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Abstract 
The existence of mild solutions for non-autonomous evolution equations 
with nonlocal conditions in Banach space is studied in this article. We ob-
tained the existence of at least one mild solution to the evolution equations by 
using Krasnoselskii’s fixed point theorem as well as the theory of the evolu-
tion family. The interest of this paper is that any assumptions are not im-
posed on the nonlocal terms and Green’s functions and a new alternative 
method is applied to prove the existence of mild solutions. The results ob-
tained in this paper may improve some related conclusions on this topic. An 
example is given as an application of the results. 
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1. Introduction 

Recently, the evolution equation has been used to describe the state or process 
that changes with time in physics, mechanics, or other natural sciences. Bys-
zewski [1] first investigated the nonlocal problems, they obtained the existence 
and uniqueness of mild solutions for nonlocal differential equations without 
impulsive conditions. Deng [2] pointed out that the nonlocal initial condition 
can be applied in physics with better effect than the classical initial condition 
( ) 00u u= , and used the nonlocal conditions ( ) ( )10 m

k kku c u t
=

= ∑  to describe 
the diffusion phenomenon on a small amount of gas in a transparent tube. The 
aforementioned findings encourage more authors to focus on differential equa-
tions with nonlocal conditions. The integro-differential equations are usually 
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applied to model processes which are subjected to abrupt changes at a certain 
time. They have wide applications in control, mechanics, electrical engineering 
fields, and so on. In 2010, Fan [3] discussed the existence and simulation of pos-
itive solutions for m-point fractional differential equations with derivative terms. 
In 2011, Tai [4] studied the exact controllability of fractional impulsive neutral 
functional integro-differential systems with nonlocal conditions by using the 
fractional power of operators and the Banach contraction mapping theorem. 
Consequently, to describe some physical phenomena, the nonlocal condition can 
be more useful than the standard initial condition ( ) 00u u= . The importance of 
nonlocal conditions has also been discussed in [5] [6] [7] [8] [9]. 

All of researchers focus on the case that the differential operators in the main 
parts are independent of time t, which means that the problems are autonomous 
in previous researches. However, when treating some parabolic evolution equa-
tions, due to the frequent occurrence of such operators related to time t in ap-
plications, it is usually assumed that the partial differential operators depend on 
time t on account of this class of operators appears frequently in the applications, 
for the details please see Fu [10]; Zhu [11] and Wang [12]. So it is meaningful to 
study the non-autonomous evolution equation, that is, the differential operators 
of the main part are related to time t. 

In recent years, the existence and approximate controllability of the mild solu-
tion of the evolution equation are widely studied. Kalman [13] in 1963 intro-
duced the concept of controllability firstly, and the concept has become an active 
area of investigation due to its great applications in the field of physics. There 
are various works on approximate controllability of systems represented by dif-
ferential equations, integro-differential equations, differential inclusions, neutral 
functional differential equations, and impulsive differential equations of integer 
order in Banach spaces. Mahmudov [14] in 2008 studied the approximate con-
trollability for the abstract evolution equations with nonlocal conditions in Hil-
bert spaces and obtained sufficient conditions for the approximate controllabili-
ty of the semi-linear evolution equation. In 2017, Kumar [15] studied mild solu-
tion and fractional optimal control of semilinear system with fixed delay in Ba-
nach space. In 2018, Chen [16] discussed that approximate controllability of 
non-autonomous evolution system with nonlocal conditions and introduced a 
new Green’s function and constructed a control function involving Gramian 
controllability operator. He applied the Schauder’s fixed point theorem to 
proved the mild solutions of the evolution equations. 

