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Abstract 
The fitting of lifetime distribution in real-life data has been studied in various 
fields of research. With the theory of evolution still applicable, more complex 
data from real-world scenarios will continue to emerge. Despite this, many re-
searchers have made commendable efforts to develop new lifetime distributions 
that can fit this complex data. In this paper, we utilized the KM-transformation 
technique to increase the flexibility of the power Lindley distribution, result-
ing in the Kavya-Manoharan Power Lindley (KMPL) distribution. We study 
the mathematical treatments of the KMPL distribution in detail and adapt the 
widely used method of maximum likelihood to estimate the unknown pa-
rameters of the KMPL distribution. We carry out a Monte Carlo simulation 
study to investigate the performance of the Maximum Likelihood Estimates 
(MLEs) of the parameters of the KMPL distribution. To demonstrate the ef-
fectiveness of the KMPL distribution for data fitting, we use a real dataset 
comprising the waiting time of 100 bank customers. We compare the KMPL 
distribution with other models that are extensions of the power Lindley dis-
tribution. Based on some statistical model selection criteria, the summary re-
sults of the analysis were in favor of the KMPL distribution. We further inves-
tigate the density fit and probability-probability (p-p) plots to validate the su-
periority of the KMPL distribution over the competing distributions for fit-
ting the waiting time dataset. 
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1. Introduction 

Lifetime distributions have become increasingly popular in statistical modeling 
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with the advent of real-life data fitting. They have gained wide application in re-
search areas such as survival, reliability, competing risk, flood frequency, and wind 
speed analyses. Owing to these advancements, different methodologies have been 
introduced in the literature to expand the applicability of lifetime distributions 
in modeling real-world scenarios. Some of these methods include the Trans-
formed-Transformer (T-X) generator introduced by [1], the Weibull-generator 
proposed by [2], the alpha power transformation introduced by [3], the 
Topp-Leone-generator studied by [4], the alpha power transformed Weibull- 
generator introduced by [5], and the continuous Bernoulli-generator developed 
by [6]. This study revisits the Lindley distribution introduced by [7] to provide a 
background for the research. The Lindley distribution is a one-parameter lifetime 
distribution that was introduced in the context of Bayesian statistics as a coun-
ter-example of fiducial statistics. [8] studied the mathematical properties of the 
Lindley distribution in detail and applied it to a waiting time dataset, reigniting 
the interest of researchers. This sparked the introduction of several modifica-
tions of the Lindley distribution, including the extended Lindley distribution in-
troduced by [9], the Lindley-Exponential distribution studied by [10], a genera-
lized two-parameter Lindley distribution treated by [11], a three-parameter 
generalized Lindley distribution proposed by [12], the Marshall-Olkin genera-
lized Lindley distribution studied by [13], and the new alpha power transformed 
power Lindley distribution developed by [14]. One relevant modification of the 
Lindley distribution is the power Lindley distribution developed by [15]. Sup-
pose a random variable X follows the Lindley distribution, a random variable  

defined by the transformation 
1
aT X=  is said to follow the power Lindley dis-

tribution with cumulative distribution and probability density functions, respec-
tively, obtained as: 

 ( ), , 1 1 , 0, , 0,
1

a
a

bt
PL

btF t a b e t a b
b

− 
= − + > > + 

 (1) 

and 

 ( ) ( )
2

1, , 1 , 0, , 0.
1

aa a bt
PL

abf t a b t t e t a b
b

− −= + > >
+

 (2) 

The authors have demonstrated the relevance of the power Lindley distribu-
tion over existing generalized Lindley distributions in many instances. However, 
recent papers have established an extended version of the distribution. These in-
clude the Exponentiated Power Lindley (EXPL) distribution introduced by [16], 
Extended Power Lindley (EPL) distribution due to [17], Transmuted Power Lind-
ley (TPL) distribution developed by [18], Kumaraswamy Power Lindley (KPL) 
distribution proposed by [19], Odd Log-Logistic Power Lindley (OLLPL) distri-
bution due to [20], and Topp-Leone Power Lindley (TLPL) distribution pro-
posed by [21]. In this paper, we use the KM transformation technique developed 
by [22] to explore a new horizon of the power Lindley distribution. The rest of 
the paper is organized into the following sections: Section 2 contains the for-
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mulation and the derivation of the mathematical treatments of the proposed 
Kavya-Manoharan Power Lindley (KMPL) distribution. Section 3 presents the pa-
rameter estimation, simulations, and data fittings of the KMPL distribution. Fi-
nally, Section 4 concludes the paper. 

