call that the solution of the stochastic model (3) is said to be persistent with 
probability one if, for each initial value ( ) ( )4

1 2 3 4, , ,η η η η η += ∈ ∆×  . We 
have the property: 

( ) ( ) ( ) ( )liminf 0, liminf 0, liminf 0, liminf 0 a.s.
t t t t

S t I t R t B t
→∞ →∞ →∞ →∞

> > > >
 

This persistence property translates into the endemicity of the disease de-
scribed by the model in the population. 

Theorem 6. Assume that 0 1R > . If the disease-free equilibrium *
0E  of model 

(7) is unstable in ( )3 ∆ , then for any initial condition  
( ) ( )3

1 2 3, ,η η η ∈ ∆ , the solution of system (7) is persistent with probability 1, 

that is there exists a constant 
1 1

0,
b

φυ
µ

 
∈ + 

 such that, 

( ) ( ) ( )liminf , liminf , liminf .
t t t

S t I t R tυ υ υ
→∞ →∞ →∞

≥ ≥ ≥
 

Proof. Let us assume that for any initial condition ( )3η ∈ ∆  the disease-free 
equilibrium E0 of system (7) is unstable and the trivial solution of Equation 
(15) describing the infectious size A(t) with initial condition ( )2 2Prη η=  is 
stable. 

It follows that: 
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( ) ( )

( ) ( ) ( ) ( )3
2

0, 0 and 0 such that

, and .

T

A t t T Pr

ε η ε ε
µ ν

ε ε η η ε
γ

∀ > ∃ > ∃ >

+
< ∀ ≥ <

 
From (17), we obtain: 

( ) ( )( ) ( )30 e ,tR t R µ νε ε− +≤ − +
 

By letting 0ε → , for any 0t ≥ , we have: 

( ) ( ) ( )3lim lim 0 e t
t tR t R µ ν− +
→∞ →∞≤ . 

Hence, 

 ( ) ( )lim lim 0 a.s.
t t

R t A t
→∞ →∞

= =  (20) 

Since { }1 2 3min ,µ µ µ≤ , the size of the whole population ( )t  in model 
(7) verifies: 

( ) ( ) ( ) ( ) ( ) ( )( )( )1 1 1 1
1 20

e 0 e d ,
tb t b st A s R s sµ µ φ α α− + += + − +∫ 

 

where 1 2 1α µ µ= −  and 2 3 1α µ µ= − . 
In view of (20) for any 0ε > , there exists ( ) 0T ε >  such that for any 

( )t T ε> , ( )A t ε<  and ( )R t ε< , we have: 

( ) ( ) ( ) ( ) ( )( )1 1 1 11 2

1 1

0 e 1 e .b t b tt
b

µ µφ α α ε
µ

− + − +− +
≥ + −

+
 

 

By letting 0ε → , we obtain: 

( ) ( )
1 1

liminf a.s. >
t

t t T
b

φ ε
µ→∞

≥ ∀
+


 

Since ( ) ( ) ( ) ( )t S t A t R t= + + , by virtue of Lemma 3 and (20), we have: 

( ) ( )
1 1 1 1

lim and lim a.s.
t t

t S t
b b

φ φ
µ µ→∞ →∞

= =
+ +


 

So, the disease-free equilibrium E0 is stable, which is a contradiction since by 
hypothesis the disease-free equilibrium E0 is assumed to be unstable. Therefore, 
the trivial solution of Equation (15) describing the infectious size A(t) is unsta-
ble. Finally, there exists a constant 0υ >  such that: 

( ) ( ) ( )liminf , liminf , liminf .
t t t

S t A t R tυ υ υ
→∞ →∞ →∞

> > >  

6. Numerical Simulation and Discussion 

Her, we propose some numerical simulations to understand the results on the 
extinction and persistence of the disease described by model (3). The main ob-
jective being to understand the effect of individual protective parameters b1, b2 
and b3 against the disease on the extinction of the disease in the population as 
well as the effect of the magnitude of the basic reproduction number R0 on the 
level of disease endemicity. In a first scenario, we give a simulation of a sample 
of paths of model (3) in the case 0 1R <  and with high values of the isolation 
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parameters. In a second scenario, we lower the values of the isolation protection 
parameters and we actually observe an increase in the basic reproduction num-
ber, which generates endemicity of the disease with 0 1R > . Finally, from the 
previous simulation with 0 1R > , we increase the value of the random noise in-
tensity and conclude. We use the Euler-Maruyama method (see, e.g. [48]) to si-
mulate the path of model (3). The parameters used in the simulation are all 
identical except the for the isolation protection parameters. The following para-
meters are used in all simulations presented below: 
• The nonlinear function in the incidence rate is ( ) ( )1x x xΨ = +  for all  

[ )0,x∈ ∞ . 

