
Journal of Applied Mathematics and Physics, 2024, 12, 210-225
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2024.121016 Jan. 30, 2024 210 Journal of Applied Mathematics and Physics

Research on Node Classification Based on Joint
Weighted Node Vectors

Li Dai

School of Mathematics and Statistics, Hubei Minzu University, Enshi, China

Abstract
Node of network has lots of information, such as topology, text and label in-
formation. Therefore, node classification is an open issue. Recently, one vector
of node is directly connected at the end of another vector. However, this me-
thod actually obtains the performance by extending dimensions and consi-
dering that the text and structural information are one-to-one, which is ob-
viously unreasonable. Regarding this issue, a method by weighting vectors is
proposed in this paper. Three methods, negative logarithm, modulus and sig-
moid function are used to weight-trained vectors, then recombine the weighted
vectors and put them into the SVM classifier for evaluation output. By com-
paring three different weighting methods, the results showed that using nega-
tive logarithm weighting achieved better results than the other two using mod-
ulus and sigmoid function weighting, and was superior to directly concate-
nating vectors in the same dimension.

Keywords
Node Classification, Network Embedding, Representation Learning, Weighted
Vectors Training

1. Introduction

Node is one important index in complex networks. The node classification is
one of the significant procedures of research on network data mining [1]. For a
node, the goal of classification of it is to utilize the attributes of themselves or the
links between nodes to implement classification performance in complex net-
works. The results of node classification play an important role in these applica-
tion scenarios, such as abnormal user detection [2], user personalized recommen-
dation [3], advertising promotion [4], direction of public opinion, etc. Regarding
text classification issues [5], it is a basic task in the field of Natural Language

How to cite this paper: Dai, L. (2024) Re-
search on Node Classification Based on Joint
Weighted Node Vectors. Journal of Applied
Mathematics and Physics, 12, 210-225.
https://doi.org/10.4236/jamp.2024.121016

Received: December 16, 2023
Accepted: January 27, 2024
Published: January 30, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2024.121016
https://www.scirp.org/
https://doi.org/10.4236/jamp.2024.121016
http://creativecommons.org/licenses/by/4.0/

L. Dai

DOI: 10.4236/jamp.2024.121016 211 Journal of Applied Mathematics and Physics

Processing [6] [7]. Its purpose is to divide a paragraph of text into predefined
categories, which have wide applications in fields, such as sentiment analysis [8]
[9], language reasoning [10], topic classification [11], spam detection [12], news
filtering, etc. In the process of text classification, regard the words and documents
as nodes, and employ different similarity calculation methods between different
nodes. Regarding them as the input in the next layer to learn the latent representa-
tion of nodes, in the following process, training them in classifiers to classify them.
Therefore, many scholars studied this issue. Traditional node classification me-
thods can be roughly divided into four categories.

One method is given based on node attributes. For instance, in Ref. [13], the
social tags of users are utilized as the feature information, and then it is trained
by support vector machine [14] classifiers to achieve user classification. This
approach applies the attribute features of nodes to machine learning models [15]
to train classifiers. Although this method is simple and visual, it is just based on
the attributes of nodes themselves and ignores the rich link relationship features
between nodes.

One method is given based on node neighborhood iteration. This method is not
only based on the attributes of nodes themselves, but also utilizes the relationships
between nodes. In this method, assuming that connected nodes are more likely
to have the same labels, by weighting into calculating the probability of neigh-
boring nodes to the central nodes infers the category of the central nodes [16].
And in Ref. [17], authors accumulate the feature information of neighboring
nodes within a certain range as much as possible to maximize the relevant simi-
larity values, and then perform node classification. These approaches are based on
the homogeneity of nodes, and then infer the type of predicted node according
to the labels or features of similar nodes in the neighborhood. Due to the high spar-
sity of traditional adjacency matrices, the computational complexity is too high
to adapt to large-scale network data.

