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Abstract 
Boundary conditions for momentum and vorticity have been precisely de-
rived, paying attention to the physical meaning of each mathematical expres-
sion of terms rigorously obtained from the basic equations: Navier-Stokes 
equation and the equation of vorticity transport. It has been shown first that a 
contribution of fluid molecules crossing over a conceptual surface moving 
with fluid velocity due to their fluctuating motion is essentially important to 
understanding transport phenomena of momentum and vorticity. A notion 
of surface layers, which are thin layers at both sides of an interface, has been 
introduced next to elucidate the transporting mechanism of momentum and 
vorticity from one phase to the other at an interface through which no fluid 
molecules are crossing over. A fact that a size of Vδ , in which reliable values 
of density, momentum, and velocity of fluid are respectively defined as a vo-
lume-averaged mass of fluid molecules, a volume-averaged momentum of fluid 
molecules and a mass-averaged velocity of fluid molecules, is not infinitesim-
al but finite has been one of the key factors leading to the boundary conditions 
for vorticity at an interface between two fluids. The most distinguished cha-
racteristics of the boundary conditions derived here are the zero-value condi-
tions for a normal component of momentum flux and tangential components 
of vorticity flux, at an interface. 
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1. Introduction 

It is believed in a world of present fluid dynamics that the values of vorticity 
fluxes at both sides of an interface between two fluids are generally different from 
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each other due to the baroclinic generation of vorticity at an interface where the 
value of density suddenly changes in an infinitesimal thickness, and that the value 
of baroclinic generation is a matter of a posteriori to be obtained after the flow field 
is determined otherwise [1]. Hence, the boundary condition for vorticity has been 
considered to provide no information in analyzing a flow field. This seems to be 
true for the conventional vorticity defined as a rotation of a velocity vector. In fact, 
many researchers have treated subjects relating to boundary conditions for vortic-
ity since Thom’s paper [2] appeared in 1933, aiming at utilization in numerical 
analysis based on the equation of vorticity transport. However, proposed boundary 
conditions for vorticity were devised to give the value of vorticity at an interface 
fitting to the existing velocity field, and were not capable of affecting the flow field 
by nature. 

The main purpose of this work is to precisely derive the boundary condition for 
the vorticity newly defined as a rotation of a momentum vector, paying attention to 
physical meanings of mathematical expressions of terms rigorously obtained from 
basic equations: Navier-Stokes equation and the equation of vorticity transport. 
The boundary conditions for vorticity obtained in this work essentially affect the 
flow field and work as new boundary conditions other than those for velocity 
and force at an interface between two fluids. The basic equations are described in 
terms of density, ρ , and a vector of velocity, u . We start our investigation by 
pointing out that the value of ρ  is a volume-averaged mass of fluid molecules in 
a small volume Vδ , and the value of ρu  is a volume-averaged momentum of 
fluid molecules in a small volume Vδ . A size of Vδ  for reliable values of ρ , 
ρu  and u  is very small, and these values are usually treated as point values. 
However, we should keep it in mind that a size of Vδ  is not infinitesimal but 
finite, especially in considering boundary conditions at an interface, as precisely 
described later. 

Section 2 is set up to establish an approach to obtain boundary conditions at 
an interface based on physical images behind the mathematical expressions of 
terms rigorously obtained from the basic equation and focused on obtaining 
boundary conditions for momentum. In Subsection 2.1, we start from Navi-
er-Stokes equation to figure out a transporting aspect of momentum through a 
conceptual surface S moving with fluid velocity u , and it is shown that a con-
tribution of fluid molecules randomly crossing over S due to their fluctuating 
movement is essentially important. It is pointed out next in Subsection 2.2 that a 
certain understanding of physical phenomena at an interface is inevitable to re-
late the momentum fluxes at both surfaces of an interface through which no flu-
id molecules are crossing over. A notion of a surface layer, which is a thin layer 
parallel to an interface with a thickness “ Vδ ”, is introduced following a physical 
understanding of fluid surface [3]. A notation “ Vδ ” means a size of Vδ  for re-
liable values of ρ , ρu  and u , and will be used for simple expression, hereaf-
ter. In Subsection 2.3, boundary conditions for momentum are obtained based on 
a physical understanding of mathematical expressions of terms treated. 
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In Section 3, boundary conditions for vorticity are obtained based on physical 
images behind the mathematical expressions of terms rigorously obtained from 
the basic equation, the equation of vorticity transport. In Subsection 3.1, vorticity 
is re-defined as a rotation of a momentum vector, and it is shown that the newly 
defined vorticity is a point value of angular momentum of fluid. In Subsection 
3.2, mathematical expressions relating vorticity flux on a conceptual surface S 
moving with fluid velocity u  are obtained. Boundary conditions for vorticity are 
obtained in Subsection 3.3, based on a physical understanding of mathematical 
expressions of terms treated. The availability of the boundary conditions for vor-
ticity is summarized in Subsection 3.4. 

