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Abstract 
We study the dynamic of scalar bosons in the presence of Aharonov-Bohm 
magnetic field. First, we give the differential equation that governs this dy-
namic. Secondly, we use variational techniques to show that the following 

Schrödinger-Newton equation: 
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Aharonov-Bohm magnetic potential, has a unique ground-state solution. 
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1. Introduction 

The stability of matter and the dynamic of many-body systems in quantum me-
chanics have attracted many studies in the last fifty years (see [1]-[6]) and still 
stimulate many works today. In the realm of mathematical physics, where equa-
tions intricately describe the behavior of subatomic entities, bosons take center 
stage, offering a lens through which we can peer into the quantum intricacies of 
our universe. Amidst the array of phenomena that captivate the minds of phy-
sicists, the interplay between bosons and magnetic fields, particularly within the 
framework of the Aharonov-Bohm effect, beckons as a captivating arena for ri-
gorous mathematical exploration. The Aharonov-Bohm effect, a theoretical cor-
nerstone conceived by Aharonov and Bohm in 1959 [7], introduces a distinctive 
quantum perspective on the interaction of charged particles with magnetic fields. 
Unlike classical physics, where magnetic fields are confined to regions with non-
zero field strength, the Aharonov-Bohm effect asserts that the vector potential of 
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a magnetic field can exert a measurable impact even in regions where the mag-
netic field itself is absent. It is worth mentioning that a similar phenomenon has 
been previously described by Ehrenberg and Siday (see [8]). AB effect plays a cru-
cial role in the development of quantum mechanics and has been experimented 
by Tonomura et al. (see [9] [10]). In the existing literature, the main research di-
rection on scalar bosons in magnetic field is the effect of magnetic field on the de-
cay process of scalar bosons into fermions. Indeed, many results have shown that 
the presence of magnetic field can influence the decay process of particles. The 
effect of this presence is not unanimous, some authors have shown that magnet-
ic fields enhance the decay process of scalar bosons (see [11] [12] [13] [14]). Un-
like, the previous one some authors found that magnetic field inhibits this decay 
process (see [15] [16]). Regarding the dynamic of scalar bosons in Aharonov-Bohm 
magnetic, we found few references. [17] studied the relativistic quantum motion 
of charged scalar particles in the presence of Aharonov-Bohm and Coulomb po-
tentials. The relativistic frame leads them to consider the Duffin-Kemmer-Petiau 
(DKP) formalism. In a study by Bagrov et al. [18], Klein-Gordon and Dirac equ-
ations were explored in the context of an AB magnetic field. Another investiga-
tion by Castro et al. scrutinized the Aharonov-Bohm (AB) problem for vector 
bosons using the DKP formalism, as outlined in [19]. For more about relativistic 
scalar bosons, see references therein. 

In this study, we first give and justify the model of the motion of scalar bosons 
in AB magnetic fields and secondly, we prove the existence of a ground-state so-
lution, which means that the system of scalar bosons reaches its lowest possible 
energy level. Moreover, we show that this state admits a unique wave function. 
Analyzing AB problems introduces a significant mathematical challenge due to 
the singularities in the magnetic potential. To address this, integration techniques 
are employed. Another obstacle lies in the magnetic kinetic energy, which, as will 
be defined later, appears not to satisfy the decreasing rearrangement inequality. 
Consequently, the techniques developed by Lieb in [20] to prove the existence of 
solution cannot be applied. Furthermore, the compactness result fails for a mi-
nimizing sequence of (4.2) due to the minus sign. Variational methods are uti-
lized to overcome these difficulties and establish the existence and uniqueness of 
the ground-state solution. Additionally, a convex inequality for the magnetic 
Schrödinger operator is demonstrated, contributing to the proof of a unique re-
sult for the standard Schrödinger equation. 

2. The Model 

When describing particles dynamics, two points of view can be considered. The 
first one is to consider the particles as point-particle (classical mechanics) and 
the second one, as wave function (quantum mechanics). Since, the point-like 
particle does not extend in space, the wave-function representation of particles is 
well suited to study the motion of many-body particles. Therefore, a system of 
many-particles will be represented by a wave function Ψ , where 2 dx

Ω
Ψ∫  is 
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the probability of finding this system in the region Ω . Moreover, such a 
wave function must satisfies the following general time-dependent Schrödinger 
equation: 

 
( ) ( ) ( ) ( ) ( ) ( )

2,
, , , , ,

2 ext G

x t
i x t V x x t mV x t x t

t m
∂Ψ

= − ∆ Ψ + Ψ + Ψ
∂



   (2.1) 

where extV  is the external (Coulomb) potential acting on the particles and GV  
is the potential energy due to the interaction inside the system, m is the mass of 
the system, where   is a magnetic potential and ( )2: i∆ = ∇ +   the magnetic 
laplacian. 