2. The Kavya-Manoharan Power Lindley (KMPL)  
Distribution 

Recently, [22] developed a transformation technique for generalizing existing life-
time distributions which they referred to as the KM transformation family of 
distributions. This new family is defined by the cdf as: 

 ( ) ( )( ),, 1 , 0,
1

G t
KM

eF t e t
e

ωω −= − >
−

 (3) 

and the associated density function obtained as: 

 ( ) ( ) ( ),, , , 0,
1

G t
KM

ef t g t e t
e

ωω ω −= >
−

 (4) 

where ω  is a vector of parameter(s) from the baseline distribution. 
By inserting (1) and (2) into (3) and (4), we build the Kavya-Manoharan Power 

Lindley (KMPL) distribution with the cdf and pdf, respectively, defined as: 

 ( ), , 1 exp 1 1 , 0, , 0,
1 1

a
a

bt
KMPL

e btF t a b e t a b
e b

−
   

= − + − > >     − +   
 (5) 

and the associated density is obtained as: 

( )

( )( ) ( )
2
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, ,

1 exp 1 , 0, , 0.
1 1 1
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KMPL
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  (6) 

An interesting feature of the KM transformation is the retention of the para-
meter(s) of the baseline distribution without adding extra parameter(s). 

The survival and hazard rate functions of the KMPL distribution are, respec-
tively, obtained by manipulating (5) and (6) as follows: 

 ( )
1 1

1, , 1 1 ,
1

a abtbt e
b

KMPL
eS t a b e

e

−  
  + −  +  

 
 = − − −  
 

 (7) 

and 
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bt
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−

  
+ − + +   +  =

   
+ + −    +    

 (8) 

The graphical representation of the density function and the hazard rate func-
tions of the KMPL distribution are shown in Figure 1. 

The shapes of the density plots in Figure 1 indicate that the KMPL distribution  
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Figure 1. The density (a) and hazard (b) plots of the KMPL distribution. 

 
accommodates decreasing (reversed-J), left (right)-skewed unimodal and sym-
metric shapes. Whereas, the hazard plots suggest decreasing, increasing, and in-
verted bathtub hazard rate properties. 

Consequently, other mathematical properties of the KMPL distribution are 
treated in the following subsections. 

2.1. Quantile Function 

The quantile function of a lifetime distribution is an essential mathematical 
treatment used in generating random samples from the distribution, especially 
for simulation purposes. The quantile function uQ  is obtained by solving the 
system of non-linear equation ( )1

uQ F u−= , where u satisfies the condition 
0 1u< < . By this approach, we obtain the quantile function of the KMPL distri-
bution as follows: 

1 exp 1 1 ,
1 1

a
a

bte bt e u
e b

−
   
− + − =     − +     
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( ) ( ) ( )1
1 1 ln 1 1 ,

aa bt u e
b bt e b

e
−  − 

+ + = + − +  
     

multiplying through by ( )1e b− +− , we have: 

( ) ( ) ( )1

1

111 ln 1 1 ,
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ee

− + +

+

 − +
− + + = − − +  

     

Clearly, 
( )

1 1

11 ln 1 1b

u ebW
ee− +

  − +  − − +   
      

 gives the principal solution for the 

Lambert W function ( )1 ab bt− + + . Further simplification yields, 

 
( )

1

1 1

11 1 11 ln 1 1 , 0 1.
a

u b

u ebQ W u
b b ee− +

   − +   = − − − − − + < <     
        

 (9) 

From (9), we can further derive mathematical expressions for the median, low-
er, and upper quartiles of the KMPL distribution, respectively, as follows: 

1
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A quantile-based skewness and kurtosis have been suggested by [23] and [24], 
respectively. The authors defined the Galton Skewness and Moors’ Kurtosis as: 
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Figure 2 shows the Galton Skewness and Moors’ Kurtosis for the KMPL dis-
tribution. 