In 1995, Byszewski [17] obtained the existence and uniqueness of solutions to 
a class of abstract functional differential equations with nonlocal conditions of 
the form  

( ) ( ) ( )( )( ) [ ]
( ) ( ) 01

, , , : 0, ,

0 ,m
k kk

u t f t u t u a t t J a

u c u t u
=

 ′ = ∈ =


+ = ∑
 

where 0a >  is a constant, 1 20 mt t t a< < < < < , :f J X X X× × →  and 
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:a J J→  are given functions, X is a Banach space, 0x X∈ , kc ∈ ,  
( )0 1,2, ,kc k m≠ =  , m∈ . It pointed out that if ( )0 1,2, ,kc k m≠ =   then 

we know that this can be applied to the motion of gas in physics. 
In 2013, Fu and Zhang [10] obtained the exact null controllability for the fol-

lowing non-autonomous functional evolution system with nonlocal condition  

( ) ( ) ( ) ( ) ( )( )( ) [ ]
( ) ( ) 0

, , 0, : ,

0 ,

u t A t u t Bv t F t u h t t a J

u g x u

 ′ = + + ∈ =


+ =
 

where the state variable ( )u ⋅  takes values in a Hilbert space X and the control 
function ( )v ⋅  is given in Banach space ( )2 ;L J U  of admissible control func-
tions, U is also a Hilbert space. The family ( ){ }:A t t J∈  of linear operators ge-
nerates a linear evolution system and B is a bounded linear operator from U into X. 
( ) ( ),h t C J J∈ , :F J X X× → , ( ): ,g C J X X→  and ( ) ( )0

p
i iig x c u t

=
= ∑ , 

where , 0,1, ,ic i p=   are given constants and 0 10 pt t t a< < < < < . A strong 
assumption is made for the nonlocal function g by [5] but no assumption is 
made for the nonlocal function in this paper. 

In the above literature [18]-[25], the authors make some assumptions about the 
nonlocal terms. Therefore, it seems natural to remove the strong constraints on 
the nonlocal function g. Motivated by all of the above-mentioned aspects, in this 
paper we consider the existence of mild solutions for the following non-autonomous 
evolution equation with nonlocal conditions  

( ) ( ) ( ) ( ) ( ) ( )( )( ) [ ]
( ) ( )1

, , , 0, : ,

0 ,m
k kk

u t A t u t Bv t f t u t u h t t a J

u c u t
=

 ′ = + + ∈ =


= ∑
     (1) 

in Banach space X, where 0a >  is a constant. ( )A t  is a family of (possibly 
unbounded) linear operators depending on time and having the domains 

( )( )D A t  for every t J∈ , the control function ( )v t  is given in Banach space 
( )2 ;L J U  of admissible control functions, U is also a Banach space,  
( ) ( ),h t C J J∈ , :f J X X X× × →  is a continuous nonlinear mapping, and B 

is a bounded linear operator from U to X, 1 20 mt t t a< < < < < , m∈ , kc  
are real numbers, 0, 1,2, ,kc k m≠ =  . The existence of mild solutions to the 
problem (1) is considered by using the Krasnoselskii’s fixed point theorem and 
the theory of evolution family. In additions, an example is given as an applica-
tion of the results. We assumed that the existence of the mild solution to the 
evolution equation is related to its approximative controllability, which can lead 
to new ideas for the study of the existence and approximate controllability of the 
mild solution to the evolution equation. The interesting of this paper is that any 
assumptions are not imposed to the nonlocal terms and Green’s functions, and a 
new alternative method is applied to prove the existence of mild solutions. 

The rest of this paper is organized as follows. Some basic definitions, lemmas 
and properties are introduced in Section 2. In Section 3, the existence of mild 
solutions to the non-autonomous evolution equations (1) is proved. An example 
is given to illustrate the main results in Section 4. The main contents of this ar-
ticle are summarized in Section 5. 
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2. Preliminaries 

In this section, we introduce some notations, definitions, and preliminary facts 
which are used throughout this paper. 

Let X and U be two real Banach spaces with norms ⋅  and 
U⋅ . We denote 

by ( ),C J X  the Banach space of all continuous functions from interval J into X 
equipped with the supremum norm  

( )supt JCu u t∈= , ( ),u C J X∈ . 