• The latency period Tτ  is distributed according to a uniform law [ ]( )max0,τ  

where max 15τ =  and ( ) 7.5Tτ = . That is ( ) max1s τΘ =  for all  

[ ]max0,s τ∈ , null otherwise. 

• The initial values are: ( ) 50S θ = , ( ) 8A θ = , ( ) 0R θ = , ( ) 0B θ =  for 

[ ]15,0θ ∈ − . 
• The birth and death rate in mosquito population is 0.765vµ = , therefore 

( )e 0.00421
v T

v
v

τµ

ε
µ

−

= =


. 

• The density of mosquitoes per human is 350mv =  and the contact rate 
from infectious humans to susceptible vectors is 0.02hβ = . Therefore,  

0.0295v v hmρ ε β= = . 
• The recruitment rate of susceptible humans 20φ = , the mortality rates of 

humans are 1 3 4 0.0095µ µ µ= = = , 2 0.0115µ = . 

• The recovery rate and the immunity loss rate are respectively 0.1γ =  and 
0.01ν = . The noise intensity coefficient is 0.01σ = . 

Scenario 1 
In Figure 2, we give a sample path of the stochastic epidemic model (3) un-

der the conditions 0 0.8891 1R = <  with high level protection rates 1 0.72b = , 

2 0.78b = , 3 0.78b = . We see that this numerical simulation agrees with the ana-
lytical results of Theorem 5, that is the condition 0 0.8891 1R = <  is sufficient to 
ensure the asymptotic stability of the disease free equilibrium E0. 

Scenario 2 
In Figure 3, we give a sample path of the stochastic model (3) under the con-

dition 0 2.7604 1R = >  due to a reduction in protection rates against disease to 

1 0.4b = , 2 0.4b = , 3 0.4b = . In this case, we see that the solution  

( ) ( ) ( )( ), ,S t A t R t  of the model is persistent, that is ( ) 0S t > , ( ) 0A t > , 

( ) 0R t > , 0B > . 

Scenario 3 
In this case, we give an example trajectory of the stochastic epidemic model 

(3) with a high basic reproduction number. Figure 4 in which 0 24.9663R =  
presents a higher endemicity level of the disease than the case of Figure 3 where 

0 2.7604R = . 
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Figure 2. Sample paths of the stochastic SIRS epidemic model (7) with initial values are: ( ) 50S θ = , ( ) 8A θ = , 

( ) 0R θ = , ( ) 0B θ =  for [ ]15,0θ ∈ − . 
( )e 0.00421

v T

v
v

τµ

ε
µ

−

= =


 and 0.0064ρ = . The remaining parameters are 

given by: 20φ = , 1 3 0.0095µ µ= = , 2 0.0115µ = , 1 0.72b = , 2 0.78b = , 3 0.78b = , 0.1γ = , 0.01σ = , 
0.01ν = . The condition 0 0.8891 1R = <  of Theorem 5 is checked. 

 

 
Figure 3. Sample paths of the stochastic SIRS epidemic model (3) under the condition of 0 1.8444 1R = > . The pro-

tection rates are 1 0.4b = , 2 0.4b = , 3 0.4b = . The rest of the parameters are as in Figure 2 and 0 2.7604R = . 
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Figure 4. Sample paths of the stochastic SIRS epidemic model (3) under the condition of 0 24.9663R = . 

Here, the protection rates are 1 0.1b = , 2 0.1b = , 3 0.1b = . The rest of the parameters are as in Figure 2. 

7. Conclusion and Perspective 

In this work, we consider a stochastic delay differential equation representing 
a stochastic model (3) describing a mosquito-borne disease in a randomly va-
rying environment where insecticides and mosquito nets are used. First, we 
proved the global positivity of the solution (see Corollary 1). Using a Lyapu-
nov functional technique, we established the almost sure stability of the dis-
ease-free equilibrium E0 of the stochastic model (3) under the condition 0 1R <  
(see Corollary 2). In Theorem 6, under the condition 0 1R > , we proved the 
persistence of the stochastic model solution. As shown in the numerical simu-
lations in Figure 2 and Figure 3, the disease can be fully controlled by only 
acting on the protection rate parameters. In terms of perspective, model (3) 
can be improved by allowing variable parameters, which make it possible to 
take into account the effects of seasonal variations on the model. On the other 
hand, the increase in certain parameters such as the recovery rate γ  or the 
decrease in certain parameters such as the disease contact rate β  is accom-
panied by a certain cost due to financial efforts necessary for such action. It 
would be more realistic to take these costs into account by writing for example 

( )costβ β= . In this way, we can carry out optimization to select the parame-
ter values that will enable us to control the disease and minimize the cost of 
control. 
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