Concluding remarks are given in Section 4, where the most distinguished cha-
racteristics of the boundary conditions derived in this work are summarized, and 
a prospective view beyond the boundary conditions for vorticity is described. 

2. Boundary Conditions for Momentum at an Interface  
between Two Fluids 

2.1. Basic Concepts Relating to Boundary Conditions for  
Momentum 

Navier-Stokes equation is given as (1). 

 ( ) ( ) ( )P
t
ρ ρ ρ∂

+ ⋅ = − ⋅ + +
∂

u u u I g∇ ∇ τ  (1) 

Here, ρ , u , τ , P, g  and I  are density of fluid, vector of fluid velocity, 
stress tensor, static pressure, vector of gravitational acceleration and unit tensor, 
respectively. The value of ρ  is a volume-averaged mass of fluid molecules in a 
small volume Vδ , and the value of ρu  is a volume-averaged momentum of 
fluid molecules in a small volume Vδ . 

 im
V

ρ
δ

≡ ∑  (2) 

 i im
V

ρ
δ

≡ ∑ u
u  (3) 

Here, im  and iu  are a molecular mass and a velocity vector of i-th mole-
cule in Vδ . It is known from (2) and (3) that the value of u  is a mass-averaged 
velocity of fluid molecules in Vδ . 

 i i

i

m
m

≡ ∑
∑

u
u  (4) 

The stress tensor, τ , is given by (5). 

 ( ) ( ){ }Tµ= − +u u∇ ∇τ  (5) 

Here, µ  is a viscosity of fluid. 
Navier-Stokes equation is recognized as a basic equation describing a spatial 

distribution of fluid velocity, u . The stress tensor, τ , represents viscous forces 
caused by momentum transportation due to fluctuating movement of fluid mo-
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lecules. Static pressure, P, in a moving fluid is a scalar quantity defined by the 
equation of state, ( ),P P Tρ=  [3]. A size of Vδ  for reliable values of ρ , 
ρu  and u  is very small, and these values are usually treated as point values. 
However, we should note a fact in considering boundary conditions at an inter-
face between two fluids that a size of Vδ  is not infinitesimal but finite. 

Since the left-hand side of (1) is a substantial derivative of momentum vector, 
(6) is obtained by integrating (1) in a volume V surrounded by a conceptual closed 
surface S moving with fluid velocity u . 

 ( ) ( ){ }d d d d
d V S V

V P S V
t

ρ ρ= − ⋅ + +∫ ∫ ∫u n I g


τ  (6) 

Here, n  is a unit normal vector outwardly directed on S. Equation (6) is ma-
thematically obtained by applying Gauss’ law relating volume integral and sur-
face integral. The left-hand side of (6) is an increasing rate of fluid momentum 
in V. The first term on the right-hand side of (6) is a sum of forces acting on S. 
The second term on the right-hand side is a gravitational force acting on fluid in 
V. Equation (6) shows Newton’s second law of motion. 

A mathematical expression, ( )⋅n τ , in the first term on the right-hand side of 
(6) is recognized as a viscous force working on unit area on S, which is also in-
terpreted as a diffusive momentum flux caused by fluid molecules cutting across 
S in unit time. Let us think about physical phenomena behind the mathematical 
expression ( )⋅n τ . Since S is moving with fluid velocity u , there are no fluid 
flow through S. However, fluid molecules are freely moving through S from out-
side to inside, or from inside to outside of S due to their fluctuating motion. 
Fluid molecules moving through S directly transport momentum and cause a 
diffusive momentum flux, which is a total amount of fluid momentum flowing 
into or out of unit area on S in unit time. There also are many couples of fluid 
molecules which collide and bounce at points on S causing normal and tangen-
tial forces at both sides of S. However, a normal force resulted from “collide and 
bounce” on S has already been counted in pressure as illustrated in the kinetic 
theory of molecules. Then, the value of normal component of ( )⋅n τ  on S should 
be a result of fluid molecules passing across S in unit time. Hence, the value of 
normal component of ( )⋅n τ  on a conceptual surface moving with u  is zero, if 
no fluid molecules are cutting across the conceptual surface, such as an interface 
between two fluids. A tangential force resulted from “collide and bounce” can be 
regarded as a part of diffusive momentum flux caused by fluctuating motion of 
fluid molecules cutting across S. 

A mathematical expression, ( )d
S

P S− ⋅∫ n I


, in the first term on the right-hand 
side of (6) is a sum of pressure acting on S, which does not concern momentum 
transport. 

2.2. Interface between Two Fluids 

An interface between two fluids is moving with fluid velocity because there is no 
fluid flow through an interface. However, the arguments on the value of ( )⋅n τ  as 
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a diffusive momentum flux cannot be directly applied for an interface because 
no fluid molecules are cutting across an interface. Therefore, certain understand-
ing on physical phenomena at an interface is inevitable to relate the momentum 
fluxes at both surfaces of the interface. 

