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Abstract 
Proceeded from trimmed Hill estimators and distributed inference, a new 
distributed version of trimmed Hill estimator for heavy tail index is proposed. 
Considering the case where the number of observations involved in each 
machine can be either the same or different and either fixed or varying to the 
total sample size, its consistency and asymptotic normality are discussed. Si-
mulation studies are particularized to show the new estimator performs al-
most in line with the trimmed Hill estimator. 
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1. Introduction 

Let { }1 2, , , nX X X  be independent and identically distributed (i.i.d.) random 
variables drawn from F, a distributed function which belongs to the max-domain 
of attraction of an extreme value distribution Gγ  with extreme value index γ ∈ . 
It is well-known that if ( )F D Gγ∈ , mathematically, there exist constants 0na >  
and nb ∈  such that  

( ) ( ) ( ){ }1lim : exp 1 ,n
n nn

F a x b G x x γ
γ γ −

→∞
+ = = − +             (1) 

for all 1 0xγ+ > . For a tail index 0γ > , the limit relation (1) is equivalent to  

( )
( )

lim , 0
t

U tx
x x

U t
γ

→∞
= >                       (2) 

where ( ){ }1 1U F
←

= −  is the left-continuous inverse function of ( )1 1 F−  
and a regular varying function with γ , see [1]. 

The estimation of tail index for heavy-tailed distributions may be the one of 
the most studied problems in the extreme value theory. Since the numerous 
works of this aspect such as the Hill estimator, the Pickands estimator and the 
maximum likelihood estimator have already been explored referring to [1] [2] [3] 
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[4] and [5] for detailed discussions and reviews. 
This extreme value analysis often rely on high order statistics. However, in 

many applications, one may face the challenges when it quickly run out of data 
since the observations can be corrupted and this contamination can lead to se-
vere bias in the estimation of the tail index. Considering the problem, plenty of 
researchers did a lot of work. Based on the classic Hill eatimator of γ :  

( ) ( )

( )

1,

1 ,

1ˆ : log , 1 1,
k

n i n
k

i n k n

X
n k n

k X
γ − +

= −

 
 = ≤ ≤ −
 
 

∑  

where 1, ,n n nX X≤ ≤  are the associated order statistics of { }1 2, , , nX X X  
i.i.d. random variables with unknown distribution ( )F D Gγ∈  with 0γ > , [6] 
trimmed a certain number of the largest order statistics in order to obtain a ro-
bust estimator of γ  and (among other robust estimators) defined a trimmed 
version of the Hill estimator:  

( ) ( ) ( )

( )
0 0

0

1,
, , 0

1 ,

ˆ : log , 0 .
k

n i ntrim
k k k k

i k n k n

X
n c i k k n

X
γ − +

= + −

 
 = ≤ < <
 
 

∑  

[7] then chose the weights ( )
0 ,k kc i  so that the estimator is asymptotically op-

timal where,  

( )
0

0
0

0
,

0
0

1 , 1

1 , 2, ,
k k

k i k
k k

c i
i k k

k k

+ = + −= 
 = +
 −



 

and they also found the method for the trimming parameter which yields the 
trimmed Hill estimator that can adapt to the unknown level of contamination in 
the extremes. While removing the lower order statistics from the classical Hill 
estimator, [8] derived an alternative estimator of the tail index and it was shown 
to have lower variance than the classic Hill estimator. A number of reseachers 
also considered trimming but of the models rather than the data, see [9] and [10]. 
Moreover, the random censoring for heavy-tailed distribution was discussed in 
[11] [12] [13] and [14]. Contrary to the above, here we assume to have 
non-truncated heavy-tailed model and only the top order statistics are contami-
nated in the associated data. 