And by ( )L X  the Banach space of all linear and bounded operators in E 
endowed with the topology defined by the operator norm. Let ( )2 ,L J U  be the 
Banach space of all U value Bochner square integrable functions defined on J 
with the norm 

( )( )
1

2 2
2 0

d
a

U
u u t t= ∫ , ( )2 ,u L J U∈ , 

Suppose that a family of linear operators ( ){ }: 0A t t a≤ ≤  satisfies the fol-
lowing assumptions:  

(A1) The family ( ){ }: 0A t t a≤ ≤  is a closed linear operator; 
(A2) For each [ ]0,t a∈ , the resolvent ( )( ) ( )( ) 1

,R A t A tλ λ
−

= −  of linear 
operator ( )A t  exists for all λ  such that Re 0λ ≤ , and there also exists 

0K >  such that ( )( ) ( ), 1R A t Kλ λ≤ + ; 
(A3) There exist 0 1δ< ≤  and 0K >  such that  
( ) ( )( ) ( )1A t A s A K t s δτ−− ≤ −  for all ,t s  and [ ]0,aτ ∈ ; 

(A4) For each [ ]0,t a∈  and some ( )( )A tλ ρ∈ , the resolvent set ( )( ),R A tλ  
of linear operator ( )A t  is compact.  

Because of these conditions, the family ( ){ }: 0A t t T≤ ≤  generates a unique 
linear evolution system, or called linear evolution family ( ){ }, : 0H t s s t T≤ ≤ ≤ , 
and there exists a family of bounded linear operators ( ){ }, | 0t t Tτ τΨ ≤ ≤ ≤  
with norm ( ) 1,t C t δτ τ −Ψ ≤ −  such that ( ),H t s  can be represented as  

( ) ( ) ( ) ( ) ( ) ( ), e e , d ,
tt s A t t A

s
H t s sτ τ τ τ− − − −= + Ψ∫                (2) 

where ( )e A tτ−  denotes the analytic semigroup with infinitesimal generator 
( )( )A t− .  

Lemma 2.1 [16] The family of linear operators ( ){ }, : 0H t s s t T≤ ≤ ≤  satis-
fies the following conditions:  

1) the mapping ( ) ( ), ,t s H t s→  is continuous, for each x X∈ , ( ) ( ),H t s L X∈  
and 0 s t T≤ ≤ ≤ ; 

2) ( ) ( ) ( ), , ,H t s H s H tτ τ=  for 0 s t Tτ≤ ≤ ≤ ≤ , and ( ),H t t I= ; 
3) ( ),H t s  is a compact operator whenever 0t s− > ; 
4) There holds, if 0 1h< < , 0 1γ< < , and t hτ− > ,  

( ) ( ), , .KhH t h H t
t

γ

γτ τ
τ

+ − ≤
−

 

Condition (A4) ensures the generated evolution operator satisfies 3) (see [12], 
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Proposition 2.1). Hence, there exists a constant 1M ≥ , such that  

( ),H t s M≤  for all 0 s t T≤ ≤ ≤ .                (3) 

Definition 2.1 [16] The evolution family ( ){ }, : 0H t s s t T≤ ≤ ≤  is conti-
nuous and maps bounded subsets of X into pre-compact subsets of X.  

Lemma 2.2 [18] Let ( ){ }, ,0H t s s t a≤ ≤ ≤  be a compact evolution system in 
X. Then for each [ ]0,s a∈ , ( ),t H t s  is continuous by operator norm for 

( ],t s a∈ .  
Let Y be another separable reflexive Banach space, whose norm is also de-

noted by ⋅ , in which the control function ( )x t  takes its values, E a bounded 
subset of Y. Denoted by ( )cP Y  is a class of nonempty closed and convex sub-
sets of Y. We suppose that the multi-valued map ( ): cJ P Yψ →  is graph mea-
surable, ( ) Eψ ⋅ ⊂ . The admissible control set adH  is defined by  

