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Abstract 
This article investigates the well posedness and asymptotic behavior of Neu-
mann initial boundary value problems for a class of pseudo-parabolic equa-
tions with singular potential and logarithmic nonlinearity. By utilizing cut-off 
techniques and combining with the Faedo Galerkin approximation method, 
local solvability was established. Based on the potential well method and Hardy 
Sobolev inequality, derive the global existence of the solution. In addition, we 
also obtained the results of decay. 
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1. Introduction 

In this paper, we focus on the Neumann initial boundary problem: 
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where ( )3NR NΩ ⊂ ≥  is a bounded domain with smooth boundaries ∂Ω , n is 
the outer normal vector of ∂Ω  while  
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with 2 2 2
1 2 Nx x x x= + + + . As is well known, according to the law of conser-

vation, many diffusion processes with reactions can be described by the follow-
ing equation (see [1]): 

 ( ) ( ), , , .tu D u f x t u u−∇ ⋅ ∇ = ∇  (2) 

Among them, ( ),u x t  represents the mass concentration in the chemical reac-
tion process or the temperature in thermal conduction. At position x and time t 
in the diffusion medium, the function D is called the diffusion coefficient or ther-
mal diffusion rate, the term ( )cdot D u∇ ∇  represents the rate of change caused by 
diffusion, and ( ), ,f x t u u∇  is the rate of change caused by the reaction. 

In the past few years, many researchers have paid attention to Equation (2). 
For source ( ), , , qf x t u u u∇ =  and 1D = , a lot of work has been obtained. Many 
scholars have studied the global existence [2] [3], blow-up conditions, blow-up 
time estimates, and asymptotic behavior of solutions to such problems. Interested 
individuals can read reference materials [4] [5] [6]. 

Yan et al. [7] considered the following parabolic equation: 
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∫
 (3) 

According to the logarithmic Sobolev inequality and energy estimation method, 
the results of blow-up and non-extinction of solutions under appropriate condi-
tions are given, which generalizes some recent results. 

Taking inspiration from these studies, we will consider the problem with loga-
rithmic nonlocal sources in this paper. As far as we know, this is the first work to 
consider the singular parabolic Laplace equation with strong damping and loga-
rithmic nonlocal sources. This work has great significance and can fill the re-
search gap in this area. 

The organizational structure of this article is as follows. In Section 2, we will 
introduce some symbols, definitions and basic lemmas that will be used in this 
paper. In Section 3, we present the main results of the paper, which are the local 
existence of weak solutions and the global existence and decay estimation of weak 
solutions under certain conditions. 

2. Preliminaries 

In this section, we will introduce some symbols and lemmas that will run through 
this paper. In the following text, we denote by ( )1r r⋅ ≥  the norm in ( )rL Ω  
and by ( ),⋅ ⋅  the ( )2L Ω  inner product. First, for Problem (1), we introduce the 
potential energy functional: 

 ( ) 2 2 2

2 2

1 1 1 ln d ,
2 4 2

J u u u u u x
Ω

= ∇ + − ∫  (4) 

and the Nehari functional: 
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 ( ) 2 2

2 ln d ,I u u u u x
Ω

= ∇ − ∫  (5) 

by a direct computation: 

 ( ) ( ) 2

2

1 1 .
2 4
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By ( )I u  and ( )J u , we define the potential well: 

( ) ( ){ } { }* : , 0 0 ,W u H J u d I u= ∈ < > ∪
 

( ) ( ){ }* : , 0 ,V u H J u d I u= ∈ < <
 

and the Nehari manifold: 
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0 \ 0 : 0 .N u H I u= ∈ Ω =

 
The depth of potential well is defined as: 
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d J u
∈

=
 

Lemma 1. [8] [9] Let µ  be a positive number. Then we have the following 
inequalities: 

( ) 1ln ,   for all 1,p ps s e s sµµ − +≤ ≥  
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Lemma 2. [8] Let Ω  is a bounded smooth region in NR , then for any 
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Lemma 4. [11] For any ( )1
0u H∈ Ω , we have the following inequality: 
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Lemma 5. [8] [11] Let :f R R+ +→  be a nonincreasing function and σ  be 
a positive constant such that: 

( ) ( ) ( )1 1d 0 ,   0.
t

f s s f f t tσ σ

ω
+∞ + ≤ ∀ ≥∫

 
Then, we have: 
1) ( ) ( ) 10 e tf t f ω−≤ , for all 0t ≥ , whenever 0σ = . 
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Lemma 6. Assume that ( ) { }1
0 \ 0u H∈ Ω , then: 
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3) ( )J uλ  is increasing on 0 λ λ∗< < , decreasing on λ λ∗ < < +∞ , and at-
tains the maximum at λ λ∗= . 