The rapid emergence of massive datasets in various fields becomes more and 
more challenging to traditional statistical methods. Account of that, distributed 
inference theory which refers to analyzing data stored in distributed machines 
has been proposed. It is developed to deal with large-scale statistical optimiza-
tion problems and requires a divide-and-conquer algorithm which estimates a 
desired quantity or parameter on each machine and transmits the results to a 
central machine often by simple averaging. With the conditions of [15] [16] and 
[17] [18] reported on a first attempt in distributed inference for extreme value 
index and proposed a distributed Hill estimator and establish its asymptotic 
theories. 
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In this paper, considering the massive datasets contaminated of the top order 
statistics we apply the method of distributed inference and then derive a new es-
timator of the extreme value index for heavy-tailed distributions. The new esti-
mator can be used for the situation when large datasets are distributedly stored 
and cannot be combined into one oracle sample and the top order statistics are 
corrupted. 

We assume that the i.i.d. observations { }1 2, , , nX X X  are stored in k ma-
chines with m observations each, i.e., n mk=  and the operation mechanism of 
each machine is independent. Let ( ) ( )1 m

j jM M≥ ≥  denote the order statistics 
within the machine j. Suppose we have identified that the top d0 order statistics 
have been corrupted in each machine, we use the top jd  exceedance radios 

( ) ( )jdi
j jM M  and cut the same level of top d0 exceedance radios for 1, , ji d=   

and 00 jd d m< < <  to build the estimator in each machine. Then we take the 
average of the estimators from all machines and the distributed trimmed Hill es-
timator is defined as:  

( )

( )

( )

( )

0

0

1
0

1 1
1 20 0

11 1ˆ log log .
j

j j

d idk
j jtrim

DH d d
i i dj jj j

M Md
k d d d dM M

γ
+

+ +
= = +

 + = +
 − −
 

∑ ∑         (3) 

To derive the asymptotic normality of distributed trimmed Hill estimator 
ˆ trim

DHγ , we need impose the following condition on the sequences k and m,  

( ) ( ), and log as .m n k n m k n→∞ →∞ →∞ →∞            (4) 

And we need the second order regular varying condition as follows: there ex-
ists an positive or negative function A with ( )lim 0t A t→∞ =  and a real number 

0ρ ≤ , satisfying ( )A t RVρ∈ , such that  

( )
( )
( )

1lim
t

U tx
x

U t xx
A t

γ
ρ

γ

ρ→∞

−
−

=                      (5) 

for all 0x >  (see e.g. [1], Corollary 2.3.4). 
By (5), we have that there exists a function ( )0A t  such that ( ) ( )0 ~A t A t  as 

t →∞ , and for all 0ε > , 0δ > , there is a ( )0 , 0t ε δ >  such that for 0tx t≥ , 

0t t≥ ,  

( ) ( )
( ) { }

0

log log log 1 , where max , .
U tx U t x x x x x x x

A t

ρ
ρ δ δ δ δγ

ε
ρ

± ± −− − −
− ≤ = (6) 

By the adoption of (5) on the function L, we also have,  

( ) ( )
( ) { }

0

log log 1 , where max , ,
L tx L t x x x x x x

A t

ρ
ρ δ δ δ δε

ρ
± ± −− −

− ≤ =   (7) 

for more details on 0A , see page 48 in [1]. 

2. Main Results 

In the homogeneous case where 1 kd d d= = =  is a fixed integer, the follow-
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ing theorem shows the asymptotic normality of the distributed trimmed Hill es-
timator.  