Physics of liquid surface was precisely described by Davies and Rideal [4]. The 
net attraction between neighboring molecules is fulfilled most completely in the 
interior of the fluid phase, while those molecules at the surface are attracted less 
completely than they would have been in the bulk. They called this thin layer at 
the surface as a surface phase, which always tends to contract spontaneously and 
causes surface tension. Since the surface phase tends to contract, it works like a 
flak vest to suppress a fluctuating movement of a liquid surface and keeps its sta-
tionary shape under given circumstance of hydrodynamical forces and a surface 
tension. Though Davies and Rideal did not give detailed discussion on a thick-
ness of the surface phase [4], it should be larger than a size of fluid molecule but 
is seemed to be considerably smaller than “ Vδ ”, that is a size of Vδ . Let us in-
troduce a notion of a surface layer with thickness “ Vδ ” beneath the surface to 
consider a transporting aspect of momentum at an interface. Figure 1 is a sche-
matical illustration of a surface layer at liquid surface following that of Davies 
and Rideal, though they did not show an interior boundary between liquid sur-
face and bulk of fluid. Circles represent fluid molecules, and arrows mean attrac-
tive forces. Fluctuating fluid molecules are cutting across the interior boundary, 
and momentum is transferred through the interior boundary as a diffusive mo-
mentum flux. 

Similarly, surface phases seem to exist at both sides of an interface between 
two fluids, say fluid A and fluid B, as shown in Figure 2. The boundary condi-
tion for momentum is to be given as a relation between momentum fluxes at in-
terior boundaries A and B. In considering the relation, we may suppose a flat in-
terface because the thickness of the surface phase is very thin. However, we should 
keep it in mind that there exists Laplace pressure for a curved interface due to an 
interfacial tension, which works as a normal force per unit area. 

2.3. Boundary Condition for Momentum 

In advance to evaluate the value of diffusive momentum flux, ( )⋅n τ , it should 
be noted that the mathematical expression, ( )⋅n τ , is supposed on S moving  

 

 
Figure 1. Surface layer at liquid surface. 
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Figure 2. Interface between fluid A and fluid B. 

 
with fluid velocity through which no fluid flow exists. Hence, the value of ( )⋅n τ  
should be evaluated by using a velocity vector relative to a point where the term 
( )⋅n τ  in concern is assigned. However, tangential components of velocity play 
an important role in evaluating the value of vorticity flux on a surface moving 
with fluid velocity as shown later at the end of Subsection 2.2. Then, let us use a 
velocity vector nu= −U u n  in calculating the value of ( )⋅n τ . Here, nu  is a 
normal velocity component at a point in concern on S. 

A term ( )⋅n τ  means an amount of momentum being transported through 
unit area on S in unit time, and the value of ( )⋅n τ  is to be assigned at a point 
in concern on S, just like the values of volume-averaged terms in Navier-Stokes 
equation are assigned at a point in concern. A point value of ( )⋅n τ  on a curved 
interface coincides with a point value of ( )⋅n τ  on a flat plane which touches at 
the point in concern. Then, we can evaluate the term ( )⋅n τ  on an interface by 
using a flat interface with general applicability for curved interface. Considering 
that the surface layer is very thin, let us suppose a flat interface between fluids A 
and B with interior boundaries A and B parallel to the interface, and use a rec-
tangular coordinate system setting X- and Y-axes on the interface. Our target 
is to obtain relations between momentum fluxes to Z-direction at both inte-
rior boundaries A and B by using a velocity vector nu= −U u n . Figure 3 is a 
cross-sectional view of an interface between fluids A and B. 

The value of ( )⋅n τ  to Z-direction at an interior boundary A is given by (7). 

 ( ) ( ){ }TA A A A
Z Z µ = − +

⋅ 
M i U U∇ ∇   (7) 

Here, a super subscript A means a physical quantity of fluid A, and  

0
A A

Zw= −U u i , where 0w  is a normal velocity component at a point in concern 
on an interface. Equation (8) is obtained by introducing 0

A A
Zw= −U u i  and 

A A A A
X Y Zu v w= + +u i i i  into (7). 

 
( ) ( ){ }T

2
Z Z Z

A A A A
Z Z

A A A
A A A

X Y Z
u v w

µ

µ µ µ

 = − +  
∂ ∂ ∂

= − − −

⋅

∂ ∂ ∂

M i U U

i i i

∇ ∇
 (8) 
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Figure 3. Momentum transport through an interface between fluid A and fluid B. 

 

Here, relations 
( )0 0

AA w wW
X X

∂ −∂
= =

∂ ∂
, 

( )0 0
AA w wW

Y Y

∂ −∂
= =

∂ ∂
 and  

0 0
w
Z

∂
=

∂
 have been used. Similarly, (9) is obtained for a momentum flux to 

Z-direction at an interior boundary B, B
ZM . 

