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Abstract 
This paper derives rigorous statements concerning the propagation velocity 
of action potentials in axons. The authors use the Green’s function approach 
to approximate the action potential and find a relation between conduction 
velocity and the impulse profile. Computer simulations are used to bolster the 
analysis. 
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1. Introduction 

The nerve in the CNS of vertebrates with nervous systems is composed of ex-
tended parts called axons. These specializations are responsible for carrying the 
information integrated in the cell body and delivering it to the post-synaptic 
cells. If one were to look at the nervous system as a network of neurons, with the 
cell bodies being the computing nodes and the axons being the communication 
links, then the bottleneck in network information throughput clearly is at these 
links. More importantly, it is limited by the conduction speed of the signals down 
the axons. Modeling and measuring the conduction velocity of axonal impulses 
correctly, therefore acquires a great significance. Furthermore, in [1] [2] [3] [4] 
[5], it was shown that in the case of nerves with ephaptic coupling, precise ad-
justments to this speed take place. Thus, it becomes imperative to clearly under-
stand the underlying single-axon impulse speed, especially in an analytical man-
ner. 

The Hodgkin-Huxley equation has no known analytic solution and has a com-
plicated mechanism at the nodes. There have even been attempts in the literature 
to simplify the nodal equations for better understanding [6] [7]. The present pa-
per takes the problem from the opposite angle, and studies the solutions to this 
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equation analytically and numerically and by zooming in on time. This investi-
gation provides the insight that a “wave” is a misnomer for the propagation so-
lution and thereby calls for an alternate understanding of the propagating im-
pulse; one such alternate view is also suggested. 

Much work has been done on the analysis of the wave properties of the action 
potential as it propagates down an axon [8]-[19], and the nomenclature has be-
come so diverse that some semantic coincidences have spawned inappropriate 
generalizations. This paper is intended to restore a proper perspective and derive 
rigorous statements concerning the propagation velocity. 

The paper is structured as follows. In Section 2, we investigate conduction ve-
locity in an axon. We conclude in Section 3. An Appendix provides more details 
related to the simulations performed. Before we move to the next section, we 
provide a table (Table 1) summarizing the notation used in the paper succinctly. 

2. Action Potential Conduction Velocity 

Conduction velocity of nerve fibers has long been a subject of intense interest. 
See, for example, the review at the beginning of [20]. In the present paper, we go 
over the conduction velocity formulation in the context of myelinated nerve fi-
bers required for computer simulation purposes and come to a conclusion as to 
the best method of computing it from simulation output. 

2.1. Preliminaries 

We first summarize the physical configuration under study. An axon is a long, 
slender projection of a nerve cell, or neuron, which conducts electrical impulses 
away from the neuron’s cell body (see Figure 1). It is composed of relatively 
long sections sheathed in myelin, interrupted by short nodes of Ranvier. Ideally, 
the axon is straight and cylindrically symmetric and the myelinated sections are 
longitudinally homogeneous. The electrical impulses are exhibited as voltage drops 
( ),V x t  from the center line of the axon to the external medium, with x measur-

ing distance along the axon and t denoting time. 
The voltage ( ),V x t  satisfies the cable equation: 

 
2

2

1V VC GV I
t R x

∂ ∂
= − +

∂ ∂
 (1) 

where the transversal capacitance C, longitudinal resistance R, and leakage con-
ductance G are uniform (but different) in each of the two regions (myelinated 
and Ranvier); I denotes any injected current, plus the ion currents generated 
solely in the nodes of Ranvier in accordance with the Hodgkin-Huxley model 
[12] (or later variations [9]). The parameters in Equation (1) are per-unit-length. 

2.2. Wave Interpretation of Simulation Results 

Simulations were obtained by applying the Crank-Nicholson scheme to Equation 
(1). We provide numerical details in the Appendix. In Figures 2-5, we display 
simulated voltage profiles at selected times for a 4 cm length of axon with nine 
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Table 1. Symbols and their meanings as used in the main text and Appendix. Units and 
values are indicated in the third column, where appropriate. 