Theorem 2.1. Suppose ( )F D Gγ∈  with 0γ >  and (4) and (5) hold. Let 

1 kd d d= = = , where 0 0d d> >  is a fixed integer. If  
( ) ( ) ( )

1
2

0 1k d d A m d O− =   , as n →∞ , then  

( ) ( ) ( ){ } ( )
1

22
0 0ˆ , , , 0, ,

d
trim
DHk d d A m d B m d d Nγ ρ γ− − →    

where  

( ) ( )
( ) ( )
( ) ( )

0 0

0
0

1

0
=1

1 11, , ,
1 1

1

d d d id

i

m dmB m d d
d d d d m

d d dd
d d

ρ ρ
ρ

ρ ρ

ρ
ρ ρ ρ

−

− − +

Γ + Γ − + =  − Γ + Γ − + 

     ⋅ − +    − − −     
∑

 

with 0ρ <  and ( )0, , , 1B m d d ρ =  with 0ρ = . 
In the heterogeneous case where { } 1

k
j j

d
=

 are uniformly bounded positive in-
teger series, i.e., maxsup j jd d∈ = < ∞



, the following theorem shows the asymp-
totic normality of the distributed trimmed Hill estimator.  

Theorem 2.2. Suppose ( )F D Gγ∈  with 0γ >  and (4) and (5) hold. Let 

{ } 1

k
j j

d
=

 be uniformly bounded positive integer series, i.e., maxsup j jd d∈ = < ∞


 

and 0 min0 inf j jd d d∈< < =


. If ( ) ( ) ( )
1
2

0 1k d d A m d O − =  , as n →∞ , then  

( ) ( ) ( ) ( ) ( )
1

1 22
0 0

1
ˆ , , , 0, ,

k d
trim
DH j j

j
k d d A m d k d d B m d d N

ρ
γ γ ρ γ−

=

 
 − − − →    

∑  

where 1
1

k
jjd k d−

=
= ∑ . 

In the homogeneous case where 1 kd d d= = =  and ( )d d m=  is an in-
termediate sequence, i.e., ( )d d m= →∞ , 0d m →  as n →∞ , the following 
theorem shows the asymptotic normality of the distributed trimmed Hill esti-
mator.  

Theorem 2.3. Suppose ( )F D Gγ∈  with 0γ > , and (4) and (5) hold. Let  

1 kd d d= = = , where ( )d d m= →∞  and 0d m →  as n →∞ . If  
( ) ( ) ( )0

1 2
1k d d A m d O− =   , as n →∞ , then  

( ) ( ) ( ){ } ( )
1

22
0 ˆ , , 0, ,

d
trim
DHk d d A m d H d m Nγ γ ρ γ− − − →    

where  

( ) ( ) ( )
( ) ( ) 0

1 11, , .
1 1 1

m dm dH d m
d d m d d

ρ ρ
ρ

ρ ρ

− Γ + Γ − + =  − Γ + Γ − + − 
 

3. Simulation Studies 

In this section, we study the finite sample performance of the distributed trimmed 
Hill estimator ˆ trim

DHγ  and compare it with [7]’s estimator, i.e., the trimmed Hill es-
timator on the following three distributions which all belong to the max-domain 
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of attraction of an extreme value distribution for varying parameters with three 
sub-cases for each distribution. 

We obtain the mean value and mean squared error (MSE) for r = 2000 Monte 
Carlo simulations of all considered estimators of heavy-tailed models with sam-
ple size n = 10,000. We assume the contamination occurs in the top d0 order sta-
tictics in each machine and vary the level of d in the distributed trimmed Hill es-
timator to verify the theoretical results on the property we give in Section2 and 
to compare the finite sample performance of the distributed trimmed Hill esti-
mator with that of the trimmed Hill estimator for different values of d. The sam-
ple { }1 2, , , nX X X  contains n = 10,000 observations stored in k machines 
with m observations each. We fix k = 20 and m = 500 and vary d from 30 to 100 
with d0 = 8.The results are presented in Figures 1-3.  

• The Fréchet distribution with distribution function  

( ) ( )exp , 0,F x x α α−= − >  

which implies 1γ α=  and 1ρ = − . We consider the three parameters α = 1, 
0.5 and 2. 
 

