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Abstract 
An Alternating Group Explicit (AGE) iterative method with intrinsic par-
allelism is constructed based on an implicit scheme for the Regularized 
Long-Wave (RLW) equation. The method can be used for the iteration solu-
tion of a general tridiagonal system of equations with diagonal dominance. It 
is not only easy to implement, but also can directly carry out parallel compu-
tation. Convergence results are obtained by analysing the linear system. Nu-
merical experiments show that the theory is accurate and the scheme is valid 
and reliable. 
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1. Introduction 

The Regularized Long-Wave (RLW) equation: 

 ( ), ,t x x xxtu u uu u f x tµ+ + − =  (1) 

where 0µ > . 
It is a different explanation of nonlinear dispersive waves compared to the fam-

ous Korteweg-de Vries (KdV) equation, which has the form: 

 ( ), .t x x xxxu u uu u f x t+ + + =  (2) 

In the study of physical phenomena such as water wave and plasma wave prop-
agation, the RLW equation is regarded as the modified model of the KdV equa-
tion. Compared with the KdV equation, the RLW equation has better mathemati-
cal properties and has been widely studied. 

The RLW equation was first proposed by Peregrine [1] [2] in 1966, which can 
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be as a representative form of nonlinear long wave to describe the behavior of 
wave-like surging tide. It has been shown to have solitary wave solutions. RLW 
equation can also describe wave motion to the same order of approximation as 
the KdV equation, so it plays an important role in the study of nonlinear disper-
sive waves [3]. In recent years, some numerical methods for (1) have been stu-
died in [4]-[12], because it is a very important equation in many applications. 
However, parallel algorithms for RLW equation are few. 

With the rapid development of the high-performance computing in large-scale 
scientific and engineering computations, the parallel difference methods for par-
tial differential equations have been studied rapidly. Evans [12] proposed an Alter-
nating Group Explicit (AGE) scheme for solving diffusion equations by Saul’yev 
[13] asymmetric scheme. Furthermore, the Alternating Segment Explicit-Implicit 
(ASE-I) scheme [14] and Alternating Segment Crank-Nicolson (ASC-N) scheme 
[15] were designed. In the past two decades, the alternating algorithms have be-
come one of the effective methods to solve parabolic equations, such as the ASC-N 
scheme for solving convection-diffusion equations [16], alternating difference 
scheme for dispersion equations [17] [18], and the fourth-order parabolic equa-
tion [19] [20]. Afterward, the alternating technology became a very effective me-
thod for some parabolic equations, for instance, the ASC-N and ASE-I scheme of 
Burgers’ equation [21] [22] and so on. 

Zhang and Liang [23] proposed a local one-dimensional ASE-I scheme and 
ASC-N scheme for two-dimensional parabolic equations. It reduces high-di- 
mensional problems into local one-dimensional calculations to improve the 
computational efficiency. However, it can be seen that more alternating methods 
with parallelism are proposed for linear partial differential equations. Because the 
RLW equations contain nonlinear terms, alternating methods cannot be directly 
applied to RLW equations. The AGE iterative method based on the implicit scheme 
needs to be constructed, which has some theoretical significance and practical 
values. 

The remainder of this paper is arranged as follows. In Section 2, we construct 
an AGE iterative method for RLW equation. The idea is that the computing 
process is designed as a number of small-size independent linear systems, which 
can be computed independently. In Section 3, we give the analysis of conver-
gence, which is the main content of this paper. Finally, some numerical experi-
ments show the effectiveness of our theoretical results. 

2. The AGE Iterative Method 

Consider the following initial-boundary value problem for the RLW equation: 

 ( ) [ ] [ ]0, , , 0, ,t x x xxt L Ru u uu u x t x x T+ + − = ∈ ×  (3) 

 ( ) ( ) [ ], , 0, 0, ,L Ru x t u x t t T= = ∈  (4) 

 ( ) ( ) [ ]0,0 , , .L Ru x u x x x x= ∈  (5) 

where ( )0u x  is the known initial function. 
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Firstly, the computational region ( )0jx jh j J= ≤ ≤  is meshed as follows. Let 
h and t be the space step and time step. Denote ( )0jx jh j J= ≤ ≤ ,  

( )0nt n n Nτ= ≤ ≤ , ( ),n
j j nu u x t≈ , where ( ),u x t  represents the exact solution, 

n
ju  represents the numerical solution. 
The implicit scheme of the RLW Equation (3) is given as follows: 

 
( ) ( ) ( )

( )

1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1
1 1 1 12

1 1
4 4

1 2 2 ,

n
jn n n n n n n n n n

j j j j j j j j j j

n n n n n n
j j j j j j

a
u u u u u u u u u u

h h

u u u u u u
h

τ

τ

+ + + + +
+ − + − + − + −

+ + +
+ − + −

− + − + − + − + −

= − + − + −

 (6) 

i.e. 