( ) ( ) ( ){ }, : ,a.e. , 1.p
adH x L J E x t t t J pψ= ∈ ∈ ∈ >  

Obviously, adH ≠ ∅  (see [26]) and ( ) ( ), 1p
adH L J Y p⊂ >  is bounded, 

closed and convex. 
In order to discuss the existence of solutions to (1), we consider the following 

linear non-autonomous evolution equations:  

( ) ( ) ( ) ( ) [ ]
( ) 0

, 0, ,

0 ,

u t A t u t f t t a

u u

′ = + ∈


=
                (4) 

exists a unique solution ( ]( ) ( ] ( )( )( ) [ ]( )1 0, , 0, , 0, ,u C a X C a D A t C a X∈ ∩ ∩  
expressed by  

( ) ( ) ( ) ( ) [ ]0 0
,0 , d , 0, .

t
u t H t u H t s f s s t a= + ∈∫             (5) 

If [ ]( )1 0, ,f L a X∈ , the function u given by (5) belongs to [ ]( )0, ,C a X , which 
is known as a mild solution of the (4). 

Assume that the condition 

(H0) 1

1m
kk c

M=
<∑  

holds. From (3) and the assumption (H0) one gets that  

( ) ( )
1 1

,0 ,0 1.
m m

k k k k
k k

c H t c H t
= =

≤ ⋅ <∑ ∑                (6) 

From the (6), we obtain  

( )
1

1
: ,0 .

m

k k
k

I c H t
−

=

 = − 
 

∑  

By operator spectrum theorem, the operator ( )( ) 1

1: ,0m
k kkI c H t

−

=
= −∑  ex-

ists and is bounded. Moreover, by Neumann expression, we have  

( )
( )0 1 11

1 1,0 .
11 ,0

nm

k k mm
n k kk k kk

c H t
M cc H t

∞

= = ==

≤ = ≤
−−

∑ ∑
∑∑

  

To prove our main results, for any [ ]( )0, , ,f C a X X∈ , we consider the fol-
lowing nonlocal problem of linear non-autonomous evolution equation  
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( ) ( ) ( ) ( ) [ ]
( ) ( )1

, 0, ,

0 .m
k kk

u t A t u t f t t a

u c u t
=

′ = + ∈


= ∑
                (7) 

Lemma 2.3 If the condition (H0) is satisfied, then a function ( ),u C J X∈  is 
said to be a mild solution of the system (7), which is  

( ) ( ) ( ) ( ) ( ) ( ) [ ]
0 0

1
,0 , d , d , 0, .k

m t t
k k

k
u t c H t H t s f s s H t s f s s t a

=

= + ∈∑ ∫ ∫   (8) 

Proof. It is well-known that (7) has a unique mild solution [ ]( )0, ,u C a X∈  
expressed by  

( ) ( ) ( ) ( ) ( )
0

,0 0 , d , .
t

u t H t u H t s f s s t J= + ∈∫             (9) 

Particularly,  

( ) ( ) ( ) ( ) ( )
0

,0 0 , d , 1,2, , .kt
k k ku t H t u H t s f s s k m= + =∫  (10) 

From (7) and (10), we have  

( ) ( ) ( ) ( ) ( )
0

1 1
0 ,0 0 , d .k

m m t
k k k k

k k
u c H t u c H t s f s s

= =

= +∑ ∑ ∫             (11) 

From (9) and (11), we know that [ ]( )0, ,u C a X∈  satisfies (3). 
Inversely, we can verify directly that the function [ ]( )0, ,u C a X∈  given by 

(8) is a mild solution of (7).  
Definition 2.2 A function ( ),u C J X∈  is said to be a mild solution of non-

local problem (1), if for any ( )2 ,v L J U∈ , ( )u t  satisfies the integral equation  

( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )
0

1

0

,0 , , , d

, , , d , .