 2
Z Z Z

B B B
B B B B
Z X Y Z

u v wµ µ µ∂ ∂ ∂
= − − −

∂ ∂ ∂
M i i i   (9) 

Here, a super subscript B means a physical quantity of fluid B. Though the 
right-hand sides of (8) and (9) are diffusive fluxes of momentum on the interior 
boundaries caused by fluid molecules cutting across the interior boundaries, terms 
on the right-hand sides of (8) and (9) are conventionally interpreted as forces 
acting on a unit area of interior boundaries A and B, respectively. 

The first and second terms on the right-hand side of (8) are shear forces work-
ing on a surface layer A at unit area of an interior boundary A, and those on the 
right-hand side of (9) are shear forces acting on bulk of fluid B at unit area of an 
interior boundary B. Remembering an argument in Subsection 2.1 on a physical 
image of a mathematical expression ( )⋅n τ  at a conceptual surface moving with 
fluid velocity, it is known that the shear force at an interface, through which no 
fluid molecules are cutting across, is caused by collision and bounce of fluid mo-
lecules at an interface. Since a surface layer A is very thin, the value of shear 
force working at an interior boundary A should be in a balance with the shear 
force at an interface to maintain surface layer A. Similarly, it can be deduced 
that a shear force working at an interior boundary B should be in a balance 
with a shear force at an interface to maintain surface layer B. Hence, the shear 
forces working on a unit area of interior boundaries A and B should be balanced 
to assure stationary surface layers. Then, tangential components of A

ZM  and 
B
ZM  are equal regardless of the slip or no-slip condition of velocity at an in-

terface. 
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A B

A Bu u
Z Z

µ µ∂ ∂
=

∂ ∂
 (10) 

 
A B

A Bv v
Z Z

µ µ∂ ∂
=

∂ ∂
 (11) 

Though the values on the left-hand sides of (10) and (11) are given on an inte-
rior boundary A and those on the right-hand sides of (10) and (11) are given on 
an interior boundary B, (10) and (11) can be regarded as boundary conditions at 
an interface because surface layers A and B are very thin. Equations (10) and (11) 
are identical with balances of shear force at an interface which have been used in 
hydrodynamical analysis. 

The third terms on the right-hand sides of (8) and (9) are normal forces work-
ing on a unit area of a surface layer A at an interior boundary A and that work-
ing on bulk of fluid B at a unit area of an interior boundary B, respectively. Since 
a thickness of surface layer is very thin, the value of total normal force acting on 
a unit area of interior boundary A and that of interior boundary B should be in a 
balance. Then, (12) should hold as a balance of total normal forces acting on a 
unit area of interior boundaries A and B. 

 2 2
A B

A A B B Lw wP P P
Z Z

µ µ∂ ∂
− + = − + +

∂ ∂
 (12) 

Here, AP  and BP  are static pressures acting on interior boundaries A and 
B, respectively, and LP  is a Laplace pressure given by (13), which is a normal 
force per unit area on an interface caused by an interfacial tension. 

 2LP
R
σ=  (13) 

Notations R and σ  are a curvature radius of an interface and an interfacial ten-
sion, respectively. A term LP  has been conveniently added to the right-hand side 
of (12) assuming fluid B is on a convex side of an interface. Equation (12) resem-
bles to the normal force balance which has been used in previous works, though 
the Laplace pressure term is often neglected because the value of LP  is usually 
very small comparing with the value of static pressure. 

Now, let us examine (12) from a viewpoint of momentum transportation. The 
first term on the left-hand side of (12) is a normal component of diffusive mo-
mentum flux flowing into surface layer A through an interior boundary A, 
which is a sum of momentum carried into surface layer A through unit area of 
an interior boundary A in unit time due to fluctuating motion of fluid mole-
cules. There may occur collisions of fluid molecules at an interior boundary A, 
however resulted normal component has already been counted as a static pres-
sure working on a surface of interior boundary A. Then, the first term on the  

left-hand side of (13), 2
A

A w
Z

µ ∂
−

∂
, is a pure diffusive momentum flux caused by  

fluid molecules passing across the interior boundary A due to their fluctuating 
motion. Considering that there exists no diffusive momentum flux at an inter-
face where no fluid molecules are cutting across, the value of a normal compo-
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nent of diffusive momentum flux is zero at an interface. If the value of  

2
A

A w
Z

µ ∂
−

∂
 is not zero at an interior boundary A, we should figure out a me-

chanism to increase or decrease the value of a normal component of diffusive 

momentum flux from 2
A

A w
Z

µ ∂
−

∂
 to zero in a surface layer A against a fact that 

momentum is a conservative quantity. Then, the value of 2
A

A w
Z

µ ∂
−

∂
 should be 

zero at an interior boundary A. Similarly, the value of 2
B

B w
Z

µ ∂
−

∂
 is zero at an 

interior boundary B. 

 0
A Bw w

Z Z
∂ ∂

= =
∂ ∂

 (14) 

Though (14) is not familiar to us, it is a logical consequence matching with 
physical image behind the mathematical expressions of terms in a basic equa-
tion; Navier-Stokes equation. Equation (15) is obtained by introducing (14) into 
(12). 