 
( ) ( )
( ) ( )

1 1 1
1 3 1 2 1 3 1

1 3 1 2 1 3 1

2

2 ,

n n n
j j j

n n n
j j j

r r u r u r r u

r r u r u r r u

+ + +
− +

− +

− + + +

= + + + −
 (7) 

where 1 2r = − , 2
2 2r h= + , ( )3 1

2
n
j

hr aτ
= + , ( )1 1

1
2

n n n
j j ja u u+ −= + . 

The linear system of the scheme (7) is as following: 

 ,AU F=  (8) 

where 

( ) ( )

2 1 3

1 3 2 1 3

1 3 2 1 3

1 3 2 1 1

2
2

,
2

2 J J

r r r
r r r r r

A
r r r r r

r r r
− × −

+ 
 − + 
 =
 

− + 
 − 

  

 
and 

T T1 1 1
1 2 1 1 2 1, , , , , , , ,n n n n n n

J JU u u u F f f f+ + +
− −   = =      

( ) ( )( )1
1 1 3 0 2 1 1 3 2 02 ,n n n n nf r r u r u r r u u += + + + − −

 

( ) ( )1 3 1 2 1 3 12 , 2,3, , 2,n n n n
j j j jf r r u r u r r u j J− += + + + − = −  

( )( ) ( )1
1 1 3 2 2 1 1 32 ,n n n n n

J J J J Jf r r u u r u r r u+
− − −= + − + + − 1 1

0 0,   0,1,2, .n n
Ju u n+ += = =   

Split the matrix A, we have: 

 1 2 ,A G G= +  (9) 

where 

( ) ( ) ( ) ( )

2

1 2

21 1 1 1

, ,

J J J J

Pr
PP

G GP
P

rP − × − − × −

  
  
  
  = =
  
  
     





 
and the block submatrix is: 

2 1 3

1 3 2

r r r
P

r r r
+ 

=  − 
. 

Then, the AGE iterative method is constructed as follows: 
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( ) ( ) ( )

( ) ( ) ( )

1
2

1 2

1
1 2

2 1

,
0,1, 2, .

,

k k

kk

I G U I G U F
k

I G U I G U F

 + 
 

 + +  


+ = − + =


+ = − +

  (10) 

Remark 1. The AGE iteration method (10) is a linear system, and the coeffi-
cient matrix is quasi-diagonal matrix. This matrix can be divided into several 
sub-block linear equations systems and calculated independently. Therefore, 
scheme (10) can do parallel processing calculations. 

Remark 2. Obviously, we obtained that 1G  and 2G  are strictly dominance 
matrices, i.e. 

 ( )2
2 1 3 4 1 0,

2
n
j

hr r r h aτ
− + = + + + >  (11) 

 ( )2
2 1 3 4 1 0.

2
n
j

hr r r h aτ
− − = + − + >  (12) 

By Gershgorin circle theorem, it follows that 1G  and 2G  are positive defi-
nite matrices. 

3. The Analysis of the Convergence 

In this section, we will discuss the convergence of the AGE iterative method (10). 
The proof of convergence relies on the following Kellogg lemmas [24]. 

Lemma 1. If 0γ >  and TC C+  is nonnegative definite, then ( ) 1I Cγ −+  ex-
ists and 

( ) 1 1

2
.I Cγ γ− −+ ≤
 

Lemma 2. Under the conditions of Lemma 1, there is: 

( )( ) 1

2
1.I C I Cγ γ −− + ≤

 
Theorem 1. The AGE iterative method (10) is convergent. 

Proof. By eliminating ( )
1
2 1, 2, ,

l
U l k

 + 
  =   from (10), we can obtain: 

 ( ) ( ) ( )1 01
0 ,k k k

kU TU D T U D+ += + = = +  (13) 

where ( ) ( )( ) ( )1 1
2 1 1 2T I G I G I G I G− −= + − + − . 