 
Figure 1. Fréchet distribution, parameters α = 1, 0.5 and 2. Diagnostics of trimmed Hill 
estimator (coral) and distributed trimmed Hill estimator(skyblue) as a function of d. 
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Figure 2. Pareto (σ, ξ) distribution, sets of parameters σ = 1, ξ = 1; σ = 2, ξ = 0.5 and σ = 1, 
ξ = 2.5. Diagnostics of trimmed Hill estimator(coral) and distributed trimmed Hill esti-
mator (skyblue) as a function of d. 

 
• The Pareto(σ, ξ) distribution with distribution function  

( )
1

1 , , 0,xF x x
ξ

σ ξ
σ

−
 = − ≥ > 
 

 

which implies γ ξ=  and ρ ξ= − . We consider the three sets of parameters σ 
= 1, ξ = 1; σ = 2, ξ = 0.5 and σ = 1, ξ = 2.5. 

• The Burr(τ, λ) distribution with distribution function  

( ) ( )1 1 , 0, , 0,F x x x
λτ τ λ

−
= − + > >  

which implies 1γ
τλ

=  and 1ρ
λ

= − .We consider the three sets of parameters τ 

= 2, λ = 0.5; τ = 3, λ = 0.5 and τ = 3, λ = 1. 
For the Fréchet distribution, Figure 1 shows that as d increases, the MSE in-

creases for the estimators with different α. For the Pareto distribution in Figure 
2, the bias between the estimators and the true value is virtually zero for all levels 
of d. For the Burr distribution in Figure 3, we observe a trade off for the estima-
tors with different sets of parameters: as d increases, the MSE increases when λ is 
low while the MSE decreases when λ takes a larger value. 
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Figure 3. Burr (τ, λ) distribution, sets of parameters τ = 2, λ = 0.5; τ = 3, λ = 0.5 and τ = 3, 
λ = 1. Diagnostics of trimmed Hill estimator (coral) and distributed trimmed Hill esti-
mator (skyblue) as a function of d. 

 
Figures 1-3 show that the difference in MSE between the distributed trimmed 

Hill estimator and the trimmed Hill estimator is not sizeable. Consequently, we 
can infer that when dealing with the estimation problem of extreme value index 
with massive and corrupted datasets the new estimator we derive performs well. 

4. Proof 

Recall that ( )1 1 F− , { } ( ) ( ) ( ){ }1 2 1 2, , , , , ,
d

m mX X X U Z U Z U Z=  , where 
{ }1 2, , , nZ Z Z  is a random sample of Z with the distribution function 1 1 z− , 

1z ≥ . For each machine j, let ( ) ( )1 m
j jZ Z≥ ≥  denote the order statistics of the 

m Pareto (1) distributed variables corresponding to the m observations in this 
machine. Notting that ( ) ( ) ( ){ } ( )( ) ( )( ) ( )( ){ }1 2 1 2, , , , , ,

d
m m

j j j j j jM M M U Z U Z U Z=  , 
we have  

( )( )
( )( )

( )( )
( )( )

0

0

1

0
1 120 0

1 1ˆ log log ,
j

j j

d idd j jtrim
DHj d di dj jj j

U Z U Zd
d d d dU Z U Z

γ
+

+ +
= +

+
= +

− − ∑  

and then  
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( )( )
( )( )

( )( )
( )( )

0

0

1

0
1 11 20 0

11 1ˆ log log .
j

j j

d idkd j jtrim
DH d dj i dj jj j

U Z U Zd
k d d d dU Z U Z

γ
+

+ +
= = +

 
 +

= + − − 
 

∑ ∑  

(2) implies that U RVγ∈ , then ( ) ( )U x x L xγ= ⋅ , where ( )L x  is slowly va-

rying function. Hence ( )( ) ( )( ) ( )( )i i i
j j jU Z Z L Z

γ
= ⋅  and 

( )

( )

( )

( )

( )( )
( )( )

( )( )
( )( )

0

0

0

0

1
0

1 1
1 20 0

1

0
1 11 20 0

1 1ˆ log log

11 1log log .