 A B LP P P= +  (15) 

Equations (10), (11), (14) and (15) are boundary conditions, which are de-
rived as relations between the mathematical expressions on an interior boundary 
A and those on an interior boundary B. These relations can be regarded as rela-
tions at an interface because surface layers A and B are very thin. 

3. Boundary Conditions for Vorticity at an Interface between 
Two Fluids 

3.1. Angular Momentum and Vorticity 

A relation between the angular momentum of fluid in a conceptual sphere with 
radius R and the local value of the vorticity in the conceptual sphere will be 
clearly derived here, by using a spherical coordinate system with its origin at a 
center of the conceptual sphere, as shown in Figure 4, where the angular coor-
dinates θ  and φ  are defined with respect to the Cartesian coordinate system 
X, Y and Z. Let us calculate the Z-component of angular momentum of fluid in 
the conceptual sphere. The X- and Y-components can be calculated in the same 
way. 

The Z-component of the angular momentum of fluid in a torus, sinrT θ , is given 
by (16). 

 ( )2 2
sin , 0

2
d d d sinT

r Z r r r uθ φθ φ θρ
π

= ∫A  (16) 

Here, sinrT θ  is a torus perpendicular to Z-axis with radius sinr θ  and an in-
finitesimal cross-sectional area d dr rθ , and uφ  is the φ -component of the ve-
locity of fluid. 

Next, let us denote a spherical shell with radius r and an infinitesimal thick-
ness dr as Shell

rS . The Z-component of the angular momentum of fluid in Shell
rS   

https://doi.org/10.4236/jamp.2024.121003


K. Ueyama 
 

 

DOI: 10.4236/jamp.2024.121003 25 Journal of Applied Mathematics and Physics 
 

 
Figure 4. Coordinate system. 

 
is given by (17). 

 ( ){ }2 2
, 0 0

2
d d d sinShell

r Z r r r uφθ φ θρ
π π

= ∫ ∫A  (17) 

Then, the Z-component of the angular momentum of fluid in a conceptual 
sphere with radius R is given by (18). 

 ( ){ }2 2
, 0 0 0

2
d d d sinS

Z
R

R r r r uφθ φ θρ
π π

=  
  ∫ ∫ ∫A  (18) 

Equation (19) generally holds (Stokes’ theorem). 

 ( ) ( ){ }
sin

2

0
sin d d

r ZA
r u S

θ
φθ φ ρ ρ

π
= ×∫ ∫ u∇  (19) 

A left-hand side of (19) is a curvilinear integral of a momentum along a circle 
with radius sinr θ , and a right-hand side is a surface integral of the Z-component 
of a rotation of momentum vector, ( ){ }Z

ρ× u∇ , on a circular area, sinrA θ , sur-
rounded by the circle with radius sinr θ . 

Equation (20) is obtained by introducing (19) into (18). 

 ( ){ }{ }
sin

2
, 0 0

d sin d d
r

R
RS

Z ZA
r r S

θ
θ θ ρ

π × 
=

∫ ∫ ∫A u∇  (20) 

Now, let us re-define the vorticity as a rotation of a vector of momentum, as (21). 

 ( )ρ≡ × u∇ω  (21) 

Equation (20) shows that an angular momentum of fluid in a conceptual sphere 
with radius R can be calculated by using a distribution of the newly defined 
vorticity in the conceptual sphere. Hence, the angular momentum of fluid is 
represented by a local value of the newly defined vorticity, ( )ρ≡ × u∇ω , and 
transported in fluid as described by the equation of vorticity transport. 

3.2. Basic Concepts Relating to Boundary Conditions for Vorticity 

Equation (22) is obtained from (19). 
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 ( ){ } ( )
20

2

0
sin d

lim
Z R

r u

R
φθ φ ρ

ρ
π

→
× =

π
∫u∇  (22) 

Equation (22) is known as an implicit definition of a rotation and shows that a 
local value of the vorticity is a circulation of momentum along an infinitesimal 
circle divided by an area of a circular surface surrounded by the infinitesimal 
circle. Remembering that the value of fluid momentum is a volume-averaged 
momentum of fluid molecules in a small volume Vδ , a diameter of the circle 
along which fluid momentum is integrated is not infinitesimal but larger than 
2 × “ Vδ ” to avoid double counting of a contribution of fluid molecules in 

Vδ . Then, the newly defined vorticity is an angular momentum of fluid vo-
lume-averaged in a very small volume with a diameter 2 × “ Vδ ” or larger, and 
assigned at a center of the volume, which is regarded as a point value of angular 
momentum of fluid. The vorticity thus defined does not represent a circulating 
motion, but a man-caused circulation defined by a curvilinear integration of mo-
mentum component along a very small, circle with a diameter 2 × “ Vδ ” or larg-
er. So, the vorticity does not exist in an area where a circle for the curvilinear in-
tegration cannot be set. 