Symbol Meaning Value and Units 

d diameter 1e−3 cm [18] 

x position centimeter 

( ),V x t
 transmembrane voltage at position... volts 

 ... x and time t  

C transversal...  

 ... capacitance per unit length F/cm 

R longitudinal resistance per unit length Ohm/cm 

G leakage conductance per unit length Ohm-cm 

I injected current; details in text −4 × 10−5 A/cm 

,x tδ δ  mesh size 0.02 cm, 2 × 10−6 s 

, , , ;m n h p y  activation/inactivation variables...  

 ... and stand-in variable  

,α β  activation/inactivation coefficients  

1 16, , ,t t t  temporal instants (time) seconds 

v propagation velocity centimeters per second 

, , ,K M N P  general solution coefficients  

0x  support of delta function  

L length of an internode cm 

τ  time elapsed between... seconds 

 ... successive nodal firings  

cV  critical value of... volts 

 ... the transmembrane voltage  

( ) ( ), ,G GreenV V⋅ ⋅ ⋅
 (mono, bi)-variate Green’s function  

( ), , cI I⋅ ⋅
 (longitudinal, critical) current  

, cQ Q  (accumulated, critical) charge  

κ  gas constant 8.3145 J/K-mole 

( )Tρ
 temperature factor  

 
nodes of Ranvier, each having length 2.5 × 10−4 cm and spaced 0.2 cm apart. To 
eliminate the effect of boundary conditions (Neumann on the left end and Dirich-
let on the right end) we stimulated the central node of Ranvier and discontinued 
the simulation when the boundary voltages became appreciable. Thanks to sym-
metry, we only need to display the profiles to the right of the central node. 
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Figure 1. Neuron, with a focus on the axon cross-section. The nodes of Ranvier are marked 
with short red arrows and the myelin sheath with longer red ones. 

 

 
Figure 2. Simulated action potential, spreading to the right. The horizontal axis is loca-
tion and the vertical axis is voltage. Here, 1 2 3 4t t t t< < < . 

 

 
Figure 3. Simulated action potential, exciting the second node of Ranvier. Here,  

5 6 7 8t t t t< < < . 
 

The figures display the stimulated action potential ( 1t ), spreading out ( 2 3 4, ,t t t ) 
until it starts to stimulate the adjacent node of Ranvier ( 5t ), eventually triggering 
an action potential at that node ( 6t ). This action potential spreads out ( 7 8,t t ), 
triggering another action potential at the next downrange node ( 9 10,t t ). And in 
turn further downrange nodes are triggered. (Note that, in agreement with expe-
riment, the subsequent action potentials only spawn further potentials down-
range, because the preceding nodes of Ranvier need a recovery time before 
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Figure 4. Simulated action potential, exciting the third node of Ranvier. Here,  

9 10 11 12t t t t< < < . 
 

 
Figure 5. Simulated action potential exciting the fourth node of Ranvier and then trig-
gering the fifth node. Here, 13 14 15 16t t t t< < < . 

 
they can be triggered again.) 

It is a little misleading to call this propagation a “wave,” since the profile does 
not retain its shape as it propagates down the myelinated segments. However, if 
we only display the profiles at the instants of triggering, we get the apparent wave 
profiles in Figure 6. 

Possibly, the misleading Figure 6 has led some investigators to conjecture that 
the voltage ( ),V x t  satisfies the wave equation: 

 
2 2

2
2 2

V Vv
t x

∂ ∂
=

∂ ∂
 (2) 

whose solutions are superposed shape-invariant functions ( ) ( ),V x t f x vt= ± . 
Indeed, it has often been proposed to combine Equation (2) with the cable equa-
tion, Equation (1), in the hopes of deriving an expression for the propagation ve-
locity v. The futility of this strategy is highlighted by the following observations: 

1) The only simultaneous solutions of Equation (2) and Equation (1) (with 
0G I= = ) are constant or unbounded: 

 ( ) ( ) ( ), e e ;RCv vt x RCv vt xV x t M N P− += + +  (3) 
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Figure 6. Action potential profiles at triggering instants. Note the equality in the heights 
of the impulses. 