One method is obtained based on Graph Neural Network [18]. For reducing
the high computational complexity caused by the high sparsity of the adjacency
matrix, and with the rapid development of Deep Learning [19] in recent years,
many scholars proposed fusing the link information between nodes and attributes
of nodes themselves to obtain new nodes features [20], and then according to the
corresponding relationship between the new features and labels to train a clas-
sifier. In 2013, Bruna et al. [21] first combined spectral theory with deep learning
and proposed the method of graph Convolution Neural Networks (GCNs), using
the definition of convolution in the spectral domain. Although this method has
conceptual importance, it brings significant computational flaws that make it less
effective. Defferrard et al. [22] proposed an effective filtering scheme that expli-
citly calculates Laplacian eigenvectors by using K-order approximate Chebyshev
polynomials. This network has low training efficiency and high computational
complexity. Kipf et al. [23] used a method of approximating first-order spec-
tral graph convolution, directly operating on the model of graph-structured
data, and proposed a simple and efficient propagation model that can handle

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 212 Journal of Applied Mathematics and Physics

the semi-supervised classification problem of nodes. Due to the shallowness of
the model, it cannot capture the global structural information of the graph and
may also encounter issues such as the locality of the convolutional kernel. Ying
et al. [24] proposed a pooling layer DiffPool for graph embedding to reduce
size through distinguishable networks. As DiffPool is designed for graph clas-
sification tasks, it cannot generate embeddings for each node in the graph and
cannot be directly applied to node classification tasks. Hu et al. [25] employed
Graph-multiplayer perceptron and Graph-MLP model to integrate graph struc-
ture into the feature transformation process of nodes enabling the model to main-
tain effective classification even when adjacent information between nodes is
missing. Compared to the previous method of node neighborhood iteration based
on high sparse adjacency matrix, algorithms based on graph neural networks have
higher efficiency, but they are at a disadvantage in terms of running time and
space.

Another method is obtained based on Graph Embedding [26] [27] [28]. Due
to the high sparsity of traditional adjacency matrices and the disadvantages of
Graph Neural Networks in both time and space, a node classification method
based on Graph Embedding has emerged. It aims to utilize low-dimensional,
real-valued and dense vectors to represent the nodes of networks, and then clas-
sify nodes with classification models. It is one of the most widely used node clas-
sification methods because of its smaller calculation complexity and better per-
formance. Local Degree Profile (LDP) is a baseline method for node classifica-
tion without any attributes and employs SVM [29] to classify and predict. Me-
thod LINE [30] learns the high-order similarity between nodes based on the first-
and second-order similarity, where the first-order similarity means whether there
is a relationship between nodes, and the second one represents the similarity be-
tween the neighbors of nodes. To obtain better representation, DeepWalk [31]
has been proposed, which utilizes the network trained by the neural network mod-
els as the input to learn feature vectors for each node as a word in a corpus of
random walks. And Node2vec [32] improved the ways of walking, combining
the BFS and DFS [33] style of neighborhood exploration to explore the neighbor
nodes efficiently and employing parameters p and q to control the speed of walk-
ing from the last node to its neighborhood. However, the above approaches have
some obvious drawbacks: one is that the computation will increase by linear growth
and it cannot process the features of node itself; direct embedding method lacks
generalization ability; and it ignores the content information associated with each
node, so that it cannot obtain a better classification effect.

From the perspective of content, many approaches have been proposed to ex-
press a text message in a vector space. For instance, TFIDF [34], a bag of word
models or some topic models, and even some other approaches, especially the
model of Skip Gram [35] learn distributed vectors for words by a simple neural
network. However, there are still some drawbacks of them, that as they only em-
ploy one information source, so that the representation is shallow, even these me-
thods are embedded in pure unsupervised ways. To solve this problem, someone

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 213 Journal of Applied Mathematics and Physics

has put forward connecting vectors directly learned by DeepWalk and Paragraph
Vector Model [36]. Though, this method of concatenating vectors at the tail of
another vector, not only extends the dimensions of the final vectors but consid-
ers that the text and structural information of network nodes are one-to-one.

Addressing the drawbacks of the methods above, for instance, only concen-
trating the attributes of nodes without considering the link relationships of nodes,
the computational complexity brought by the higher sparsity of traditional adja-
cency matrices, the lower training efficiency of GCN, and the idea of one-to-one
ratio between text and structural information of nodes, we proposed three weight-
ing methods to obtain a better classification performance. One is utilizing nega-
tive logarithm weightings, and the other two are using modulus and sigmoid func-
tion weightings. At first, we applied two citation networks into DeepWalk and
Doc2vec models to obtain the latent representations or vectors for each node of
these networks. And then regard these vectors as input of the classifier to obtain
accuracy, an evaluating index. Process the accuracy by using negative logarithm,
modulus, and sigmoid function, and use them as weights for each normalized vec-
tor. At last, combine the corresponding elements of weighted vectors and put them
into the classifier again to obtain the classification effect. Through this method,
it not only comprehensively considers the structure of nodes and text attributes,
but also utilizes low-dimensional, real-valued and dense vectors to represent nodes,
which can reduce the influence brought by the high sparsity. More than that,
compared to the method of directly concatenating another vector at the end of
the vector, the proposed method adds the corresponding elements of vectors in-
creasing the classification effect.