Equation of vorticity transport is obtained by taking a rotation of each term in 
(1). 

 

( )( ){ } ( )( ){ }

( ){ } ( ) ( ){ }
( ){ } ( ) ( ){ }

1
2

t
ρ ρ

µ ρ

ρ µ µ

∂
= ⋅ × − ⋅ ×

∂

 + ⋅ × − × ⋅ 

   − × ⋅ − × ⋅ +   

u u u u

u u u

u u u u

ω
∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ ∇ ∇

 (23) 

Here, ω  is a vorticity vector defined by ( )ρ≡ × u∇ω . Rather lengthy cal-
culation leading to (23) is precisely shown by Ueyama [5]. Equation (23) can be 
considerably simplified to (24) for fluid with constant ρ  and µ . 

 ( ) ( ) ( )
t

µ
ρ

∂
+ ⋅ = ⋅ + ⋅

∂
u u∇ ∇ ∇ ∇

ω ω ω ω  (24) 

The left-hand side of (24) is a substantial derivative of ω . Then, (25) is ob-
tained by integrating (24) in a volume V surrounded by a conceptual closed sur-
face S moving with fluid velocity u . 

 ( ) ( ){ } ( ){ }d d d d
d V S S

V S S
t

µ
ρ

= ⋅ + ⋅∫ ∫ ∫ 

n u nω ω ω∇  (25) 

Here, n  is a unit normal vector outwardly directed on S. Equation (25) is 
mathematically obtained by applying Gauss’ law relating volume integral and 
surface integral. The left-hand side of (25) is an increasing rate of vorticity in V. 
The first term on the right-hand side of (25) is a sum of fluxes of vorticity flow-
ing through S from outside to inside of S due to a synergistic effect of vorticity 
and velocity. Detailed mechanism of this term is not known at present, but it 
surely exists as appearing in (25). The second term is a sum of diffusive fluxes 
of vorticity flowing through S from inside to outside of S. Equation (25) clearly 
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shows that a vorticity flux on a conceptual surface moving with u  is composed  

of two terms, ( )⋅n uω  and ( )µ
ρ

⋅n ∇ω , the values of which are given for a  

velocity vector nu= −U u n  just like the calculation of a term ( )⋅n τ  for mo-
mentum flux. The value of a term ( )⋅n uω  is a product of a normal component 
of ω  and tangential components of velocity, which directly shows a contribu-
tion of tangential components of velocity. This is the reason why only a normal 
component of velocity vector is subtracted from a velocity vector and a velocity 
vector nu= −U u n  has been used in evaluating the value of ( )⋅n τ  for momen-
tum flux. 

3.3. Boundary Condition for Vorticity at an Interface between 
Two Fluids 

Let us investigate the values of ( )− ⋅n uω  and ( )µ
ρ

⋅n ∇ω  at a point in concern  

on an interface between fluid A and fluid B by using a rectangular coordinate 
system setting X- and Y-axes on a flat interface with interior boundaries A and B 
parallel to an interface. Figure 5 is a cross-sectional view of an interface between 
fluids A and B, assuming a flat interface on X-Y plane. By substituting a fluid 
velocity vector u  with a velocity vector nu= −U u n , a vorticity at an interior 
boundary A, Aω , is given by (26). 

 

( ){ }
( ){ }

0

0

A A A
Z

A A A A
X Y Z X Y Z

A A A A
A

Z Y X

w

u v w w
X Y Z

v u u v
X Y Z Z

ρ

ρ

ρ

= × −

∂ ∂ ∂ = + + × + + − ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂ = − + −  ∂ ∂ ∂ ∂   

u i

i i i i i i

i i i

∇ω

 (26) 

Here, relations 
( )0 0

Aw w

X

∂ −
=

∂
 and 

( )0 0
Aw w

Y

∂ −
=

∂
 have been used. Then,  

 

 
Figure 5. Vorticity transport through an interface between fluid A and fluid B. 
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a vorticity flux to Z-direction at an interior boundary A is given by (27). 

( ){ } ( )0
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2

2

2
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A A A
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A A A A A
A A A A

Y Z

w
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µ
ρ

ρ µ

ρ µ µ

= ⋅ − + ⋅

  ∂ ∂ ∂ = − − +  ∂ ∂ ∂   
        ∂ ∂ ∂ ∂ ∂ ∂ ∂   + − − + + −        ∂ ∂ ∂ ∂ ∂ ∂∂           

i u i i

i

i i

Ω ∇ω ω

(27) 

Here, a relation 0 0Aw w− =  has been used. 
Similarly, a vorticity flux to Z-direction at an interior boundary B, B

ZΩ , is 
given by (28). 