 

 
Figure 7. Comparison of spatial and temporal second derivatives of the transmembrane 

potential, 
2

2

V
t

∂
∂

 and 
2

2

V
x

∂
∂

. Here, the horizontal axis represents position. 

 

2) The graphs of 
2

2

V
t

∂
∂

 and 
2

2

V
x

∂
∂

 are definitely not proportional (Figure 7). 

Indeed, examination of Figures 2-5 underscores the difficulty of assigning a 
“propagation velocity” to the phenomenon. The profiles do not evolve as “waves” 
within a myelinated segment at all; they resemble more a tidal “swell,” or diffu-
sion spreading. In fact, the solution of the cable Equation (1) with 0I = , evolv-
ing from an initial delta-function shape supported at 0x , is given by [17]. 

 ( )
( )20 4e e,
x x RC tGt C

GreenV x t
t

− −−

=
π

 (4) 

(This is, essentially, the Green’s function for the diffusion equation.) Figure 8 
displays how closely the profiles of the action potential are tracked by a judiciously 
scaled replica of the Green’s function. For this calculation the nodes of Ranvier 
have been removed for simplicity. 
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Figure 8. Simulated voltage profiles (black) and Green’s function (blue). Note the close overlap 
between the two curves, in each sub-figure. The progression in time is from the left-most 
sub-figure to the right-most sub-figure. 

2.3. The Conduction Velocity 

Since the voltage profiles only occasionally appear as shifted replicas of them-
selves, it would appear that the wisest strategy for assigning a conduction veloci-
ty v to the spreading of the action potential is suggested by Figure 6; we take v to 
be the ratio of the distance L between two consecutive Ranvier nodes, divided by 
the time lapse τ  between the triggering of action potentials at the nodes. 

The distance L, of course, is well defined. To demonstrate the feasibility of 
specifying the time lapse τ , let us assume for the moment that the birth of an 
action potential at a node of Ranvier occurs when the voltage at that node 
( ),V x t  achieves a critical value cV . And we assume that the action potential 

is well approximated by a scaled version of the Green’s function, Equation (4). 
Then the triggering event is described by the equation: 

 ( )
2 4e eG C L RC

Green c
KV V

τ τ

τ
τ

− −

π
= =  (5) 

and the velocity is given formally by: 

 
( )1

Green c

L Lv
V Vτ −= =  (6) 

A plot of ( )GreenV τ  versus τ  demonstrates that Equation (5) produces a 
well-defined time lapse τ  (Figure 9). 

Obviously, (5) does not predict a constant L
τ

 ratio; the conduction velocity 

varies with the myelinated segment length L. 
But the point is made: a triggering condition based on voltage ( ), cV L Vτ = , 

on longitudinal current ( ) ( ),1, c

V L
I L I

R x
τ

τ
∂

= − =
∂

, or on charge accumulation 

( )
0

, d cQ I L t t Q
τ

= =∫  [14] specifies a well-defined time lapse τ  and thus a  

conduction velocity. But this computation need not be based on crude approxi-
mations like (5) (which makes no attempt to allow for different values of the 
electric parameters in the nodes of Ranvier); it can be gleaned from simulations. 
One can visually identify the times at which the action potential spikes peak, and 
deduce τ  by subtraction. 
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Figure 9. Plot of the Green’s function with respect to the second argument, ( ),GreenV L τ . 

The critical value of transmembrane voltage at which an action potential is triggered is 
indicated on the vertical axis, as cV . 

2.4. Observations 

In this subsection, we list a few observations based on our simulations. 
1) For a given internode distance L, the time lapse between every consecutive 

pair of action potential triggerings appears to be the same. 
2) However, the velocity v does vary with internode distance L, apparently 

possessing a maximum. See Figure 10, compiled from simulations. 
3) Which parameter (V, I, or Q) triggers the action potential upon achieving a 

critical value? Some authors suggest it is accumulated charge Q (which may be 
equivalent to voltage, through capacitance). Action potential initiation is very 
difficult to detect precisely from simulations, because once an action potential 
has been initiated it dominates, and thus distorts, the voltage profile. Also, there 
is the issue of where the parameter should be measured. We circumvented the 
issue of when the action potential is triggered by simply noting the instants of 
peak voltage. 