2. Preliminary
2.1. Information Network Representation Learning

An information network includes structure, text and labels, which is represented
as (), , ,G V E D C= , where V represents a set of nodes, (), ,i j i je v v E= ∈ is a set
of edges, id D∈ represents the content attributes of nodes, C is the class label
set of the network. And L and U represent labeled and unlabeled nodes, respec-
tively. In order to closely connect the network topology, similar text content and
class labels for nodes close to each other, the network embedding is particularly
important and it means that learning a low-dimensional vector for each node

i

k
vv R∈


, where k is a smaller number, R is a matrix formed by the vectors of
each node.

2.2. Word2vec Model

Language model is a core concept of Natural Language Processing [6] [7].
Word2vec [37] is a neural network-based language model and a vocabulary re-
presentation method. Viewing the language model of NLP as s supervised learning
problem, based on this idea, Word2vec vectorizes vocabulary, allowing us to
quantitatively analyze and explore the relationships between vocabulary. Word2vec

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 214 Journal of Applied Mathematics and Physics

obtains a trained neural network weight through training, which is the vecto-
rized representation of input vocabulary. Obtaining word vectors for all vocabu-
lary in the training corpus is more conducive to conducting research on NLP. It
includes two models. One is the Continuous Bags of Words (CBOW), which
predicts the target word by given context words. Another one is the Skip Gram
model, which predicts the context by a given word.

2.2.1. Continuous Bays of Words (CBOW)
The application scenario of the CBOW model is to predict central words based
on context, so the input is the context word. But original word cannot be used as
input. The input is the one-hot encoded vectors of each word, and the output is
the probability of each word in the given vocabulary being the target word. Here
is a simple example to illustrate. For this corpus: “I like NLP very much”, first,
encode these words as the input by one-hot encoding method. []T1,0,0,0,0I = ,

[]T0,1,0,0,0like = , []T0,0,0,1,0very = , []T0,0,0,0,1much = ,
[]T0,0,1,0,0NLP = is the target word. Multiplies this one-hot encoded vector

with W (an input layer weight matrix). Take the weighted average of the ob-
tained vectors as the vector v̂ for the hidden layer. Multiplies v̂ with W' (an
output layer weight matrix) to get output vector ou . Finally, apply softmax to
obtain the actual output, and compare it with the real labels, perform the gradient
optimization based on loss function. The concrete process is shown in Figure
1(a).

2.2.2. Skip Gram
The Skip gram model [38] predicts contextual words based on central words, so
the input is any word, and the output is the probability of each word in the given
vocabulary being used as a contextual word. From the structural diagrams of

Figure 1. Word2vec model. (a) CBOW Model; (b) Skip Gram Model.

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 215 Journal of Applied Mathematics and Physics

CBOW and skip gram models, it can be seen that replacing the input layer of
CBOW with the output layer basically becomes the skip gram model, and the
two can be understood as a mutually flipped relationship.

2.3. DeepWalk Model

In the task of NLP, Word2vec is a commonly used word embedding method. It
describes the co-occurrence relationship between words by the sentence sequence
of a corpus and obtains the representations of words. Inspired from the model of
Word2vec, DeepWalk model uses the co-occurrence relationships between nodes
to learn the representation of nodes. And the random walk has been proposed to
describe the relationship by node sampling in a graph. Random walk is a depth
first traversal algorithm. It regarded as a basic tool can extract information from
the structure of the network. Given a starting node, randomly sample from its
neighbors as the next access node, and repeat that process until the length of the
sequence meets the preset conditions. Then, the random walk is trained by skip
gram model to obtain the representations. For given a graph (),G V E= without
content or label information, and the generation of random walks is displayed in
Figure 2(a).

As shown in the figure, regard iv as the root of a random walk
ivW . When it

jumps from the node 1
ivW to the next one, it may either go to A or B, but it

randomly jumps to A, so A is denoted as 2
ivW . Similarly, when it jumps from

2
ivW to C, C is denoted as 3

ivW and so on until this random walk meets the pre-
set walk length. 1 2 3, , , ,

i i i i

k
v v v vW W W W are random variables (nodes on the path),

1
i

k
vW + is a node randomly chosen from the neighborhood of kv . For instance,

this is a random walk
ivW of length 5. This random walk can be regarded as a

short sentence, i.e. to predict the probability of the next node when the context
nodes have been known. And the target has to be optimized is that:

 ()1 2 3 1| , , , ,i iPr v v v v v − (1)

the walk of 0 1 2 1, , , , iv v v v − has been known, and predict the probability of the

Figure 2. DeepWalk model. (a) Random walks; (b) Skip Gram.