2.2. The rth Ordinary Moments 

The rth ordinary moment of a random variable T following the density function 
specified in (6) is defined as: 

( )

( )( ) ( )
0

2
1

0

, , d

1 exp 1 d , 1,2,3,4,
1 1 1

a

r r
KMPL

a
a r a a bt

E T t f t a b t

ab btt t bt e t r
e b b

∞

∞
+ − −

  = 

  
= + − + + =   − + +  

∫

∫ 

 (10) 

Recall the Maclaurin series expansion of the exponential function as: 
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Figure 2. The Galton Skewness (left) and Moors’ Kurtosis (right) for the KMPL distribution. 
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inserting these expressions into (10), yields 
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Evaluating the first integral part of (12), we have: 

( ) ( )
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similarly, the second integral part of (12) yields: 
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Finally, by inserting the solution of the integrals into (12), the rth ordinary 

moment of the KMPL distribution is obtained as: 

( )
( ) ( ) ( )
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1 1 20 0

1 2
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∑∑  (13) 
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The mean of the KMPL distribution is derived from (13) when r = 1, given as: 

[ ] ( )
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Moreover, the variance, skewness, and kurtosis of the KMPL distribution can 
be generated from (13) as follows: 
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222

4 6
kurtos s

3
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     − + −     

  − 

=

 

Table 1 shows the numerical evaluation of the mean, variance, skewness, and 
kurtosis of the KMPL distribution for varying values of the parameters. 

From Table 1, we noticed that the mean of the KMPL distribution is mono-
tone decreasing in parameter b, and increasing in parameter a. Whereas, the va-
riance and skewness are both decreasing in parameters a and b. The positive 
(negative) skewness values also indicate that the KMPL distribution is suitable 
for modeling right (left)-skewed data sets. 

2.3. Probability Weighted Moments 

The Probability Weighted Moments (PWMs) of a random variable T with legi-
timate pdf ( )f t  and cdf ( )F t , is specified by: 

 
Table 1. Numerical evaluation of the moments of KMPL distribution. 

a b Mean Variance Skewness Kurtosis 

2 

2 0.6317 0.1181 0.7243 3.4075 

4 0.4194 0.0552 0.7997 3.5772 

6 0.3332 0.0354 0.8323 3.6061 

4 

2 0.7633 0.0491 -0.0176 2.7721 

4 0.6208 0.0340 0.0499 2.7321 

6 0.553 0.0274 0.0542 2.7683 

6 

2 0.8269 0.0272 -0.2830 2.8744 

4 0.7201 0.0217 -0.2462 2.9761 

6 0.6666 0.0187 -0.1926 2.5345 
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 ( ) ( ) ( )d ,r s r sE T F t t f t F t t
∞

−∞

  =  ∫  (14) 

Utilizing (14), we define the ( ), thr s  PWMs of the KMPL distribution as follows: 
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By simplification, 
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again, 
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substituting these expressions into (15), we have: 
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employing a similar approach used in (13), we further simplify (16) as: 
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2.4. Renyi Entropy 

An entropy of a random variable T measures the degree of variability associated 
with the random variable. For a random variable T having the pdf in (6), the 
Renyi entropy is specified as follows: 
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https://doi.org/10.4236/jamp.2024.121015


S. A. Ogumeyo et al. 
 

 

DOI: 10.4236/jamp.2024.121015 202 Journal of Applied Mathematics and Physics 
 

by simplifying the exponential function using Maclaurin series and binomial 
expansion, we have: 

( )
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Evaluating the integrals in (19), yields 
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2.5. Distribution of Order Statistics 