3. Conclusions 

This article addresses a simplified model of a neuron, admitting the approxima-
tion of the action potential’s progression by a Green’s function for the linear, 
constant coefficient cable equation (Equation (1))—an approximation justified 
solely by visual inspection of Figure 8. Clearly, more sophisticated models can 
be evoked, but at the cost of sacrificing the transparency of the analytic nature of 
the formulation. Moreover, the issue of whether the birth of an action potential 
is triggered by critical values of the voltage, charge, or current should be addressed;  
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Figure 10. Plot of the conduction velocity of an action potential versus internodal length. 
The horizontal axis represents internodal length in centimeters and the vertical axis 
represents conduction velocity in centimeters per second. 

 
but note that one can retain the idealized analytic formulation for investigating 
any of these criteria. However, the immediate focus of the study is to redirect the 
misleading paradigm of the potential as a wave. 

To conclude, specialists recognize that the cable equation is of the parabolic 
type (diffusive), and not hyperbolic (wave). The propagation between nodes of 
Ranvier is more of a surge than a wave. The “chain reaction’’ nature of the action 
potentials is only suggestive, and does not justify attributing any of the features 
of the wave equation to the phenomenon. By discussing these features rigorous-
ly, we hope to have illuminated them in a way that is useful to computational 
neuroscientists and mathematicians alike. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Chawla, A. and Morgera, S.D. (2014) Ephaptic Synchronization as a Mechanism for 

Selective Amplification of Stimuli. BMC Neuroscience, 15, Article No. P87.  
https://doi.org/10.1186/1471-2202-15-S1-P87 

[2] Scott, A.C. (2002) Neuroscience: A Mathematical Primer. Springer-Verlag, New York. 

[3] Chawla, A., Morgera, S. and Snider, A. (2019) On Axon Interaction and Its Role in 
Neurological Networks. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, 18, 790-796. 

[4] Chawla, A., Morgera, S.D. and Snider, A.D. (2021) Fields, Geometry, and Their Im-

https://doi.org/10.4236/jamp.2024.121007
https://doi.org/10.1186/1471-2202-15-S1-P87


A. D. Snider et al. 
 

 

DOI: 10.4236/jamp.2024.121007 69 Journal of Applied Mathematics and Physics 
 

pact on Axon Interaction. Journal of Applied Mathematics and Physics, 9, 751-778.  
https://doi.org/10.4236/jamp.2021.94053 

[5] Chawla, A. and Morgera, S.D. (2022) On the Geometry of Interacting Axon Tracts 
in Relation to Their Functional Properties.  
https://doi.org/10.1101/2022.03.29.486317 

[6] FitzHugh, R. (1955) Mathematical Models of Threshold Phenomena in the Nerve 
Membrane. The Bulletin of Mathematical Biophysics, 17, 257-278.  
https://doi.org/10.1007/BF02477753 

[7] Markin, V.S. (1970) Electric Interaction of Parallel Nonmyelinized Nerve Fibers. I. 
Change in the Excitability of an Adjacent Fiber. Biofizika, 15, 120-129. 

[8] Debanne, D., Campanac, E., Bialowas, A., Carlier, E. and Alcaraz, G. (2011) Axon Phy-
siology. Physiological Reviews, 91, 555-602.  
https://doi.org/10.1152/physrev.00048.2009 

[9] Frankenhaeuser, B. and Huxley, A.F. (1964) The Action Potential in the Myelinated 
Nerve Fibre of Xenopus laevis as Computed on the Basis of Voltage Clamp Data. The 
Journal of Physiology, 171, 302-315. https://doi.org/10.1113/jphysiol.1964.sp007378 

[10] Halter, A. (1989) A Distributed-Parameter Model for Myelinated Nerve Fibre. Ph.D. 
Thesis, Rice University, Texas, AAT9136095. 