We are interested in the dynamics of non-relativistic scalar bosons (Higgs 
bosons) moving in the presence of an infinitely long solenoid. Higgs bosons have 
been discovered at CERN in 2013 and have been presented as the missing piece 
of the puzzle of the understanding of our universe. Because of that some physic-
ists have named it “God’s particle”. 

In this paper, we are interested in a system of scalar bosons moving in pres-
ence of infinitely long solenoid. This solenoid gives rise to a singular magnetic 
potential: the Aharonov-Bohm magnetic potential. Since, scalar bosons are free 
charge particles, then we deduce that the Coulomb potential is identically zero 
( 0extV ≡ ). The self-gravitational potential GV  coming from interaction inside 
the bosonic system whose mass density is given by ( ) ( ) 2

d , dx x m x t xρ
Ω Ω

= Ψ∫ ∫  
then, satisfies the following Poisson’s equation: 

 ( ) ( ) 2
, 4 , .GV x t Gm x tπ∆ = Ψ  (2.2) 

After integration, we get: 

 ( )
( ) 2

,
, d .G

y t
V x t Gm y

x y
Ψ

= −
−∫  (2.3) 

Therefore, the dynamics of scalar bosons moving in the presence of Aharo-
nov-Bohm magnetic field is given by: 

 
( ) ( )

( )
( )

2
2 ,,

, d , ,
2

y tx t
x t Gm y x t

t m x y
ι

 Ψ∂Ψ  = − ∆ Ψ − Ψ
 ∂ −
 
∫



   (2.4) 

Such an Equation (2.4) is called magnetic Choquard equation name after P. 
Choquard who presented it at a Symposium in 1976 in ETH-Lauzanne to describe 
one component plasma (see [20] [21]). In the literature, equation like (2.4) is al-
so known as the Schrödinger-Newton equation. 

In Quantum Mechanics, addressing the singularities arising from the AB 
magnetic potential is most effectively achieved by imposing a vanishing condi-
tion on the eigenfunction at these singularities. Notably, researchers [22] [23] 
[24] [25], in dealing with the initial Aharonov-Bohm Hamiltonian, employed the 
natural shielding method and opted for the Dirichlet boundary condition, wherein 
wave functions vanish at the solenoid. In a recent development, [26] proposed 
a modification of the AB Hamiltonian that is essentially self-adjoint, signifying 
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a model with a unique self-adjoint extension. The physical interpretation of 
self-adjointness implies the absence of particle contact with the solenoid. For fur-
ther insights into the self-adjoint extension of the AB magnetic operator, refer to 
[27] [28] [29] [30]. 

3. Preliminaries 

In this paper, the symbol C denotes various positive constants whose specific val-
ues are irrelevant. 

Let OΩ = × , where O is an open subset of { }2 \ 0 . For the sake of sim-

plicity, we will take ( ){ }3 2 2, , | 1x y z x yΩ = ∈ + > . The Aharonov-Bohm 

magnetic potential   is defined by: 3: :Ω →  , ( ) ( )2

1, , : , ,0x y z y x
ρ

= −  

where 2 2x yρ = + . The magnetic field and the magnetic potential are related 
by B = ∇× . Then, the magnetic field is perpendicular to the plan (Oxy) and 
is directed by z-axis. We will denote by : i∇ = ∇ +  . 

Function spaces. For 1 p< < +∞ , let ( )3pL   be the space of real-valued 

functions, which are (Lebesgue) measurable and satisfy ( )3 d
p

u x x < +∞∫  if 

1 p≤ < +∞  and if p = +∞ , ( ){ }inf 0 | a.e.u c u x C
∞
= ≥ ≤ . We denote dx 

the Lebesgue measure. 

For any p, the ( )3pL   space is a Banach space with norm  

( )( )3

1
d

p

p

p
u u x x= ∫ . 