Let 

 ( ) ( ) ( )( ) ( )( )1 1 1
2 2 1 1 2 2

ˆ .T I G T I G I G I G I G I G− − −= + + = − + − +  (14) 

From Remark 2, it is easily obtain that the matrices 1G  and 2G  are nonnega-
tive real matrices. 

Therefore, we can obtain the following inequalities from the above Kellogg 
lemmas: 

 
( ) ( )( ) ( )( )1 1

1 1 2 22 2 2 2

1 1

ˆ

1 1
max max 1,

1 1
i i

i m i m
i i

T T T I G I G I G I Gρ

α β
α β

− −

≤ ≤ ≤ ≤

≤ = ≤ − + − +

− −
= ⋅ <

+ +

 (15) 
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then 

 ( ) ( )22
1,

kk kT T Tρ ≤ ≤ <  (16) 

where , 0i iα β >  are the eigenvalues of the positive definite matrices 1G  and 

2G , respectively. We complete the proof. 

4. Numerical Experiments 

In order to demonstrate the effectiveness and applicability of the proposed AGE 
iterative method (10) in this paper, we consider the following example: 

 0t x x xxtu u uu u+ + − = , (17) 

 ( ) ( ), , 0L Ru x t u x t= = , [ ]0,t T∈ , (18) 

 ( ) ( )0,0u x u x= , [ ],L Rx x x∈ , (19) 

where 

 50L Rx x− = = , ( ) 2
0 sech

4
xu x  =  

 
. (20) 

The single solitary wave solution of (17)-(19) is: 

 ( ) ( )2, sechu x t A kx wt= − , (21) 

where 

 
2

2

3
1

aA
a

=
−

, 
2
ak = , 

( )22 1
aw

a
=

−
, (22) 

where a is arbitrary constant. This example takes 1
2

a = . 

Taking 1 10000τ =  and 1 80h = , we compare the errors among scheme 
(10), C-N scheme and other two algorithms in [6] and [7] under L2 norm. It can 
be shown in Table 1. More nodes are selected by scheme (10), compared to oth-
er ones. 

In Table 2, the space step size h is selected from 1/400 to 1/1600, while the 
time step size is taken as 1 100τ = . It displays that the CPU time decreases by 
parallel calculation, when the linear system is divided into K subsystem at 10t = . 
Since the general tridiagonal systems of algorithms in [6] and [7] are not availa-
ble in parallel computers, the CPU time costs in the calculation are much longer 
than our scheme (10) in Table 2. 

 
Table 1. The comparison of different methods with respect to L2 error, where h = 1/80. 

 Scheme (10) Shao [7] C-N scheme Cai [6] 

t = 0.2 1.575e−5 0.00056 0.00070 0.00053 

t = 0.4 2.625e−5 0.00085 0.03331 0.00113 

t = 0.6 6.728e−5 0.00112 0.06337 0.00175 

t = 0.8 1.925e−4 0.00141 0.08433 0.00237 
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Table 2. The comparison of three schemes calculation time. 

 K Scheme (10) Cai [6] Shao [7] 

h = 1/100 2 9.5615 s 16.2625 s 15.3531 s 

h = 1/400 8 5.0932 s 33.4592 s 32.0037 s 

h = 1/800 16 5.0946 s 59.3013 s 56.1752 s 

h = 1/1600 32 5.5882 s 145.3313 s 132.8453 s 

 

 
Figure 1. Simulation of single solitary wave transmission: (a) 0.1h = ; (b) 0.2h = . 
 

Since the scheme (10) is designed based on the implicit scheme (7), it ob-
viously obtains the second-order spatial accuracy, i.e. ( )2O hτ + . From Table 1 
and Table 2, it illustrates that scheme (10) can not only perform parallel com-
putation, but also get higher accuracy than the other three methods. 

It is shown that the transmission process of single solitary wave from 0t =  
to 20t =  with a spatial step size of 0.1h =  and 0.2h =  in Figure 1. We obtain 
that scheme (10) does not cause wave attenuation with an increase in step size. 

The numerical example results above present that the AGE iterative method 
(10) proposed in this paper has good computational accuracy and parallel effi-
ciency with the same mesh division. Additionally, it can effectively simulate the 
transmission of single solitary wave, which demonstrates the applicability of our 
algorithm. 
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