2

2

2

2

B B B
B B B B
Z X

B B B B B
B B B B

Y Z

v u vu
X Y Z

v u u v uv
X Y X Z Y ZZ
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ρ µ µ
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i

i i

Ω

(28) 

Since the newly defined vorticity is a point value of angular momentum of fluid 
and the angular momentum is conservative, the value of vorticity flux flowing 
into an interior boundary A and that flowing out of interior boundary B should 
be the same. 
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Three relations are obtained from (29). 
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 (32) 

The values of the left-hand sides of (30), (31) and (32) are given at an interior 
boundary A and those of the right-hand sides are given at an interior boundary 
B. Let us examine whether these relations are physically sound or not. 

It is easily seen that (10) and (11), which are the boundary condition for mo-
mentum, assure (32) to hold. Then, a normal component of vorticity is exactly 
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transferred from fluid A to fluid B due to shear forces working at an interface. 
The left-hand side of (30) is a vorticity flux of X-component flowing into sur-

face layer A through an interior boundary A. If the value of the left-hand side 
of (30) is not zero, it is necessary to understand the mechanism to transfer the 
X-component of vorticity from an interior boundary A to an interface. Let us 
evaluate terms in (30) one by one. The first term on the left-hand side of (30),  

A A
A A v uu

X Y
ρ

 ∂ ∂
− ∂ ∂ 

, is given by using tangential components of fluid velocity, 

which are assigned at a center of a surface layer A with a thickness, “ Vδ ”, in 
which reliable values of fluid density and fluid velocity are defined. Then the 

value of a term 
A A

A A v uu
X Y

ρ
 ∂ ∂

− ∂ ∂ 
 can be given in a surface layer A. The 

second term on the left-hand side of (30), 
2

2

A
A v

Z
µ ∂

−
∂

, is a normal gradient of a  

shear force working on a plane parallel to an interface. Considering that a shear 
force working at an interior boundary is in a balance with a shear force working 
at an interface, the absolute value of its normal gradient should be negligibly  

small comparing with the absolute value of 
A A

A A v uu
X Y

ρ
 ∂ ∂

− ∂ ∂ 
, in a surface 

layer A. Then, (33) is obtained. 
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A A Av u vu

X Y Z
ρ µ

 ∂ ∂ ∂
− − ∂ ∂ ∂ 


 in a surface layer A (33) 

Similarly, (34) is obtained. 
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2

B B B
B B Bv u vu

X Y Z
ρ µ

 ∂ ∂ ∂
− − ∂ ∂ ∂ 


 in a surface layer B (34) 

Equation (35) is obtained from (30) by using relations (33) and (34). 

 
A A B B

A A B Bv u v uu u
X Y X Y

ρ ρ
   ∂ ∂ ∂ ∂

− −   ∂ ∂ ∂ ∂   
  (35) 

The value of the left-hand side of (35) is given at a center of the surface layer 
A, and that of the right-hand side of (35) is given at a center of the surface layer 
B. However, (35) does not generally hold, because  

A A B B
A Bv u v uu u

X Y X Y
   ∂ ∂ ∂ ∂

− = −   ∂ ∂ ∂ ∂   
 for no-slip condition of velocity and  

A Bρ ρ≠ . Then, (30) cannot be accepted as a new boundary condition. 

The non-zero-value assumption for the left-hand side of (30) has been thus 
denied. Then, the value of the left-hand side of (30) should be zero. Similarly, it 
can be concluded that the values of the right-hand side of (30) and both sides of 
(31) are zero. These conclusions can be precisely given by (36). 

 ( ) ( ) 0µ
ρ

 
× ⋅ + ⋅ = 
 

n n u nω ω∇  at an interior boundary (36) 
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Equation (36) means that tangential components of vorticity are not flowing 
into a surface layer, and we need not worry about the transporting mechanism of 
tangential components of vorticity in a surface layer. Though (36) is obtained as 
a condition at an interior boundary, it can be regarded as a boundary condition 
at an interface between two fluids, because the surface layer is very thin. 

It seems to be meaningful to point out here that the tangential components of 
vorticity cannot be defined in a surface layer. Remembering an implicit defini-
tion of a rotation, (22), a tangential component of vorticity is defined as a circu-
lation of momentum along a very small circle perpendicular to an interface di-
vided by an area of the circle. Though (22) is a mathematical expression sup-
posing an infinitesimal circle, we should remind a fact that the values of ρ , 
ρu  and u  respectively are volume-averaged mass, volume-averaged momen-
tum and mass-averaged velocity, of fluid molecules in a very small volume, Vδ . 
Then, a diameter of the circle for the vorticity should be larger than double of 
“ Vδ ” to avoid overlapping of contributions of fluid molecules. Therefore, the 
tangential components of vorticity cannot be defined in a surface layer because a 
circle for the tangential component of momentum, which is perpendicular to an 
interface, cannot be set in a surface layer with thickness “ Vδ ”. This fact fits well 
to (36), which shows that the tangential components of vorticity do not flow into 
a surface layer. 