Suppose that 1: 2: :n n n nX X X< < < , is the order statistics of independent ob-
servations with sample size n generated from KMPL distribution, then the pdf of 
the rth order statistics, say :n nT X=  is given by: 
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substituting the cdf and pdf in (5) and (6) into (21), and employing the same 
approach in (16), we obtain: 
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Furthermore, the sth moment of the rth order statistics of the KMPL distribu-
tion is derived from (22) as: 
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3. Parameter Estimation, Simulations, and Data Fitting 
3.1. Parameter Estimation 

The maximum likelihood estimation approach has been widely patronized for 
model parameter estimation in literature. Here, we adopt the same approach in  

estimating the unknown parameters of the KMPL distribution. Suppose 
1

n

i
i

t
=
∑   
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are independent samples of size n generated from the KMPL distribution, given 
the pdf in (6), we therefore express the likelihood function of the KMPL distri-
bution as: 

 

( ) ( )

( )
( )( )

1
1

2 1

1

, , , , , ,

1
exp 1 .

1 1 1
a
i

n

n KMPL i
i

a a an i i bta i
i

i

L a b t t f t a b

ab t t bt
bt e

e b b

=

−
−

=

=

 +   
 = − + +   − + +    

∏

∏



 (24) 

The log-likelihood function associated with (24) is achieved by obtaining its 
natural logarithm as: 
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 (25) 

Taking the first derivative of the log-likelihood function in (25) with respect 
to the parameters and equating it to zero, yields the corresponding Maximum 
Likelihood Estimates (MLEs). This can be mathematically expressed as: 

( ) ( ) ( ) ( )

( )

1

1 1 1

1

, , , , ln
ln ln

1

1ln 1 ,
1 1

a
i

an n n
n i i a

i i ia
i i ii

an
bta i

i i
i

a b t t t tn t b t t
a a t

btb t e t
b b

= = =

−

=

= + + −
∂ +

    + − +   + +     

∑ ∑ ∑

∑

 

 

( ) ( )
( )

1
2

1 1

, , , , 2 1 1 .
1 11

a
i

an n
n bta a i

i i
i i

a b t t btn n t t e
b b b bb

−

= =

    = − − + − +   ∂ + ++     
∑ ∑

 

 

Obviously, the MLEs cannot be resolved analytically, thus the need to employ 
various statistical programs such as R, Python, Mathematica, etc. Here, we adapt 
the fitdistrplus package in R to obtain the MLEs of the KMPL distribution. 

3.2. Monte Carlo Simulation Study 

A Monte Carlo simulation study is carried out to investigate the asymptotic be-
havior of the maximum likelihood estimates of the parameters of the KMPL dis-
tribution. To implement this, we utilize the quantile function in (9) to generate 
random samples at different choices of parameter values given as (a = 0.8, b = 
0.5), (a = 0.8, b = 2), (a = 1.5, b = 0.5) and (a = 1.5, b = 2). For each parameter 
value, the simulation is performed 1000 times at different sample sizes n = 25, 
50, 100, 200, and 500. Standard statistical tools such as bias, Mean Square Error 
(MSE), and coverage probability of ( )100 1 %α−  confidence intervals of the 
MLEs are computed. The mathematical expressions of these quantities are de-
fined by: 
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( )
1

1i s ˆB a
N

i
iN

ω ω
=

−= ∑ , ( ),a bω = , 

1) Mean Square Error (MSE) = ( )2

1

1 ˆ
N

i
iN

ω ω
=

−∑ , 

2) Coverage probability of ( )100 1 %α−  CIs given by: 

( ) ( )( )2 2
1

1 ˆ ˆ ˆ ˆ ,
N

i i i i
i

I Z se Z se
N α αω ω ω ω ω

=

− < < +∑
 

where ( ).I  is the indicator function and ( )ˆise ω  is the standard error associated 
to ˆiω . 

Table 2 and Table 3 hold the simulation results of the quantities computed 
for each parameter estimate. 