[11] Goldman, L. and Albus, J.S. (1968) Computation of Impulse Conduction in Myeli-
nated Fibers; Theoretical Basis of the Velocity-Diameter Relation. Biophysical Journal, 
8, 596-607. https://doi.org/10.1016/S0006-3495(68)86510-5 

[12] Hodgkin, A.L. and Huxley, A.F. (1952) A Quantitative Description of Membrane 
Current and Its Application to Conduction and Excitation in Nerve. The Journal of 
Physiology, 117, 500-544. https://doi.org/10.1113/jphysiol.1952.sp004764 

[13] Landahl, H.D. and Podolsky, R.J. (1949) On the Velocity of Conduction in Nerve Fi-
bre with Saltatory Transmission. The Bulletin of Mathematical Biophysics, 11, 19-27.  
https://doi.org/10.1007/BF02477911 

[14] Malmivuo, J. and Plonsey, R. (1995) Bioelectromagnetism: Principles and Applica-
tions of Bioelectric and Biomagnetic Fields. Oxford University Press, Oxford.  
https://doi.org/10.1093/acprof:oso/9780195058239.001.0001  

[15] Reutskiy, S., Rossoni, E. and Tirozzi, B. (2003) Conduction in Bundles of Demyeli-
nated Nerve Fibers: Computer Simulation. Biological Cybernetics, 89, 439-448.  
https://doi.org/10.1007/s00422-003-0430-x 

[16] Rushton, W.A.H. (1951) A Theory of the Effects of Fibre Size in Medullated Nerve. 
The Journal of Physiology, 115, 101-122.  
https://doi.org/10.1113/jphysiol.1951.sp004655 

[17] Snider, A.D. (2006) Partial Differential Equations: Sources and Solutions. Dover 
Publications, Mineola. 

[18] Waxman, S.G. and Wood, S.L. (1984) Impulse Conduction in Inhomogeneous Axons: 
Effects of Variation in Voltage-Sensitive Ionic Conductances on Invasion of Demye-
linated Axon Segments and Preterminal Fibers. Brain Research, 294, 111-122.  
https://doi.org/10.1016/0006-8993(84)91314-3 

[19] Waxman, S.G. (1988) Biophysical Mechanisms of Impulse Conduction in Demyeli-
nated Axons. Advances in Neurology, 47, 185-213. 

[20] Matsumoto, G. and Tasaki, I. (1977) A Study of Conduction Velocity in Nonmyeli-
nated Nerve Fibers. Biophysical Journal, 20, 1-13.  
https://doi.org/10.1016/S0006-3495(77)85532-X 

  

https://doi.org/10.4236/jamp.2024.121007
https://doi.org/10.4236/jamp.2021.94053
https://doi.org/10.1101/2022.03.29.486317
https://doi.org/10.1007/BF02477753
https://doi.org/10.1152/physrev.00048.2009
https://doi.org/10.1113/jphysiol.1964.sp007378
https://doi.org/10.1016/S0006-3495(68)86510-5
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1007/BF02477911
https://doi.org/10.1093/acprof:oso/9780195058239.001.0001
https://doi.org/10.1007/s00422-003-0430-x
https://doi.org/10.1113/jphysiol.1951.sp004655
https://doi.org/10.1016/0006-8993(84)91314-3
https://doi.org/10.1016/S0006-3495(77)85532-X


A. D. Snider et al. 
 

 

DOI: 10.4236/jamp.2024.121007 70 Journal of Applied Mathematics and Physics 
 

Appendix: Details of the Simulations 

The simulations were obtained by applying the Crank-Nicolson scheme to the 
cable equation simplified with an integrating factor: 

 
2

2

e e1 e
Gt C Gt C Gt CV V I

t RC Cx

   ∂ ∂   = +
∂ ∂

 (7) 

employing mesh sizes 0.02xδ =  cms, 2e 6tδ = −  seconds (and confirmed with 
0.04xδ =  cm, 8e 6tδ = −  seconds). Overall dimensions and boundary condi-

tions are described in what follows; relevant values used in the simulations re-
ported in the Appendix are shown in Table 1. 