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 216 Journal of Applied Mathematics and Physics

next node iv . However, the node itself cannot be calculated directly. Hence, a
map function : V dv V R ×Φ ∈ → has been quoted. Each node has been mapped
to d dimensions, and there are V d× parameters having to be learned. Φ is the
latent representation associated with each node v. And the optimization trans-
fers to:

 () () ()()1 2 1| , , ,i iPr v v v v −Φ Φ Φ (2)

The model of Skip Gram utilizes the central node to predict the context nodes,
then the optimization is that:

 { } ()()1 1, , , , , |i W i i i W iminimize logPr v v v v v− − + +− Φ  (3)

The application of the Skip gram model in networks is shown in Figure 2(b),
regarding 4v as a central vertex, setting sliding window to 2, then the probabil-
ity is { } ()()2 3 5 6 4, , , |Pr v v v v vΦ . Although random walk ignores the order of
nodes, it reflects the neighbor relation of nodes. Regarding the central node as
the input, combining vectors of central node to the hidden layer, and the output
layer utilizes the softmax outputing values from 0 to 1. And in the subsequent
process, the complexity can be from ()O V to ()O log V combining Hierar-
chical Softmax.

2.4. Doc2vec Model

Doc2vec is an unsupervised algorithm [39] and it can be utilized to construct a
fixed representation of input including sentence, paragraph, document, whose
length is changeable. This algorithm is trained to predict words within a docu-
ment, enabling it to represent each document using a single dense vector. It is
inspired by Word2vec model, where paragraph vectors can predict the next word
based on a given context sample from a paragraph. Ref. [39], it proposed two
kinds of methods. One is the Distributed Memory Model of Paragraph Vectors
(PV-DM), and the other one is the Distributed Bag of Words version of Para-
graph Vector (PV-DBOW). In this paper, the PV-DBOW has been adopted.

A framework of PV-DM is shown in Figure 3(a), it is to predict a word
“much” by the context of four words “I, like, English, very”. These four words
are regarded as the input and mapped into a word matrix. And input them into a
classifier to predict the next word. The framework under PV-DM is similar to
the continuous word bag model framework in Word2vec. The only difference is
that through matrix D, additional paragraph segments are put into a single vec-
tor. In this model, the concatenation or average results of this vector and four
other context vectors are used to predict the next word. The paragraph vector
represents missing contextual information and serves as memory for the topic of
the paragraph.

The another algorithm is PV-DBOW, opposite to PV-DM, similar to Skip-gram.
It ignores the input contextual words, but forces the model to predict words ex-
tracted from random samples on the paragraph. In fact, this means that in each
random gradient descent cycle, it samples a text window, then samples a random

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 217 Journal of Applied Mathematics and Physics

Figure 3. Doc2vec model. (a) PV-DM; (b) PV-DBOW.

word from the text window, and then completes a classification task under a
given paragraph vector. The framework is showed in Figure 3(b). In this ver-
sion, paragraph vectors are trained to predict words in small windows. Except
for its simple concept, this model does not need to store too much data. It only
needs to store softmax weights, rather than storing softmax weights and word
vectors like in the PV-DM model. This model is similar to the skip gram model
in Word2vec.

3. The Proposed Method

In previous methods that are shown in Figure 4(a), simply concatenating vec-
tors at the tail of another vector [36], but it would extension the dimensions of
the final vectors. In fact, it just extended dimensions of vectors to obtain better
representation without considering computational complexity brought by higher
dimensions. Therefore, as it shows in Figure 4(b), we propose adding weights
into vectors trained by DeepWalk and Doc2vec models to reduce the influ-
ence brought by dimensions extension. The entire process is as follows. At the
meanwhile, three approaches were compared. It shows that utilizing logarithm
to weight vectors gets a better performance. And the steps are following:

1) Train the DeepWalk and Doc2vec models to obtain two kinds of vectors:
[]1 2, , , nX x x x=  , []1 2, , , nY y y y=  ;

2) Regard these vectors as input of the classifier and assess the classification
effect to obtain the accuracy;

3) Use the accuracy obtained as elements of array A:

 []1 2,A a a= (4)

4) Find the natural logarithm of the elements in array A and find the opposite:

 []1 2,A lna lna′ = − − (5)

5) Normalize the vectors X and Y;
6) Each kind of vectors multiplies the value of elements in array A in reverse

order, then return to the second step to assess the effect.