Remarks: 
1) From the results in Table 2, the bias and mean square error of the MLEs 

decreases (increases) as the sample size n increases. Also, the MLE b has a nega-
tive (positive) bias, whereas the MLE a is strictly positive bias; 

2) The coverage probability investigated at 0.90 and.95 confidence intervals as  
 

Table 2. The bias and mean square error of the MLEs. 

a b N Bias (a) Bias (b) MSE (a) MSE (b) 

0.8 

0.5 

25 

50 

100 

200 

500 

0.0498 

0.0202 

0.0117 

0.0054 

0.0027 

−0.0111 

−0.0041 

−0.0024 

−0.0004 

−0.0001 

0.0187 

0.0077 

0.0034 

0.0015 

0.0006 

0.0133 

0.0060 

0.0030 

0.0013 

0.0006 

2 

25 

50 

100 

200 

500 

0.0443 

0.0232 

0.0166 

0.0058 

0.0016 

0.1330 

0.0601 

0.0314 

0.0206 

0.0055 

0.0206 

0.0090 

0.0048 

0.0020 

0.0008 

0.2215 

0.0876 

0.0390 

0.0171 

0.0064 

1.5 

0.5 

25 

50 

100 

200 

500 

0.0877 

0.0339 

0.0196 

0.0115 

0.0038 

−0.0039 

−0.0017 

−0.0015 

−0.0012 

−0.0006 

0.0625 

0.0252 

0.0122 

0.0055 

0.0022 

0.0115 

0.0060 

0.0029 

0.0015 

0.0006 

2 

25 

50 

100 

200 

500 

0.0958 

0.0419 

0.0191 

0.0120 

0.0067 

0.1479 

0.0492 

0.0240 

0.0084 

0.0058 

0.0839 

0.0306 

0.0143 

0.0067 

0.0029 

0.2549 

0.0877 

0.0377 

0.0173 

0.0066 
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Table 3. The coverage probability of ( )100 1 %α−  confidence interval of the MLEs. 

a b N 
95% 90% 

( )CP a
 ( )CP b

 ( )CP a
 ( )CP b

 

0.8 

0.5 

25 

50 

100 

200 

500 

0.942 

0.946 

0.958 

0.963 

0.958 

0.923 

0.938 

0.940 

0.964 

0.944 

0.894 

0.883 

0.901 

0.909 

0.911 

0.868 

0.885 

0.890 

0.921 

0.901 

2 

25 

50 

100 

200 

500 

0.961 

0.955 

0.943 

0.960 

0.951 

0.961 

0.958 

0.953 

0.954 

0.965 

0.913 

0.897 

0.884 

0.905 

0.904 

0.905 

0.900 

0.896 

0.904 

0.917 

1.5 

0.5 

25 

50 

100 

200 

500 

0.942 

0.944 

0.954 

0.955 

0.944 

0.941 

0.937 

0.938 

0.951 

0.950 

0.886 

0.897 

0.904 

0.895 

0.908 

0.882 

0.885 

0.888 

0.883 

0.900 

2 

25 

50 

100 

200 

500 

0.948 

0.955 

0.947 

0.954 

0.949 

0.960 

0.947 

0.951 

0.951 

0.952 

0.877 

0.912 

0.908 

0.904 

0.894 

0.911 

0.887 

0.897 

0.901 

0.904 

 
displayed in Table 3 approaches the nominal level of 90% and 95% confidence 
intervals, respectively. 

3.3. Data Fitting 

In this subsection, we describe the usefulness of the KMPL distribution in 
real-life data fittings. The waiting time of 100 bank customers is considered 
for this purpose. The data set was originally used by [10] to illustrate the supe-
riority of the Lindley distribution over the exponential distribution. This data 
was also employed by [25] to illustrate the flexibility of the quasi-Lindley distri-
bution. The data is given as follows: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9,1.9, 2.1, 2.6, 2.7,2.9, 
3.1, 3.2, 3.3,3.5, 3.6, 4.0, 4.1, 4.2, 4.2,4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9,5.0, 
5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3,6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0,8.2, 
8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6,9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 
11.2, 11.5,11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9,14.1, 15.4, 15.4, 
17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0,19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 
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33.1, 38.5. 
Comparably lifetime distributions which are extensions of the power Lindley 

distribution are considered to fit the data alongside the KMPL distribution. Spe-
cifically, the fits of the Exponentiated Power Lindley (EXPL), Extended Power 
Lindley (EPL), Transmuted Power Lindley (TPL), Odd Log-Logistic Power Lind-
ley (OLLPL), and the Topp-Leone Power Lindley (TLPL) distributions are com-
pared with the one attained by the KMPL distribution. 