j

j j

j

j j

d idkd
j jtrim

DH d d
j i dj jj j

d idk j j

d dj i dj jj j

Z Zd
k d d d dZ Z

L Z L Zd
k d d d dL Z L Z

γγ
+

+ +
= = +

+

+ +
= = +

 + = +
 − −
 
 
 +

+ + − − 
 

∑ ∑

∑ ∑

 

Lemma 4.1. Suppose ( )F D Gγ∈  with 0γ > , define  

( )
( )

( )

( )

( )

0

0

1
* 0

0 1 1
20 0

1 1: log log ,
j

j j

d id
j j

j d d
i dj jj j

Z Zdd
d d d dZ Z

γ
+

+ +
= +

+
= +

− − ∑  

for 1, ,j k=  , and ( )01: ktrim
DH jj d

k
γγ γ∗ ∗

=
= ∑ . Under the assumption of (4), 

P
trim
DHγ γ∗→ .  

Proof. Note that { }log , 1,2, ,iZ i m=   forms a random sample from the stan-
dard exponential distribution. In the machine j, for any { }0 1, , ji d d∈ +   by 
Rényi’s representation we have  

( ) ( ) ( ) ( )1 1
,1log log 1j j

d dd d ii i
j j j q j jqZ Z E d q Y+ − +

=
− = − + =∑  with ,1 ,, ,

jj j dE E  i.i.d. 

standard exponential, where ( ) ( ) ( )1 2 d
j j iY Y Y≥ ≥ ≥  are the order statistics of 

Exp (1) corresponding to the jd  obeservation. 

The joint distribution of ( )*
0j dγ , 00 1jd d≤ ≤ − , can be expressed as follows:  

( ){ }

( ) ( )

0

0

0
0

0

0
0

0 0

1*
0 0

1
10

20 0 0

11
, ,0

1 2 10 0 0

1
,0

1 10 0

1 1

1 1
1 1

1 1
1

j

j
j

j
j j j

j j

d
j d

ddd
d i

j j
i dj j d

dd d d d id
j q j q

q i d qj j j j d

d d d d
j q

q q ij j j

d

d Y Y
d d d d

E Ed
d d d q d d d q

Ed
d d d q d d

γ
−

=

−

+

= + =

−− − +

= = + = =

− − −

= = =

 + = + − −  

 + = + − − + − − +  

+
= +

− − + −

∑

∑ ∑ ∑

∑ ∑
0

0

0
0

0
0

0

0

11
,

2 0

1
1 1

,,0

1 20 0 0 0

1
,

1 0 0

1

1 1
1

j
j

j
j j

j

j
j

dd q
j q

d j d

d
d d d q

j d dj q

q i dj j j j d

dd d
j q

q j d

E
d q

EEd
d d d d d q d d

E
d d

−− +

+ =

−
− − − +

−

= = +
=

−−

= =

  
 − +  

  + = + +   − − − + −   

  =  −  

∑

∑ ∑

∑

       (8) 

By (8) it implies that ( )*
0 1jE dγ =  for 0 0, , 1jd d= − , and by WLLN and 
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(4) it follows that 
P

trim
DHγ γ∗→  as n →∞ .  

Lemma 4.2. Under the condition of Theorem 3 and define  

( )( )
( )( )

( )( )
( )( )

0

0
0

1

0
, 1 11 20 0

11 1: log log ,
j j

d i
k dj j

d d d dj i d
j j

L Z L ZdR
k d d d dL Z L Z

+

+ +
= = +

 
 +

= + − − 
 

∑ ∑  

if ( ) ( )h d o d= , as n →∞ , we have  

( )
( )

( )
0

0

1
02

0 ,0
0

max 0.
1

P

d dd h d

A m d dk d d R
d dρ≤ <

− − →   − −
 

Proof. Note that  

( )
( )

( )

( )
( )

( )
( )

( )