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 218 Journal of Applied Mathematics and Physics

Another one method is to use modulus to weight vectors is obtaining the re-
sults from the classifier, and the weight is set as []1 2,W w w= , W is from the
following equation:

2 2
1 2

AW
a a

=
+

 (6)

where A is from Equation (4). Then each kind of vectors multiplies W in se-
quence.

The other is to use sigmoid function to obtain the weights. And the array A′′
is showed in Equation (8):

 () 1
1 e xf x −=
+

 (7)

 () ()1 2,A f a f a′′ =    (8)

According to the above three methods, all of them increase the performance
compared with single vectors trained by one model. In particular, the logarithm
method performance better. The concrete results are showed in the next section.

4. Experiment Results

In this article, 80% of the data is used as the training set and the rest as the testing
set, accuracy as the evaluation index. From Table 1 and Table 2, as dimensions rise,
the performance goes better and better. It is worth noting that the result of
D2V + DW in 100 dimensions was gained by connecting vectors from D2V and
DW in 50 dimensions. For example, []1 2, , , nX x x x=  trained by D2V, and

[]1 2, , , nY y y y=  trained by DW, []1 2 1 2, , , , , , ,n nv x x x y y y=   obtained by

Figure 4. Comparison structure diagram of front and rear methods. (a) Previous method; (b) Method
with weights.

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 219 Journal of Applied Mathematics and Physics

Table 1. Accuracy by various approaches in different dimensions on the dataset M10.

Dimension
Index

50 100 150 200 250 300 350 400

Accuracy

D2V 0.5907 0.6508 0.6659 0.6882 0.6901 0.6925 0.6945 0.6993

DW 0.4374 0.5102 0.5286 0.5403 0.5344 0.5529 0.5500 0.5592

D2V + DW 0.6125 0.6838 0.7182 0.7304 0.7439 0.7502 0.7565 0.7609

Logarithm 0.5975 0.6785 0.7231 0.7464 0.7522 0.7512 0.7609 0.7629

Modulus 0.5921 0.6644 0.7119 0.7352 0.7352 0.7468 0.7502 0.7580

Sigmoid 0.5475 0.6625 0.7076 0.7231 0.7301 0.7444 0.7507 0.7522

Table 2. Accuracy by various approaches in different dimensions on the dataset DBLP.

Dimension
Index

50 100 150 200 250 300 350 400

Accuracy

D2V 0.7012 0.7330 0.7443 0.7470 0.7520 0.7541 0.7572 0.7551

DW 0.5146 0.5234 0.5238 0.5268 0.5253 0.5269 0.5268 0.5266

D2V + DW 0.7094 0.7307 0.7540 0.7615 0.7685 0.7742 0.7753 0.7764

Logarithm 0.6931 0.7296 0.7522 0.7718 0.7782 0.7820 0.7846 0.7843

Modulus 0.6800 0.7248 0.7505 0.7562 0.7576 0.7629 0.7705 0.7611

Sigmoid 0.6759 0.7233 0.7463 0.7527 0.7558 0.7643 0.7672 0.7642

D2V + DW. It means that directly connect another vector at the end of one vec-
tor to achieve better performance. And it assumes that the text and structural
information has the ratio of one-to-one.

Due to M10 and DBLP being citation networks, the effectiveness performs
better on the Doc2vec models because it includes plenty of content information.
At the meanwhile, it performs worse in terms of node structure. That is to say,
during the training process, the text and structural information of network
nodes are not one-to-one. The results show that either the D2V + DW or these
three weighting methods perform better than a single model with the dimension
increasing. And in particular, logarithm performs better than the other two
weighting methods.