The injected current was −4 × 10−5 A/cm for a duration of 4 × 10−6 seconds. 
No leakage current was presumed at the nodes of Ranvier. The sodium, potas-
sium and “nonspecific’’ (p) ion currents at these nodes are expressed in terms of 
Hodgkin-Huxley activation/inactivation variables m, n, h and p (which are di-
mensionless) as follows: ( )2

Na Naj dP m hZ Naπ= , ( )2
K Kj dP n Z Kπ= ,  

( )2
p pj dP p Z pπ=  A/cm, where, with ,Y Na K= , we define: 

( ) ( ) [ ] [ ] ( )

( )

0.072
0

0.07

e0.07

e 1

F V T
i

F V T

Y YF V
Z Y

T

κ

κκ

−

−

−−
= ×

−  
in units of Coulombs/cubic centimeter. Here, the resting potential is −0.07 volts, 
T is the absolute temperature (25 K + 273.15 K), F is the Faraday constant (96,485 
Coulombs/mole), and κ  is the gas constant (8.3145 J/K-mole). , ,Na K pP P P  de-
note the permeabilities. The outer and inner concentrations are taken as  
[ ] 41.145 10oNa −= × , [ ] 51.374 10iNa −= × , [ ] 62.5 10oK −= × , [ ] 41.2 10iK −= ×
moles/cm3. The activation/inactivation variables each satisfy [9] [12]: 

 ( ) ( )d 1
d y y
y y y T
t

α β ρ = − −   (8) 

where ( ), , ,y m n h p= . Here, ( )Tρ  is a temperature factor (with T = 298.15 
K) and the coefficients ( ,y yα β ) are voltage-dependent [ ( ),V V x t= ] functions 
whose tabulations have persistently been reported with incorrect dimensions in 
the literature, even in some of the references cited in this paper. In our simula-
tions, we used: 

( )
( )1 eh V B C

A B V
α

∗ ∗

∗ ∗
−

−
=

−
, ( )1 eh B V C

A
β

∗ ∗

∗
−

=
+

, 

( )
( )1 ey B V C

A V B
α

∗ ∗

∗ ∗
−

−
=

−
, 

( )
( )1 ey V B C

A B V
β

∗ ∗

∗ ∗
−

−
=

−
, , ,y m n p= ; 

1e5
h

Aα = , 3.6e5
m

Aα = , 2e4
n

Aα = , 6e3
p

Aα =  per volt-s 

4.5e3
h

Aβ =  per s 

4e5
m

Aβ = , 5e4
n

Aβ = , 9e4
p

Aβ =  per volt-s 

1e 2
h

Bα = − − , 2.2e 2
m

Bα = − , 3.5e 2
n

Bα = − , 4e 2
p

Bα = −  volts 

4.5e 2
h

Bβ = − , 1.3e 2
m

Bβ = − , 1e 2
n

Bβ = − , 2.5e 2
p

Bβ = − −  volts 
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6e 3
h

Cα = − , 3e 3
m

Cα = − , 1e 2
n

Cα = − , 1e 2
p

Cα = −  volts 

1e 2
h

Cβ = − , 2e 2
m

Cβ = − , 1e 2
n

Cβ = − , 2e 2
p

Cβ = −  volts.  
We adopted values for the permeabilities from [9] as follows: 8e 3NaP = −  

cm/s, 0.54e 3pP = −  cm/s, 1.2e 3KP = −  cm/s. If we regard ( ),V x t  as con-
stant over time intervals of length tδ , the coefficients in Equation (8) are also 
constant and its solutions satisfy: 

 ( ) ( ) ( ) ( )( )e 1 ey y y yt t y

y y

y t t y t α β ρδ α β ρδ α
δ

α β
− + − +

+ = + −
+

; (9) 

we use this formula in the simulations. 
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