0
0

0 0 0
0 0

1
02

0 ,0
0

1 1
02 2

0 , , 0 ,0 0
0

max
1

max max ,
1

d dd h d

d d d d d dd h d d h d

A m d dk d d R
d d

A m d dk d d R S k d d S
d d

ρ

ρ

≤ <

≤ < ≤ <

− −   − −

≤ − − + − −       − −

(9) 

where  

( )( )
( )

( ) ( )( ) ( ) ( )( )0

0
0

1 11 1
0

, 0
1 20

1 11 1 .
d dd i d

k dj jj j j
d d

j i d

Z ZA Z Z Z
S d

k d d

ρ ρ

ρ ρ

+ ++ +

= = +

  − −  = + +  −    

∑ ∑  

In the first term of (9), we have that  

( )
( )

( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

0 0
0

0 0
0

0 0
0

1
2

0 , ,0

1
0 02

0 , ,0
0 0

1
2

0 0 0
, ,0

0

max

max

max .
1

d d d dd h d

d d d dd h d

d d d dd h d

k d d R S

dA m d d dk d d R S
d d dA m d

k d d A m d d d R S
h d dA m d

d

≤ <

≤ <

≤ <

− −  

 −
= − −      −  

−   − ≤ −  
 −

       (10) 

By the assumption of ( ) ( ) ( )0
1 2

1k d d A m d O− =    as n →∞  and  

( ) ( )0 ~A t A t  as t →∞ , we can get that as n →∞ ,  

( ) ( ) ( )1 2
0 0 1k d d A m d O− =   . By (7) choose 0ρ δ+ <  and we can get that  

( ) ( )

( )

( )( )
( )

( )

( )

( )

( )( )
( )

( )

( )

0 0
0

0

0

0 0

0
, ,0

0

1 1
00

10 1 0

1
0

10 1 10

max

max

max .

d d d dd h d

d dk j j
dd h d j j

d ik dj j
dd h d j i d j

d d R S
dA m d

A Z Zd
dk A m d Z

A Z Z
dk A m d Z

ρ δ

ρ δ

ε

ε

≤ <

++ +

+≤ < =

++

+≤ < = = +

 −
−  

 

 
 ≤
 
 

 
+  

 
 

∑

∑ ∑

            (11) 

Since ( ) ( )0 1 1d d
j jZ Z+ +  is the ( )0 1 thd +  order statistic from the standard Pareto 

distribution, [19] implies that ( ) ( ) ( )0 1 1
0 1 1

P
d d

j jd Z d Z+ ++ → . Recall that A RVρ∈  
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and we have ( ) ( )1 1
P

d
jZ m d+ →  as n →∞ . Combining with ( ) ( )0 ~A t A t  as 

t →∞ , we can get that as n →∞ , ( )( ) ( )1
0 0 1

P
d

jA Z A m d+ →  and then 
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Similarly, as n →∞ ,  
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Combining with the (10) (11) (12) and (13), we can get that as n →∞ , 

( )
( ) 0 0

0

1
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0 , ,0
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P

d d d dd h d
k d d R S
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In the second term of (9), we have that  
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It is known that  
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      (16) 

by WLLN for triangular array and ( )1d
jZ +  is independent with ( ) ( )1i d

j jZ Z +  for 

0 1, ,i d d= +   and 1, ,j k=  , we have that n →∞ , 
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and  

( )
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Combining with (17) and (18), it illustrates that n →∞ ,  
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0
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and finally we can get that n →∞ ,  
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1
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which yield the Lemma.  
Proof of Theorem 2.1. When 0ρ <  and by Lemma S.2 in [18], we have that 

( ){ }1
0lim 1d

n Z t+
→∞ > = , for any 0 1t > .Then by applying (6) twice with t m d=  

and ( )
0, 1, , 1j

jx dZ m i d d= = + +  and ( )1d
jx dZ m+=  we get that as n →∞ ,  
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(19) 