From Figure 5(a) and Figure 6(a), it can be seen that using logarithm weight-
ing method performs better than single one trained by Doc2vec or DeepWalk
model in both data sets M10 and DBLP. More than that, it is superior to pre-
vious method of concatenating one vector directly at the tail of another one.
And from the comparison of different methods on data set M10, the weight-
ing method with logarithm performs better. In the Figure 5(b) and Figure 6(b),
it shows the comparison of different weighting methods on M10 and DBLP. It
suggests that using logarithm is superior to the other two weighting methods,
namely, the modulus and sigmoid function. In addition, the results show that

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 220 Journal of Applied Mathematics and Physics

Figure 5. Performance on M10. (a) Accuracy by various methods on M10; (b) Comparison of different weighting methods on
M10.

there is a significant improvement in classification performance from 50 to 250
dimensions, while the increase gradually stabilizes from 300 dimensions on-
wards. Hence, it shows that within a certain range, the higher dimensions, the
better performance of classification. It is not difficult to see that whether it is
M10 or DBLP, the logarithmic weighting method is significantly better than other

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 221 Journal of Applied Mathematics and Physics

Figure 6. Performance on DBLP. (a) Accuracy by various methods on DBLP; (b) Comparison of different weighting methods on
DBLP.

methods from 200 to 300 dimensions. Especially, Figure 7(b) shows that the lo-
garithm weighting method obviously performs better than other two methods. It
proves that for citation networks, the text information has more weight in node
classification tasks instead of the ratio of one to one. But as the dimensions con-
tinue to increase, not only will it bring higher computational complexity but the

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 222 Journal of Applied Mathematics and Physics

Figure 7. Performance of three weighting methods. (a) Classification performance of
three weighting methods on M10; (b) Classification performance of three weighting me-
thods on DBLP.

excess feature information will not play a better role.

All results were trained on data sets M10 and DBLP. The former consists of
10,310 papers, 77,218 edges and 10 classes, and the latter consists of 60,744 pa-
pers, 52,890 edges and 4 classes. Due to M10 and DBLP being citation networks,
consisting of plenty of context information, in the process, more weight is given
in terms of content and less weight for the network structure. For the reason of
the negative logarithm owning good characteristic from 0 to 1, it has fast gra-
dient descent. While the other two methods are smoother and average the weights
of different vectors, which is obviously unreasonable. It is suggested that weighting
method with logarithm is better than the other two methods, and it is also supe-
rior to directly connecting vectors. Therefore, it demonstrates that the method
we proposed is effective.

5. Conclusions

The method in this paper indicates that adding weights into vectors before the
classification can increase the performance of representation. Compared to the
methods proposed in the introduction, it not only considers the attributes of nodes
themselves, but also combines the structural relationships between nodes. At

https://doi.org/10.4236/jamp.2024.121016

L. Dai

DOI: 10.4236/jamp.2024.121016 223 Journal of Applied Mathematics and Physics

the meanwhile, on the basis of graph embedding, it employs low-dimensional,
real-valued and dense vectors to reduce the influence brought by the high spar-
sity of traditional adjacency matrices. Weights are added to the vectors trained
from different perspectives, so that these vectors can be combined in the same
dimension. Different network features have different weights, which will bring
different influences, and the negative logarithm not only rapidly decreases the
gradient in the 0 - 1 interval, but is also continuous. And this feature makes it
more meaningful in node classification tasks.

Compared with existing node classification methods, especially the methods
based on GCN, the proposed method has higher training efficiency and is easy to
implement. At the meanwhile, it cannot quickly adapt to new tasks or consider the
deeper relationships between nodes. Therefore, in the subsequent process, we hope
to design a model that can explore deeper relationships of nodes and be easy to
generalize.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Nettleton, D.F. (2013) Data Mining of Social Networks Represented as Graphs. Com-

puter Science Review, 7, 1-34. https://doi.org/10.1016/j.cosrev.2012.12.001

[2] Yang, X.H. and Sun, Y. (2020) Abnormal User Detection Based on the Correlation
Probabilistic Model. Security and Communication Networks, 2020, Article ID:
8014958. https://doi.org/10.1155/2020/8014958

[3] Qian, X.M., Feng, H., Zhao, G.S. and Mei, T. (2013) Personalized Recommendation
Combining User Interest and Social Circle. IEEE Transactions on Knowledge and
Data Engineering, 26, 1763-1777. https://doi.org/10.1109/TKDE.2013.168

[4] Kaefer, F., Heilman, C.M. and Ramenofsky, S.D. (2005) A Neural Network Applica-
tion to Consumer Classification to Improve the Timing of Direct Marketing Activi-
ties. Computers & Operations Research, 32, 2595-2615.
https://doi.org/10.1016/j.cor.2004.06.021