4) ( ) 0I uλ >  for 0 λ λ∗< < , ( ) 0I uλ <  for λ λ∗ < < +∞ , and  

( ) 0I uλ∗ = . 
The following is the definition of weak solution for Problem (1). To avoid 

confusion, we also write ( ),u x t  as ( )u t . 
Definition 7. [7] [12] (Weak solution) A function ( ) ( )*, 0, ;u u x t L T H∞= ∈  
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3. Main Results 

In this section, we present two theorems. Firstly, we present the local existence 
and uniqueness theorems for weak solutions to Problem (1). Next, we present 
the existence theorem for the global weak solution of Problem (1), and also pro-
vide an estimate of the exponential decay of the solution in the theorem. 

Theorem 8. Let { }0 * \ 0u H∈ . Then, there exist a 0T >  and a unique weak 
solution ( ) ( )*, 0, ;u x t L T H∞∈  of (1) with: 
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satisfying ( ) 00u u= . Moreover, ( ),u x t  satisfies the energy equality: 
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Proof. We divide the proof of Theorem 8 into 3 steps. 
Step 1. Local existence 
To deal with the influence of singular potentials, we introduce a cut-off func-

https://doi.org/10.4236/jamp.2024.121014


X. X. Yang 
 

 

DOI: 10.4236/jamp.2024.121014 185 Journal of Applied Mathematics and Physics 
 

tion: 

( ) { }2min , ,  .n x x n n Nρ − += ∀ ∈
 

We denote the solutions corresponding to nρ  of Problem (1) as nu . We can 
know that: 
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Ω
≠ ∈ = ∈ Ω =∫  

where * *H H=   as n →∞ . Let { } 1j j
ω

∞

=
 be a linear independent basis in *H  

and construct the approximate solution: 
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as ,k n→ +∞ → +∞ . Noticing that ( ) *j x Hω ∈  , it is not hard to verify for any 
fixed j: 
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From above equality, we know that { }
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Cauchy problem: 
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The standard theory of ODE states that there exists a 0T >  such that 

( ) [ ]( )1 0,k
nja t C T∈ . 

Multiply (9) by ( )k
nja t , sum for 1, ,j k=   and recall ( ),k

nu x t  to find: 
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Integrating both sides of (11) in [ ]0, tΩ× , we get: 
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From Lemma 1, we get: 
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Let 40
N

µ< < , then from (14), Lemma 2 and Young’s inequality, we obtain: 
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constant. We note that since 40
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then 1α >  since 40
N

µ< < . 

From (12), (13) and (15), we get: 
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From Gronwall inequality, we obtain: 

 ( ) 3 ,k
nS t C≤  (17) 

where 3C  is a constant which dependent on T. 
Multiplying (11) by ( )k

nj t
a t   , summing on 1,2, ,j k=   and then integrat-

ing on ( )0, t , we know that, for all 0 t T≤ ≤ , we have: 
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By the continuity of the functional J and (10), there exists a constant 0C >  
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By (22), (23) and Aubin-Lions-Simon Lemma, we get: 
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Combining (10) with that ( ) ( ),0 ,0k
nu x u x→  in ( )2L Ω , we observe that 

( ) 0,0u x u=  in *H . 
By (25), we have k

nu u→ , a.e. ( ) ( ), 0,x t T∈Ω× . That means: 
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where 2B  is the best constant of the Sobolev embedding ( )1
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, we know that: 

 ( ) ( )
( )( )20, ;

lnk k
n n L T L

u t u t C
∞ Ω

≤ , for any positive integer n and k. (26) 

According to the Holder inequality, we obtain: 

 

( )
( )

{ }( )

2

2 1 2
2

2 2

ln d d
d

ln d ,
min , ,

n k k
n n

n

k k
n n

s s

x
u u x x

x x

n u u x C
R R n

ρ
ρΩ Ω

Ω

Ω−

 
 
 
 

≤ Ω ≤
Ω

∫ ∫∫

∫
 (27) 

where x R< . 
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for all *Hϕ ∈ .  
Step 2. Energy equality 
Multiplying tu  at both ends of Problem (1), integrating from 0 to t and com-

bining (4), we have: 

( ) ( ) ( )( ) ( )
2

2
020

2

d ,    0 .
t t

t
u t

u t s J u t J u t T
x

 
 + ∇ + = ≤ ≤
 
 