Here, the ( )1po  term is uniform for all 1 j k≤ ≤ , 0 1 1d i d+ ≤ ≤ +  and all 
k ∈ . We obtain that 
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1
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where  
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By Lemma 4.1. and the central limit theorem, we have that ( )2
1 0,

d
I N γ→ , as 

n →∞ . 
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By WLLN for triangular array and ( )1d
jZ +  is independent with ( ) ( )1i d

j jZ Z +  
for 0 1, ,i d d= +   and 1, ,j k=  , we have that  
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as n →∞ , where the second equality follows from a direct calculation. By the 
Stirling’s formula, it follows that,  
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as m →∞ . Hence, combing with ( ) ( ) ( )0
1 2

1k d d A m d O− =    as n →∞ , 

we can replace 0A  by A and obtain that as n →∞ , 
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1
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Similarly, as for 3I , we obtain that 3 0
P

I →  as n →∞ . Combining with 
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1 0,

d
I N γ→  and (20) as n →∞  the statement in Theorem 2.1 follows. 

When 0ρ = , (19) is equivalent to  
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as n →∞ , where ( )1po  term is uniform for all 1 j k≤ ≤ , all k ∈  and 
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We can show that ( )2
1 0,

d
I N γ→ , ( ) ( ) ( ){ }

1
2

2 0 0 1 1pI k d d A m d o= − +    

and 3 0
P

I →  as n →∞ , similar to the proof above, the statement in Theorem 
2.1 follows. 

Proof of Theorem 2. 2. We only show the proof for 0ρ <  and the proof for 
0ρ =  is similar. 

By Lemma S.2 in [18], we have ( ){ }1
0lim 1d
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→∞ > = , for any 0 1t > . Then 

by applying (6) twice with t m d=  and ( )
0, 1, , 1i
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( )1jd
jx dZ m+=  and using the same method as shown in the proof of Theorem 

2.1, we obtain that  
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as n →∞ . 

By Lemma 4.1. and the central limit theorem, we have that ( )2
1 0,

d
I N γ→  as 

n →∞ . 
As for 2I , by WLLN for triangular array and for each j, ( )1d

jZ +  is indepen-
dent with ( ) ( )1i d

j jZ Z + , where 0 1, , ji d d= +  , similar to the proof of Theorem 
2.1, we have that  

https://doi.org/10.4236/jamp.2023.1112256


T. Guo 
 

 

DOI: 10.4236/jamp.2023.1112256 4013 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) ( ){ }
1
2

2 0 0 0
1

1 , , , 1 1 ,
k

j p
j j

dI k d d A m d B m d d o
k d

ρ

ρ
=

 
 = − +    

 
∑   (21) 

as n →∞ . 

Similarly, as for 3I , we obtain that 3 0
P

I →  as n →∞ . Combining with 

( )2
1 0,

d
I N γ→  and (21) as n →∞  the statement in Theorem 2.2 follows.  

Proof of Theorem 2.3. We only show the proof for 0ρ <  and the proof for 
0ρ =  is similar. 

By Lemma S.2 in [18], we have ( ){ }1
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by applying (6) twice with t m d=  and ( )
0, 1, , 1i

jx dZ m i d d= = + +  and 
( )1d
jx dZ m+=  and using the same method in the prood of Theorem 2.1, we ob-

tain that  
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By Lemma 4.1. and the central limit theorem, we have that ( )2
1 0,

d
I N γ→  as 

n →∞ . 
By WLLN for triangular array and ( )1

1
dZ +  is independent with ( ) ( )1i d

j jZ Z +  
for 0 1, ,i d d= +   and 1, ,j k=  , we have that  
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By the Stirling’s formula, it follows that  
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as m →∞ . 

Similarly, as for 3I , we obtain that 3 0
P

I →  as n →∞ . Combining with 

( )2
1 0,

d
I N γ→  and (22) as n →∞  the statement in Theorem 2.3 follows.  
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