[5] Aggarwal, C.C. and Zhai, C.X. (2012) A Survey of Text Classification Algorithms.
In: Aggarwal, C.C. and Zhai, C.X., Eds., Mining Text Data, Springer, Berlin, 163-222.
https://doi.org/10.1007/978-1-4614-3223-4_6

[6] Chowdhary, K.R. (2020) Natural Language Processing. In: Chowdhary, K.R., Ed.,
Fundamentals of Artificial Intelligence, Springer, Berlin, 603-649.
https://doi.org/10.1007/978-81-322-3972-7_19

[7] Nadkarni, P.M., Ohno-Machado, L. and Chapman, W.W. (2011) Natural Language
Processing: An Introduction. Journal of the American Medical Informatics Associa-
tion, 18, 544-551. https://doi.org/10.1136/amiajnl-2011-000464

[8] Medhat, W., Hassan, A. and Korashy, H. (2014) Sentiment Analysis Algorithms and
Applications: A Survey. Ain Shams Engineering Journal, 5, 1093-1113.
https://doi.org/10.1016/j.asej.2014.04.011

[9] Zhang, L., Wang, S. and Liu, B. (2018) Deep Learning for Sentiment Analysis: A Sur-
vey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8, e1253.

https://doi.org/10.4236/jamp.2024.121016
https://doi.org/10.1016/j.cosrev.2012.12.001
https://doi.org/10.1155/2020/8014958
https://doi.org/10.1109/TKDE.2013.168
https://doi.org/10.1016/j.cor.2004.06.021
https://doi.org/10.1007/978-1-4614-3223-4_6
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1016/j.asej.2014.04.011

L. Dai

DOI: 10.4236/jamp.2024.121016 224 Journal of Applied Mathematics and Physics

https://doi.org/10.1002/widm.1253

[10] Suhr, A., Lewis, M., Yeh, J. and Artzi, Y. (2017) A Corpus of Natural Language for
Visual Reasoning. Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, 2, 217-223. https://doi.org/10.18653/v1/P17-2034

[11] Wang, S.I. and Manning, C.D. (2012) Baselines and Bigrams: Simple, Good Sentiment
and Topic Classification. Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics, 2, 90-94.

[12] Crawford, M., Khoshgoftaar, T.M., Prusa, J.D., Richter, A.N. and Al Najada, H. (2015)
Survey of Review Spam Detection Using Machine Learning Techniques. Journal of
Big Data, 2, Article No. 23. https://doi.org/10.1186/s40537-015-0029-9

[13] Zubiaga, A., Körner, C. and Strohmaier, M. (2011) Tags vs Shelves: From Social Tag-
ging to Social Classification. Proceedings of the 22nd ACM Conference on Hypertext
and Hypermedia, Eindhoven, June 2011, 93-102.
https://doi.org/10.1145/1995966.1995981

[14] Kim, S., Yu, Z.B., Kil, R.M. and Lee, M. (2015) Deep Learning of Support Vector
Machines with Class Probability Output Networks. Neural Networks, 64, 19-28.
https://doi.org/10.1016/j.neunet.2014.09.007

[15] Mahesh, B. (2020) Machine Learning Algorithms—A Review. International Journal
of Science and Research, 9, 381-386.

[16] Yousefi-Azar, M. and Hamey, L. (2017) Text Summarization Using Unsupervised
Deep Learning. Expert Systems with Applications, 68, 93-105.
https://doi.org/10.1016/j.eswa.2016.10.017

[17] Yadav, A.K., Singh, A., Dhiman, M., et al. (2022) Extractive Text Summarization
Using Deep Learning Approach. International Journal of Information Technology,
14, 2407-2415. https://doi.org/10.1007/s41870-022-00863-7

[18] Thekumparampil, K.K., Wang, C., Oh, S. and Li, J. (2018) Attention-Based Graph
Neural Network for Semi-Supervised Learning. ArXiv: 1803.03735.

[19] LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539

[20] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018) BERT: Pre-Training of
Deep Bidirectional Transformers for Language Understanding. ArXiv: 1810.04805.

[21] Bruna, J., Zaremba, W., Szlam, A. and LeCun, Y. (2013) Spectral Networks and Lo-
cally Connected Networks on Graphs. ArXiv: 1312.6203.

[22] Defferrard, M., Bresson, X. and Vandergheynst, P. (2016) Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering. ArXiv: 1606.09375.

[23] Kipf, T.N. and Welling, M. (2016) Semi-Supervised Classification with Graph Con-
volutional Networks. ArXiv: 1609.02907.