In the case 2p = , ( )2 3L   is a separable Hilbert space with scalar product 

3, du v uv x= ∫  and corresponding norm 
2. . 

We define the magnetic Sobolev space  
( ) ( ) ( ){ }1 2 2: , : ,H u L u LΩ = ∈ Ω ∇ ∈ Ω   . This imply that we must consider 

functions having compact support in Ω . We thus define ( )1
,0H Ω  as the clo-

sure of ( )cC∞ Ω  with respect to the norm: 

( )2 1 22 d .u u u x
Ω

= ∇ +∫   
We also have that ( )1H Ω  ↪ ( )pL Ω  is continuous Sobolev embedding for 
[ ]2,6p∈ . Furthermore, ( )1H Ω  ↪ ( )pL K  is compact for any [ ]2,6p∈  and 

any compact set K ⊂ Ω . 
Lemma 3.1. (Convexity inequality for magnetic gradient) Let f and g be 

real-valued functions in ( )1 3H  . Then: 

 ( ) ( ) ( )( )3 3

2 2 22 2 d d .f g x x f x g x x∇ + ≤ ∇ + ∇∫ ∫   
 (3.1) 

If moreover, ( ) 0g x >  a.e. then, equality holds if and only if there exists a 
constant c such that ( ) ( )f x cg x=  almost everywhere. 

Proof. Let f and g be real-valued functions in { }( )1 3 \ 0H  . We first show 
that { }( )2 2 1 3 \ 0f g H+ ∈   . By the diamagnetic inequality, we have  
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{ }( )2 3, \ 0f g L∇ ∇ ∈  . And since, f and g are real-valued functions the con-
vexity inequality for gradient (see [31]) implies: 

( )3 3

2 2 22 2 d d ,f g x f g x∇ + ≤ ∇ + ∇∫ ∫   

thus ( )2 2 2 3f g L∇ + ∈  . It remains to show that { }( )2 2 2 3 \ 0f g L+ ∈   

this is obvious since by definition { }( )2 3, \ 0f g L∈   . Recalling that: 

2 2 2 2 2 2 ,f g f g i f g∇ + = ∇ + + +   

then, by Theorem 6.17 [31], we have: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2 2

2 2 2 2 , if 0

0, otherwise.

f x f x g x g x
f x g x

f g f x g x
∇ + ∇

+ ≠∇ + = +

  

And then, 

 

{ }

( )
3 2 2

3 3

3

2
2 2

2 20

2 2 2 2 2

2 2

d d

d d

d .

f g

g f f g
f g x x

f g

f g x f g x

f g x

+ >

∇ − ∇
∇ + +

+

= ∇ + ∇ + +

= ∇ + ∇

∫ ∫

∫ ∫

∫



 





 

  (3.2) 

Therefore, (3.1) holds. Now, let assume that 0g >  and that equality holds in 
(3.1). Then, from (3.2) we deduce that: 

 ( ) ( ) ( ) ( )g x f x f x g x∇ = ∇  (3.3) 

a.e. in 3 . Therefore, following the arguments of the proof of Theorem 7.8 
[31], we deduce that ( ) ( )f x cg x=  almost everywhere. 

Remark 3.2. If we consider the standard magnetic Schrödinger equation 
namely 0u Vu∆ + = , where ( )3pV L∈   is the electric potential. Then, by 
the convex inequality on may show that this equation has a unique solution 
(see [31]). 

4. Existence of Ground-State Solution and Uniqueness of the 
Minimizer 

When considering existence of solutions of the time-dependent Schrödinger Equ-
ation (2.4), we can seek for solutions of the form ( ) ( ), e i tx t x λφ −Ψ = . Then, re-
placing Ψ  by ( )e i tx λφ −  in Equation (2.4) with all constant normalized we get 
the following stationary equation: 

 
( ) 2

d , in
y

y
x y
φ

φ φ λφ
 
 −∆ − = Ω
 −
 
∫  (4.1) 

We define the energy functional   in ( )1H Ω  by: 

 ( ) 3

2 2 21 1 1d d .
2 4

x x
x

φ φ φ φ
Ω

 
= ∇ − ∗  

 
∫ ∫ 


 (4.2) 
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Let ( ) 3

2 21: dW x
x

φ φ φ
 

= ∗  
 

∫  and ( ) 2: dT xφ φ
Ω

= ∇∫  . 