For the purpose of model comparison, the Akaike Information Criterion (AIC), 
corrected Akaike Information Criterion (AICc), Bayesian Information Criterion 
(BIC), and the Hannan-Quinn Information Criterion (HQIC) are examined. These 
information criteria are mathematically specified by: 

( )* 2 1
AIC 2 2 , AICc AIC ,

1
p p

p
n p

+
= − + = +

− −


 

( ) ( )* *BIC 2 ln , HQIC 2 2 ln ln ,p n p n= − + = − +    

 
where n is the sample size and p is the number of the parameter(s) in the model. 
The summary result of the analysis is shown in Table 4. 

Remark: 
A smaller value of the AIC, AICc, BIC, and HQIC suggests a suitable model 

deemed fit for analyzing a particular data under study. Table 4 provides a de-
tailed summary of the fits attained by the various distributions for the waiting 
time data. From this table, we observe that the KMPL distribution has the least 
value in terms of AIC, AICc, BIC, and HQIC. It is therefore reasonable to con-
clude that the KMPL distribution outperformed the competing distributions in  

 
Table 4. Summary results for the waiting time data set. 

Distributions MLEs *
  AIC AICc BIC HQIC 

KMPL 1.1449a =  
0.1085b =  

−317.6827 639.3654 639.4891 644.5757 641.4741 

TLPL 
0.6958a =  
0.3516b =  
2.7748c =  

−317.1089 640.2178 640.4678 648.0333 643.3809 

EXPL 
0.7478a =  
0.5074b =  
2.6196c =  

−317.1008 640.2016 640.4516 648.0171 643.3647 

TPL 
1.1198a =  
0.1138b =  
0.5078θ =  

−317.8074 641.6148 641.8648 649.4303 644.7779 

EPL 
0.9925a =  
0.2063b =  

9913.34c =  

−317.2955 640.5909 640.8409 648.4064 643.7540 

OLLPL 
0.7412a =  
0.3032b =  
1.6526θ =  

−317.6567 641.3135 641.5635 649.1290 644.4766 

https://doi.org/10.4236/jamp.2024.121015


S. A. Ogumeyo et al. 
 

 

DOI: 10.4236/jamp.2024.121015 207 Journal of Applied Mathematics and Physics 
 

fitting the data under study. A model’s goodness of fit can also be investigated 
via graphical representation. Here, we examine the density fit and probabili-
ty-probability (p-p) plots of the distributions for the waiting time data as shown, 
respectively, in Figure 3 and Figure 4. 

4. Conclusion 

In this paper, we explored a new horizon of the power Lindley distribution using 
the KM transformation technique developed by [22]. The resulting distribution 
was referred to as Kavya-Manoharan Power Lindley (KMPL) distribution. One  

 

 
Figure 3. The density fits of the distributions for the waiting time data. 

 

 
Figure 4. The probability-probability (p-p) plots of the distributions for the waiting time data. 
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unique advantage of this transformation technique is the ability to increase the 
flexibility of the baseline distribution without adding extra parameter(s) as evi-
dent in many methodologies. The mathematical treatments of the KMPL distri-
bution were studied in detail and the maximum likelihood estimation method 
was adapted to estimate the supposed unknown parameters of the KMPL distri-
bution. The effectiveness of these Maximum Likelihood Estimates (MLEs) was 
investigated via a Monte Carlo simulation study. A real data set that consists of 
the waiting time of 100 bank customers was employed to illustrate the relevance 
of the KMPL distribution. Some selected lifetime distributions that are generali-
zations of the power Lindley distribution were considered to fit the data set along-
side the KMPL distribution. The summary results of the data fitting revealed that 
the KMPL distribution performed reasonably better than the competing distri-
butions. 
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