k
m t

k k
k

t

u t c H t H t s Bv s f s u s u h s s

H t s Bv s f s u s u h s s t J

=

 = + 

 + + ∈ 

∑ ∫

∫


 

Lemma 2.4 [18] (Krasnoselskii’s fixed point theorem). Let W be a closed, 
convex and nonempty subset of Banach space X. Let operators 1 2, :Q Q W X→  
satisfy  

1) if ,x y W∈ , then 1 2Q x Q y W+ ∈ ; 
2) 1Q  is a contraction; 
3) 2Q  is compact and continuous.  
Then the operator 1 2:Q Q Q= +  has at least one fixed point in W.  
Lemma 2.5 [18] If Ω is a compact subset of a Banach space X, its convex clo-

sure is compact.  

3. Existence of Mild Solutions 

In this section, the existence of mild solutions of the non-autonomous evolution 
Equation (1) is we considered. The proof is based on the Krasnoselskii’s fixed 
point theorem and the theory of evolution system. We further assume the fol-
lowing conditions:  

(H1) The function :f J X X X× × →  satisfies that for every t J∈ , the 
function ( ), , :f t X X X⋅ ⋅ × →  is continuous and for each ( ),x y X X∈ × , the 
function ( ), , :f u v J X⋅ →  is strongly measurable, there exists a function  
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( ),L Jµ +∈   such that ( ) ( ), ,f t u u tµ≤  for all u X∈  and t J∈ ,  
(H2) There exists a function ( ),L Jω +∈   such that ( ) ( )Bv t tω≤  for all 

( )2 ,v L J U∈  and t J∈ ,  

(H3) ( ) ( )
0

d
a

s s s Lµ ω+ =  ∫ , and limr
L
r

σ→+∞ = < ∞ ,  

(H4) The function :f J X X X× × →  and there exists a constant 0fM > , 
such that ( ) ( )( )( ) ( ) ( )( )( )0

, , , , dkt
ff s u s u h s f s y s y h s s M u y− ≤ −∫ , ,u y X∈ . 

Theorem 3.1 Let the evolution family ( ){ }, : 0H t s s t T≤ ≤ ≤  generated by 
( ){ }: 0A t t a≤ ≤  is compact. Suppose also that the assumption (H0)-(H4) are 

satisfied. Then the nonlocal problem (1) has at least one mild solution on J pro-
vided that 

2
1

1

1.
1

m
kk

m
kk

M c
M

M c

σ
σ=

=

+ <
−
∑
∑

 

Proof. Defined the operator 1 2Q Q Q= + , where 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )1 0
1

,0 , , , d , ,k
m t

k k
k

Q u t c H t H t s Bv s f s u s u h s s t J
=

 = + ∈ ∑ ∫ (12) 

( ) ( ) ( ) ( ) ( ) ( )( )( )2 0
, , , d , .

t
Q u t H t s Bv s f s u s u h s s t J = + ∈ ∫      (13) 

By Definition 2.2, we can know that the mild solution of nonlocal problem (1) 
is equivalent to the fixed point of operator Q. In the following, we will prove that 
the operator Q admits a fixed point by applying the Krasnoselskii’s fixed point 
theorem. The proof is divided into five steps. 

Step 1. ( )r rQ Ω ⊆Ω  for some 0r > . For any 0r > , let  
( ) ( ){ }: , : ,r u C J X u t r t JΩ = ∈ ≤ ∈ . 

If this is not true, for each 0r > , there exists r ru ∈Ω , ( )rQu t r>  for all 
t J∈ . From the definition of Q and hypotheses (H0)-(H4), we have 

( )

( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

0
1

0

2
1

0
1

0

,0 , , , d

, , , d

, , , d
1

, , , d

k

k

r

m t
k k

k

t

m
tkk

km
kk

t

r Qu t

c H t H t s Bv s f s u s u h s s

H t s Bv s f s u s u h s s

M c
H t s Bv s f s u s u h s s

M c

M H t s Bv s f s u s u h s s

=

=

=

<

 ≤ + 

 + + 

 ≤ + −

 + + 

∑ ∫

∫

∑
∫∑

∫



 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1

0 0
1

2
1

0 0
1

2
1

1

d d
1

d d
1

.
1

k
m

t tkk
m

kk
m

a akk
m

kk
m

kk
m

kk

M c
s s s M s s s

M c

M c
s s s M s s s

M c

M c
L ML

M c

µ ω µ ω

µ ω µ ω

=

=

=

=

=

=

≤ + + +      −

≤ + + +      −

= +
−

∑
∫ ∫∑

∑
∫ ∫∑

∑
∑
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Dividing on both sides by r and taking the lower limit as r → +∞ , we obtain 
2

1

1

1
1

m
kk

m
kk

M c
M

M c
σ σ=

=

≤ +
−
∑
∑

, which is a contradiction to the condition in Theo-

rem 3.1. Thus, ( )r rQ Ω ⊆Ω  for some 0r > . 

Step 2. 1 : r rQ Ω →Ω  is a contraction operator. 
For any t J∈ , , ru y∈Ω , (12), and (H0)-(H4) imply  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )

1 1

0
1

0
1

2
1

0
1

2
1

1

,0 , , , d

,0 , , , d

, , , , d
1

,
1

k

k

k

m t
k k

k

m t
k k

k

m
tkk

m
kk

m
k fk

m
kk

Q u t Q y t

c H t H t s Bv s f s u s u h s s

c H t H t s Bv s f s y s y h s s

M c
f s u s u h s f s y s y h s s

M c

M c M
u y

M c

=

=

=

=

=

=

−

 = + 

 − + 

≤ −
−

≤ −
−

∑ ∫

∑ ∫

∑
∫∑

∑
∑



  

which yields that 
2

1
1 1

11

m
k fk

m
kk

M c M
Q u Q y u y

M c
=

=

− ≤ −
−
∑
∑

. Hence 1Q  is a contrac-

tion operator in rΩ .  

Step 3. 2 : r rQ Ω →Ω  is continuous. Let { } ( )1 ,n nu C J X∞

=
⊂  with  

limn nu u→+∞ =  in ( ),C J X . Then by the continuity of f, we have  

( ) ( )( )( ) ( ) ( )( )( )lim , , , , , .n nn
f s u s u h s f s u s u h s s J

→+∞
= ∀ ∈       (14) 

In addition, since  

( ) ( )( )( ) ( ) ( )( )( ) ( ), , , , 2 ,n nf s u s u h s f s u s u h s sµ− ≤        (15) 

and the Lebesgue’s dominated convergence theorem follows that  

( ) ( ) ( ) ( )

( ) ( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

2 2

0

0

, , , , , d

, , , , d

0 as ,

n

t
n n

t
n n

Q u t Q u t

H t s f s u s u h s f s u s u h s s

M f s u s u h s f s u s u h s s

n

−

≤ −

≤ −

→ →∞

∫

∫
 

which implies that 2 : r rQ Ω →Ω  is continuous. 
Step 4. 2Q  is equi-continuous in rΩ . For any ru∈Ω  and 1 20 t t a≤ ≤ ≤ , 

by (13) and (H0)-(H4), we have  

( )( ) ( )( )

( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )( )

2

1

1

2 2 2 1

20

10

2 10

, , , d

, , , d

, , , , d

t

t

t

Q u t Q u t

H t s f s u s u h s Bv s u s s

H t s f s u s u h s Bv s u s s

H t s H t s Bv s f s u s u h s s

−

 = + 

 − + 

≤ − +

∫

∫

∫
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( ) ( ) ( ) ( )( )( )2

1
2

1 2

, , , d

: ,

t

t
H t s Bv s f s u s u h s s

I I

 + + 
= +

∫  

where 

( ) ( ) ( ) ( ) ( )( )( )1
1 2 10

, , , , d
t

I H t s H t s Bv s f s u s u h s s= − +∫ ; 

( ) ( ) ( ) ( )( )( )2

1
2 2 , , , d

t

t
I H t s Bv s f s u s u h s s = + ∫ . 