[24] Ying, Z.T., You, J.X., Morris, C., Ren, X., Hamilton, W. and Leskovec, J. (2018)
Hierarchical Graph Representation Learning with Differentiable Pooling. ArXiv:
1806.08804.

[25] Hu, Y., You, H.X., Wang, Z.C., Wang, Z.C., Zhou, E.J. and Gao, Y. (2021) Graph-MLP:
Node Classification without Message Passing in Graph. ArXiv: 2106.04051.

[26] Cheng, J.P. and Lapata, M. (2016) Neural Summarization by Extracting Sentences
and Words. Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics, 1, 484-494. https://doi.org/10.18653/v1/P16-1046

[27] Paulus, R., Xiong, C.M. and Socher, R. (2017) A Deep Reinforced Model for Ab-
stractive Summarization. ArXiv: 1705.04304.

[28] Rush, A.M., Chopra, S. and Weston, J. (2015) A Neural Attention Model for Ab-

https://doi.org/10.4236/jamp.2024.121016
https://doi.org/10.1002/widm.1253
https://doi.org/10.18653/v1/P17-2034
https://doi.org/10.1186/s40537-015-0029-9
https://doi.org/10.1145/1995966.1995981
https://doi.org/10.1016/j.neunet.2014.09.007
https://doi.org/10.1016/j.eswa.2016.10.017
https://doi.org/10.1007/s41870-022-00863-7
https://doi.org/10.1038/nature14539
https://doi.org/10.18653/v1/P16-1046

L. Dai

DOI: 10.4236/jamp.2024.121016 225 Journal of Applied Mathematics and Physics

stractive Sentence Summarization. Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, Lisbon, September 2015, 379-389.

[29] Platt, J.C., et al. (1999) Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods. Advances in Large Margin Clas-
sifiers, 10, 61-74.

[30] Tang, J., Qu, M., Wang, M.Z., Zhang, M. and Mei, Q.Z. (2015) LINE: Large-Scale
Information Network Embedding. Proceedings of the 24th International Conference
on World Wide Web, Florence, 18-22 May 2015, 1067-1077.
https://doi.org/10.1145/2736277.2741093

[31] Perozzi, B., Al-Rfou, R. and Skiena, S. (2014) DeepWalk: Online Learning of Social
Representations. Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, August 2014, 701-710.
https://doi.org/10.1145/2623330.2623732

[32] Grover, A. and Leskovec, J. (2016) Node2vec: Scalable Feature Learning for Networks.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, 13-17 August 2016, 855-864.
https://doi.org/10.1145/2939672.2939754

[33] Kurant, M., Markopoulou, A. and Thiran, P. (2012) On the Bias of BFS. ArXiv:
1004.1729.

[34] Turney, P.D. (2000) Learning Algorithms for Keyphrase Extraction. Information
Retrieval, 2, 303-336. https://doi.org/10.1023/A:1009976227802

[35] Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013) Efficient Estimation of Word
Representations in Vector Space. ArXiv: 1301.3781.

[36] Pan, S., Wu, J., Zhu, X.Q., Zhang, C.Q. and Wang, Y. (2016) Tri-Party Deep Net-
work Representation. Network, 11, 12.

[37] Rong, X. (2014) Word2vec Parameter Learning Explained. ArXiv: 1411.2738.

[38] Fernández, J., Gutiérrez, Y., Gómez, J.M. and Martinez-Barco, P. (2014) Gplsi: Su-
pervised Sentiment Analysis in Twitter Using Skipgrams. Proceedings of the 8th In-
ternational Workshop on Semantic Evaluation (SemEval 2014), Dublin, 23-24 August
2014, 294-299. https://doi.org/10.3115/v1/S14-2048

[39] Le, Q. and Mikolov, T. (2014) Distributed Representations of Sentences and Docu-
ments. International Conference on Machine Learning, Beijing, 22-24 June 2014,
1188-1196.

https://doi.org/10.4236/jamp.2024.121016
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1023/A:1009976227802
https://doi.org/10.3115/v1/S14-2048

	Research on Node Classification Based on Joint Weighted Node Vectors
	Abstract
	Keywords
	1. Introduction
	2. Preliminary
	2.1. Information Network Representation Learning
	2.2. Word2vec Model
	2.2.1. Continuous Bays of Words (CBOW)
	2.2.2. Skip Gram

	2.3. DeepWalk Model
	2.4. Doc2vec Model

	3. The Proposed Method
	4. Experiment Results
	5. Conclusions
	Conflicts of Interest
	References