Equation (36) is a boundary condition for vorticity to be generally adopted 
together with those for velocity and momentum in analyzing flow fields. Ueyama 
proposed the same boundary conditions for vorticity in 2020 focusing on physical 
soundness of transporting phenomena of the newly defined vorticity [5]. How-
ever, the derivation of the boundary condition was not fully matured because the 
zero-value condition for the tangential components of vorticity flux were con-
cluded based on rather intuitive arguments that a circle along which a circula-
tion of momentum is calculated cannot be set stepping across an interface. In 
this work, (36) has been obtained through detailed discussion on transporting 
aspect of vorticity in thin surface layers at both sides of an interface. Key factors 
in the discussion are a contribution of fluctuating motion of fluid molecules and 
a fact that a size of Vδ  for reliable values of ρ , ρu  and u  is not infinitesimal 
but finite. 

Since a conventional vorticity defined as a rotation of velocity vector, ×u∇ , 
is not a conservative quantity, arguments for boundary conditions could not be 
made similarly to those for the newly defined vorticity, ( )ρ× u∇ . There was no 
way for the conventional vorticity other than concluding that the disagreement 
between the values of vorticity flux at both surfaces of an interface is caused by a 
baroclinic generation of vorticity at the interface, and the value of baroclinic 
generation is a matter of a posteriori to be obtained after the flow field is deter-
mined otherwise [1]. With or without a density is an either-or choice in defining 
the vorticity. The definition of vorticity as a rotation of momentum vector leads 
to (36), which can be taken as a boundary condition for the vorticity in addition 
to the boundary conditions for velocity and force at an interface. 
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3.4. Availability of the Boundary Condition for Vorticity  
at an Interface between Two Fluids 

Equation (36) has already realized remarkable progress in analytical investigation 
and numerical calculation. 

One is an analytical investigation of a flow field surrounding a spherical fluid 
particle set in a simple shear flow [5]. Ueyama obtained a general solution of 
Navier-Stokes equation with a convection term represented by the creeping flow 
solution, that is, Saffman’s equation for the first-order inner expansion [6], and 
the boundary condition for the newly defined vorticity made it possible to de-
termine the values of 49 integral constants in the general solution. By using the 
solution of Saffman’s equation, the value of the lift coefficient for a spherical bub-
ble was obtained to be 0.4, which agrees well with experimental data for small 
bubbles in a simple shear flow [7]. 

The other is a drastic abbreviation of numerical calculation to obtain a veloci-
ty distribution in a laminar boundary layer on a flat plate. A basic equation for 
the velocity distribution in a boundary layer on a flat plate was proposed in 1908 
by Blasius with its numerical solution [8]. However, it was very hard to obtain 
reliable numerical results by using two boundary conditions for velocity at a 
plate surface and at a point infinitely far from a plate surface, because a match-
ing process between an analysis from surface to infinity and that from infinity to 
surface was quite troublesome and difficult. It took 30 years before Howarth’s 
solution appeared in 1938 [9] as the most reliable solution of Blasius’s equation 
beyond successive improvements made by several researchers [10] [11] [12] 
[13], as briefly summarized by Schlichting [14]. By using the boundary condition 
for the newly defined vorticity together with those for velocity, Ueyama obtained 
a numerical solution of Blasius’s equation through one-way calculation from sur-
face to infinity without the matching process [15], the numerical values of which 
agree in three digits or more with Howarth’s solution. 

4. Concluding Remarks 

Transporting aspects of momentum and vorticity have been illustrated focusing 
on physical phenomena behind mathematical expressions of terms in basic equ-
ations: Navier-stokes equation and the equation of vorticity transport, and boun-
dary conditions at an interface between two fluids have been derived. 

The most distinguished characteristics of the boundary conditions derived here 
are the zero-value conditions at an interface for a normal component of momen-
tum flux and tangential components of vorticity flux. These fluxes concern a ve-
locity component normal to an interface. The fact that no fluid molecules are 
cutting across an interface leads to the zero-value condition for the normal com-
ponent of momentum flux, and the zero-value condition for tangential compo-
nents of vorticity flux fits very well with the fact that there exist very thin layers 
at both sides of an interface where the tangential components of vorticity can-
not be defined. On the other hand, the tangential components of momentum flux 
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and a normal component of vorticity flux, which are solely concerning velocity 
components parallel to an interface, have been shown to be perfectly transferred 
from one phase to the other at an interface as diffusive fluxes due to shear forces 
working at an interface. 

These boundary conditions have been obtained by considering transporting as-
pects of momentum and vorticity in thin surface layers at both sides of interface, 
paying attention to physical meanings of mathematical expressions of terms rigo-
rously obtained from basic equations: Navier-Stokes equation and the equation 
of vorticity transport. Hence, the boundary conditions obtained in this work are 
to be generally applied in analyzing flow fields. 

The boundary condition for the newly defined vorticity provides us a prospec-
tive view to develop a new approach in analyzing flow fields by obtaining a veloci-
ty distribution first based on the equation of vorticity transport and a pressure dis-
tribution next by introducing the obtained velocity distribution into Navier-Stokes 
equation. 
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