Since   is ( )( )1 1 3C H   finding that solutions of (4.1) are equivalent to 
find the solutions of the following variational problem: 

 ( ) ( ){ } ( ){ }21
2min | , where : .N NE N H Nφ φ φ φ= ∈ = ∈ Ω =     (4.3) 

Lemma 4.1. i)   is ( )( )1 1C H Ω . 
ii)   is bounded from below on N . 
iii) ( ) 0E N < . 
Proof see [32]. 
We are now ready to state the main result of this article. 
Theorem 4.2 Suppose that ( ){ }3 2 2

1 2 3 1 2, , | 1x x x x x xΩ = = ∈ + > . Then, 
1) (4.3) has a minimizer which a ground-state solution for Equation (4.1). 
2) The minimizer 0ψ  satisfies (4.3) with ( ) ( )0 E Nψ = . Moreover, 0ψ  

is the unique minimizer up to a constant phase and can be chosen to be strictly 
positive function. 

Remark 4.3. If we replace 1 in the definition of Ω  by a positive constant let 
say 0ε >  we will get the same result. We only took 1 for sake of simplicity. 

Proof. 1) Since   is bounded from below, there exists a minimizing sequence 
( )j j
φ  of  . That is: 

 ( ) ( )lim with for any .j jj
E N N jφ φ

→+∞
= = 

 (4.4) 

Then, from Lemma 4.1, the sequence ( )j j
φ

∈
 is bounded in ( )1 3H  . By 

the Banach-Alaoglu theorem there exist a subsequence of ( )j j
φ

∈
 still denoted 

by ( )j j
φ

∈
 which converges weakly to φ  in ( )1 3H  . 

We know from [33] that: 

 

( ) ( )

2 2

2 2 2 2
1 1

1 1

, , .

j j

j j
x x

x x
φ φ φ φ

φ φ φ φ

   
∗ ∗         

 →


 



 (4.5) 

Which means that the functional ( ).W  is weakly continuous. Moreover, since 
( ).T  is weakly lower semicontinuous, we deduce that the energy functional is 

weakly lower semicontinuous. Thus, 

( ) ( ) ( ) ( )lim inf jj
E N E Nφ φ

→+∞
= ≥ ≥  

 
and this means ( ) ( )E Nφ = . 

It remains to show that φ  satisfies the condition 
2 Nφ = . Since, the 2L

-norm is weakly lower semi-continuous we have 
22

liminf jN φ φ= ≥ . Now 

suppose that 
2 Nφ ν= <  and let aϕ φ=  where 1Na

ν
= > . Then, 

2 Nϕ =  

and: 
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( )

( )

3

3

2 4
2 2 2

2
2 2 22

2

1d d
2 4

1 1d d
2 4

.

a ax x
x

aa x x
x

a

ϕ φ φ φ

φ φ φ

φ

Ω

Ω

 
= ∇ − ∗  

 
  

= ∇ − ∗      
≤

∫ ∫

∫ ∫

 












 (4.6) 

Therefore, ( ) ( ) ( )2a E N E Nϕ ≤ < . Absurd! Thus 
2 Nφ ≥ . 

2) Let Nu∈ . Since the AB-potential   is bounded, we have: 

 

( )

( )

3

3

3

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2

1 1 1 1d d d
2 2 4

1 1 1d d d
2 4

1 1 1d d
2 4

:

u u x u x u u x
x

u x u x u u x
x

u x N u u x
x

u N

Ω Ω

∞Ω Ω

∞Ω

∞

 
= ∇ + − ∗  

 
 

≤ ∇ + − ∗  
 

 
≤ ∇ + − ∗  

 

= +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 





 







 (4.7) 

Suppose u and v are two minimizers of problem (4.3). Then, u  and v  
belong to ( )1 3H   and by inequality (4.7) are minimizers of the functional 
( ) 2. N

∞
+  . And so, u  and v  minimize ( ). . Therefore, by Theorem 10 

in [20], we deduce that u v= . 

5. Conclusion 

We have modeled the dynamic of scalar bosons in the presence of AB-magnetic 
field. We proved the existence and uniqueness of a ground-state solution, which 
means the system of scalar bosons has a unique state where it reaches its lowest 
possible energy level. Physically, these imply stability of the systems of scalar bo-
sons in the presence of AB-magnetic field. 
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