∫
 

Step 3. Uniqueness 
Assuming 1u  and 2u  are two solutions to Problem (1), we have: 

 

1
1 12

2

1 1 1 12

, , ,

ln , ln d , ,
d

t
t

u
v u v u v

x

x
u u v u u x v

x x

−

− Ω

Ω

+ ∇ ∇ + ∇ ∇

= − ∫
∫

 (33) 

and 

 

2
2 22

2

2 2 2 22

, , ,

ln , ln d , .
d

t
t

u
v u v u v

x

x
u u v u u x v

x x

−

− Ω

Ω

+ ∇ ∇ + ∇ ∇

= − ∫
∫

 (34) 

Let 1 2w u u= −  and ( )0 0w = , then by subtracting (33) and (34), we can de-
rive: 

( ) ( )( )

2

2

1 1 2 2 1 1 2 22

d d d

ln ln d ln ln d d .
d

t tx w v x w v x w v x

x
u u u u v x u u u u x v x

x x

−

Ω Ω Ω

−

−Ω Ω Ω

Ω

+ ∇ ∇ + ∇ ∇

= − − −

∫ ∫ ∫

∫ ∫ ∫
∫  

Let v w= , we obtain: 

( ) ( )

2
2 2

2 2
2

1 1 2 2 1 22 2

1 d 1 d
2 d 2 d

ln ln
d d

w w w
t x t

u u u u f u f u
w x w x

w wΩ Ω

+ ∇ + ∇

− −
= ≤∫ ∫

 

Integrating it on [ ]0, t , we obtain: 

 
( ) ( )2 1 2 2

2 0
2 d d .

t f u f u
w w x t

wΩ

−
∇ ≤ ∫ ∫  (35) 

where ( ) lnf s s s=  and : nf R R→  satisfy locally Lipschitz continuity. That 
means: 

2 2

2 20
2 d .

t
Tw M w t∇ ≤ ∇∫  

By Gronwall’s inequality, we have 2

2 0w∇ = . 
The proof of Theorem 8 is complete. 
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Theorem 9. Assume that ( )0J u d≤  and ( )0 0I u > , then Problem (1) ad-

mits a global solution ( )*0, ;u L H∞∈ ∞ , ( )( )2 1
00, ;tu L H∈ ∞ Ω  with  

( )( )2 20, ;tu
L L

x
∈ ∞ Ω , and ( )u t W∈  for 0 t≤ ≤ ∞ . Moreover, if 0u W∈ , then 

( )
1

2
12 2

0 22
e ,  0,

c t
cu t u t

−

∇ ≤ ∇ ≥
 

where 
2

1 1
2
ac = −
π

, 2
1 1
2 2Nc H= + . 

Proof. Now, we prove Theorem 9. In order to prove the existence of global 
weak solutions, we consider two following cases. 

1) Global existence 
Case 1. The initial data ( )0J u d<  and ( )0 0I u < . 
Taking a weak solution ( )max *0, ;u L T H∞∈ , which satisfies: 

 ( ) ( )( ) ( )
2

2
0 max20

2

( )
d , 0 .

t t
t

u s
u s s J u t J u t T

x

 
 + ∇ + = ≤ ≤
 
 

∫  (36) 

Among them, maxT  is the maximum existence time of the solution ( )u t . We 
need to prove that maxT = +∞ . Thanks to ( )0J u d<  and (36), we obtain: 

 ( ) ( )( )
2

2
max20

2

( )
d , 0 .

t t
t

u s
u s s J u t d t T

x

 
 + ∇ + < ≤ ≤
 
 

∫  (37) 

We will assert that: 

 ( ) maxfor all 0 .u t W t T∈ ≤ ≤  (38) 

In fact, using the method of proof to the contrary, assuming that (38) does not 
hold, let *t  is the minimum time for ( )*u t W∉ . So, considering the continuity 
of ( )u t , it can be inferred that there is ( )*u t W∈∂ . The following conclusion 
can be drawn: 

 ( )( )* ,J u t d=  (39) 

and 

 ( )( ) ( )* *0 with 0.I u t u t= ≠  (40) 

It is evident that (39) could not occur by (37) while if (40) holds then, by the 
definition of d, we have: 

( )( ) ( )* inf ,
u N

J u t J u d
∈

≥ =
 

which also contradicts with (37). As a consequence, it follows from this fact and 
the definition of functional J that: 