If 1 0t ≡ , 20 t a< ≤ , the conclusion is obvious. If 10 t a< < , we choose 
( )10, tε ∈  small enough, by the conditions (H0), (H1) and (H2), we have  

( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

[ ]
( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

1

1

1

1 1

1 1

1 2 10

2 1

2 1 00,

2 1

, , , , d

, , , , d

sup , , d

d d 0 as 0 and 0,

t

t

t

t

L Xs t

t t

t t

I H t s H t s f s u s u h s s

H t s H t s f s u s u h s s

H t s H t s s s s

M s s M s s t t

ε

ε

ε

ε

ε ε

µ ω

µ ω ε

−

−

−

∈ −

− −

≤ −

+ −

≤ − +  

+ + → − → →

∫

∫

∫

∫ ∫

 

( ) ( )2

1
2 d 0

t

t
I M s s sµ ω≤ + →∫ , as 2 1 0t t− → . 
Therefore, ( ) ( ) ( ) ( )2 2 2 1 0Q u t Q u t− → , as 2 1 0t t− → , which means that the 

operator 2 : r rQ Ω →Ω  is equi-continuous.  
Step 5. The set ( ) ( ) ( ){ }2: : rZ t Q u t u= ∈Ω  s relatively compact in X for each 

t J∈ . Obviously, the set ( ) ( ) ( ){ }20 0 : rZ Q x u= ∈Ω  is relatively compact in X. 
Let ( ]0,t a∈ , for any ,ad rx H u∈ ∈Ω  and ( )0, t sε ∈ − , we define an operator 

2Qε  by  

( ) ( ) ( ) ( ) ( ) ( )( )( )2 0
: , , , d .

t
Q u t H t s Bv s f s u s u h s s

εε −  = + ∫  

It follows from the boundedness of adH  and (H1) that the set  
( ) ( ) ( ) ( )( )( ){ }, , , : 0H t s Bv s f s u s u h s s tε ε = + ≤ < −   is relatively compact 

and depend on the compactness of ( ) ( ), 0H t s t s− > . Then, ( )co ε  is a 
compact set depend on Lemma 2.5. By the mean value theorem of Bochner inte-
grals, we can get ( ) ( ) ( ) ( )2Q u t t coε

εε∈ −   for all t J∈ . Thus, the set  
( ) ( ) ( ){ }2 : rZ t Q u t uε

ε = ∈Ω  is relatively compact in X for every t J∈ . Moreo-
ver, by (13) and (H0) and (H1), we have  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )
( ) ( )

2 2

0

0

, , , d

, , , d

, , , d

d ,

t

t

t

t

t

t

Q u t Q u t

H t s Bv s f s u s u h s s

H t s Bv s f s u s u h s s

H t s Bv s f s u s u h s s

M s s s

ε

ε

ε

ε
µ ω

−

−

−

−

 = + 

 − + 

 ≤ + 

≤ +

∫

∫

∫

∫

 

which means that ( ) ( ) ( ) ( )0 2 2lim 0Q u t Q u tε
ε→ − = . So we have proved that 

there is a family of relatively compact sets ( )Z tε  arbitrarily close to the set 
( )Z t . Thus, the set ( )Z t  is relatively compact in X for every [ ]0,t a∈ . 
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By Steps 3-5, thanks to the Ascoli-Arzela theorem, we deduce that the opera-
tor 2 : r rQ Ω →Ω  is compact and continuous in rΩ . By the Krasnoselskii’s 
fixed point theorem we can get the operator Q has at least one fixed point in 

rΩ , which is the mild solution of the evolution Equation (1) on J. This com-
pletes the proof of Theorem 3.1. 