 ( ) ( ) ( )( ) ( )
2

2 2

2 20
2

1 1d ,
2 4

t t
t

u s
u s s I u t u t d

x

 
 + ∇ + + <
 
 

∫  (41) 

namely, 

https://doi.org/10.4236/jamp.2024.121014


X. X. Yang 
 

 

DOI: 10.4236/jamp.2024.121014 191 Journal of Applied Mathematics and Physics 
 

 ( ) 2

2

1 .
4

u t d<  (42) 

From Lemma 2, we have: 

 ( ) ( ) ( )
2

2 2 2 2 2

2 2 2 2ln d 1 ln ln ,
2 2
a nu x u x x u a u u u

Ω
≤ ∇ − + +

π∫  (43) 

Combining above inequality, (36) and (42), we obtain: 

 
( ) ( ) ( )

2 2
2 2 2

2 220
2

1 1d 1 ln
2 2 4 2

4 ln 4

t t
t

d

u s a nu s t u a u
x

d d d C

      + ∇ + − ∇ + + +       

< +

π
 

=

∫  (44) 

This estimate allows us to take maxT = +∞ . Hence, we can conclude that there 
exists a unique global weak solution ( )u t W∈  of Problem (1), which satisfies 
that: 

( ) ( ) ( )( ) ( )
2

2
020

2

d , 0 .
t t

t
u s

u s s J u t J u t
x

 
 + ∇ + = ≤ ≤ +∞
 
 

∫
 

Case 2. The initial data ( )0J u d=  and ( )0 0I u > . 
Firstly, we choose a sequence { } ( )1

0,1m m
θ ∞

=
⊂  such that lim 1mm

θ
→∞

= . Then, we 
consider the following problem: 

 
( )

( )
( ) ( )

2

2 2

0

ln ln d , , ,
d

0, , ,
,0 , ,

t
t

m

xu
u u u u u u x x t R

x x x

u x t R
u x u x x

−
+

− Ω

Ω
+


 − ∆ − ∆ = − ∈Ω×



= ∈∂Ω×
 = ∈Ω

∫
∫  (45) 

where 0 0m mu uθ= . 
Due to ( )0 0I u > , it can be inferred from Lemma 3 that * 1λ > . Therefore, 

we obtain ( ) ( )0 0 0m mI u I uθ= >  and ( ) ( ) ( )0 0 0m mJ u J u J u dθ= < = . Use ar-
guments similar to Case 1. We found that Problem (45) allows for global weak 
solutions u. 

The remainder of the proof can be processed similarly as Case 1. 
2) Decay estimates 
We are now in a position to prove the algebraic decay results. Thanks to 

0u W∈ , and Lemma 3, we get ( )u t W∈ . Fro (5), (38) and (40), we have: 

 

( )

( )

( )

( )

( )

2 2

2

2
2 2 2 2 2

2 2 2 2 2

2
2 2 2

2 2 2

2
2 2

2 2

2
22

12 2

ln d

1 ln ln
2 2

1 1 ln ln
2 2

1 1 ln ln 4
2 2

1 .
2

I u u u u x

a nu u a u u u

a nu a u u

a nu a d u

a u c u t

Ω
= ∇ −

≥ ∇ − ∇ + + −

   ≥ − ∇ + + −   
  

   ≥ − ∇ + + −   
  

π

π

π

π
 

≥ − ∇ = ∇ 
 

∫

 (46) 
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Combining with the first equality of Problems (1), (5) and Lemma 3, we ob-
tain: 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2

2

2
2

2
2

2 2
2 2

2 2
2 2

2
2

2
2

2 2
22 2

d ln d d

1 d d d
2 d d

1 1
2 2

1
2

1 1 ,
2 2

T T

t t

T

t

N

I u s u u u x s

u u s
t x t

u t u T
u t u T

x x

u t
u t

x

H u t c u t

Ω
= ∇ −

 
 = − + ∇
 
 

   
   = + ∇ − + ∇
   
   
 
 ≤ + ∇
 
 

 ≤ + ∇ = ∇ 
 

∫ ∫ ∫

∫

 (47) 

where 2
1 1
2 2Nc H= + . 

By (46) and (47), we get: 

( ) ( ) [ ]2 22
2 2

1

d ,   0, .
T

t

cu t s u t t T
c

∇ ≤ ∇ ∀ ∈∫
 

Let T → +∞  in above inequality, by Lemma 5, it follows that: 

( )
1

2
12 2

0 22
e ,  0,

c t
cu t u t

−

∇ ≤ ∇ ≥
 

The proof of Theorem 9 is complete. 
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