4. Example 

In this section, we provide a correct example to illustrate our abstract results.  
Example 4.1 Consider the following non-autonomous partial differential eq-

uation with nonlocal problem:  

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) [ ] [ ]

( ) ( ) ( ) [ ]

( ) ( ) [ ]

22

2

21

sin 2 1, , , 2 , , 0, , 0, ,
1 , 1 ,sin

0, , ,sin 0, 0, ,
1,0 arctan , , 0, ,

2
m

kk

t t
u x t u x t a t u x t v x t x t a

t x u x t u x t

u t u t u t t a

u x x x t x
k=

π
π

π π

 ∂ ∂
= + + ⋅ + ∈ ∈∂ ∂ + +

 = = = ∈

= ∈ π


 ∑

(16) 

where [ ]: 0,1a →   is a continuously differentiable function and satisfies  

[ ]
( )min 0,1

: min 1,
t

a a t
∈

= <                      (17) 

and 0a >  is a constant, ( )( )2 2, 0, ;v L J L π∈  , , 1,2, ,kc k m∈ =  . Let 
( )2 0, ;X L= π   with the norm 

2⋅  and inner product ,⋅ ⋅ . Consider the op-
erator A on X defined by  

( )
2

2: , ,Au u u D A
x
∂

= ∈
∂

 

where  

( ) ( ) ( ) ( ) ( ){ }2 2: 0, ; , 0, ; , 0 0 .D A u L u L u u′′= ∈ ∈π =π π =   

The A generates a compact and analytic C0-semigroup in C, A has a discrete 
spectrum, and its eigenvalues are 2 ,n n +− ∈  with the corresponding norma-

lized eigenvectors ( ) ( )2 sinnv x nx
π

= . Define the operator ( )A t  on A by  

( ) ( ) ,A t u Au a t u= −  

with domain  

( )( ) ( ) [ ], 0,1 .D A t D A t= ∈  

The family ( ){ }: 0A t t a≤ ≤  generates an strongly continuous evolution 
family ( ){ }, : 0H t s s t a≤ ≤ ≤  defined by  

( ) ( ) ( )( )2d

1
, e , , 0 1, .

t
s a n t s

n n
n

H t s u u v v s t u X
τ τ∞ − + −

=

∫= ≤ ≤ ≤ ∈∑       (18) 

A direct calculation gives  

( ) ( )
( )( )min1, e , 0 1.a t s

L X
H t s s t− + −≤ ≤ ≤ ≤  

(17) and (18) means that  
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( ) ( )0
: sup , 1.

Xs t a
M H t s

≤ ≤ ≤
= =


 

(see [9], [22]) 
For any [ ]0,t a∈ , we define  

( ) ( ), ;u t u t= ⋅  

( ) ( )( )( ) ( )
( ) ( )

2 sin 2 1, , ;
1 , 1 ,sin
t t

f t u t u h t
u t u x t

= ⋅
+ ⋅

π
+

 

: : ;A U X X= →  

( ) ( )2 , ;Bv t v t= ⋅  

2
1arctan , 1,2, , .

2k kc t m
k

= =   

In conclusion, from 21 1

1arctan 1
2 4

m
kk kc

k
∞

= =
≤ =

π
<∑ ∑ , we know that the as-

sumption (H0) hold. From the definition of nonlinear term f and bounded linear  
operator A combined with the above discussion, we can easily verify that the as-
sumptions (H1)-(H4) are satisfied with ( ) ( )( )( ) ( )2, , 1f t u t u h t t tµ≤ + =π , 
( ) ( )2t v tω = . 
Therefore, the non-autonomous partial differential Equation (16) is equiva-

lent to the problem (1). According to theorem 3.1, we know that (16) has at least 
one mild solution ( ) ( )0, 0,u C a×π∈   . 

5. Conclusion 

In this paper, the existence of solutions to non-autonomous evolution equations 
with nonlocal conditions is studied. By using the development family theory, 
solution operators and the application of Krasnoselskiis fixed point theorem, the 
existence of solutions of non-autonomous evolution equations is obtained. 
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