
Journal of Applied Mathematics and Physics, 2023, 11, 3962-3969 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.1112253  Dec. 26, 2023 3962 Journal of Applied Mathematics and Physics 
 

 
 
 

Global Stability in a Graph p-Laplacian SIR 
Epidemic Model 

Ling Zhou*, Yu Zhang, Zuhan Liu 

School of Mathematical Science, Yangzhou University, Yangzhou, China 

 
 
 

Abstract 
A p-Laplacian ( 2p > ) reaction-diffusion system on weighted graphs is in-
troduced to a networked SIR epidemic model. After overcoming difficulties 
caused by the nonlinear p-Laplacian, we show that the endemic equilibrium is 
globally asymptotically stable if the basic reproduction number r0 is greater 
than 1, while the disease-free equilibrium is globally asymptotically stable if r0 
is lower than 1. We extend the stability results of SIR models with graph Lap-
lacian ( 2p = ) to general graph p-Laplacian. 
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1. Introduction 

In recent years, reaction-diffusion systems on complex networks have been used 
to study epidemic processes [1] [2]. A network is mathematically a graph 

( ),G V E= , which contains a set { }1,2, ,V n=   of vertices and a set E of 
edges. If vertices x and y are connected by an edge (also called adjacent), we 
write ~x y . G is called a finite-dimensional graph if it has a finite number of 
edges and vertices. A graph G is weighted if each adjacent x and y is assigned a 
weight function ( ),x yω . Here [ ): 0,V Vω × → +∞  is a symmetric, nonnega-
tive and bounded function, and ( ), 0x yω >  if and only if ~x y . 

A graph ( ),G V E=  is called connected, if for every pair of vertices ,x y V∈ , 
there exists a sequence (called a path) of vertices { }0 1, , , nx x x x y V= = ⊂  
such that 1 ~j jx x−  for 1, ,j n=  . For a finite subset VΩ⊂ , let ∂Ω  denote 
the boundary of Ω  and 0Ω  denote the interior of Ω , which are defined by  

{ } 0: : \ such that ~ and : \ ,x y V y x∂Ω = ∈Ω ∃ ∈ Ω Ω =Ω ∂Ω       (1) 

respectively. Throughout this paper, ( ),G V E=  is assumed to be a connected 
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weighted finite-dimensional graph without self-loops. We also assume that 0Ω  
is a nonempty connected subset. 

In this paper, we use discrete p-Laplacian operators defined on a network to 
describe the movements of mosquitoes in each vertex which depend on the to-
pological structure of the network. In order to describe our problem more con-
veniently, we first introduce the following discrete p-Laplacian operators defined 
on a network.  

Definition 1.1 For a function 0:u Ω →  and ( )2,p∈ +∞ , the graph  
p-Laplacian p

ω∆  on 0Ω  is defined by  

( ) ( ) ( ) ( ) ( )( ) ( )
0

2

~ ,

: , .
pp

y x y

u x u y u x u y u x x yω ω
−

∈Ω

∆ = − −∑         (2) 

For x∈Ω , the degree ( )D xω  on 0Ω  is defined by  
( ) ( )0~ ,: ,y x yD x x yω ω

∈Ω
=∑ .  

When 2p = , it is called the discrete Laplacian 2:ω ω∆ = ∆  on Ω , which is 
defined by  

( ) ( ) ( )( ) ( )
~ ,

: , .
y x y

v x v y v x x yω ω
∈Ω

∆ = −∑                 (3) 

Recently, classical Laplacian Δ is substituted by the discrete Laplacian ω∆  in 
graph Laplacian problems, and various methods and techniques to study the ex-
istence and qualitative properties of solutions have been developed [2]-[7]. Here 
we should emphasize that the discrete p-Laplacian operator ( )2p pω∆ >  is ac-
tually nonlinear, which is different from the classical Laplacian Δ or the discrete 
Laplacian ω∆  or the discrete Laplacian ω∆ . 

We consider the following nonlinear SIR model with p-Laplacian defined on 
networks  

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) [ )
( ) ( ) ( ) ( ) ( ) ( )

0

0

0 0

, , 0, ,

, , 0, ,

, , 0, , 0, ,
,0 0, ,0 0, .

p

p

S d S SI S x t
t
I d I SI I x t
t

S x t I x t x t
S x S x I x I x x

ω

ω

λ β µ

β µ α

∂ − ∆ = − − ∈Ω × +∞ ∂
∂ − ∆ = − + ∈Ω × +∞∂

= = ∈∂Ω× ∞
 = ≥ ≡ = ≥ ≡ ∈Ω/ /

  (4) 

Here S, I represent the population sizes of susceptible and infectious com-
partments, respectively. The recovery R is omitted, due to the fact that S I R+ +  
is assumed to be a constant. Parameter d is the diffusion rate of individuals, λ  
indicates the recruitment rate of S and parameter β  the contact rate between 
susceptible and infectious populations. Population S and I die at a rate of µ  
and µ α+ , respectively, here α  is the additional death rate caused by infec-
tious disease. 

In this paper, when 2p > , we overcome the difficulties caused by the nonli-
near operators p-Laplacian p

ω∆  and study the global stability for the solution of 
system (4). First, we prove the Green formula of nonlinear operators p

ω∆ . Then 
we construct the maximum principle and stronge maximum principle of the 
graph Laplacian equations. With the help of the priori estimate, we present the 
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global existence result. At last, we investigate the asymptotical behavior of the 
system by the method of Lyapunov function. 

2. Preliminaries 
Lemma 2.1 (Green Formula). For any functions , :u v Ω→ , then  

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
0

0
2

,

2

,

p
x

p

x y

v x u x

u y u x u y u x v y v x x y

ω

ω

∈Ω

−

∈Ω

∆

= − − − −

∑
∑

 holds. In partic-

ular, in case of u v= , the following holds  

( ) ( ) ( ) ( ) ( )
0 0,

2 , .
pp

x x y

u x u x u y u x x yω ω
∈Ω ∈Ω

∆ = − −∑ ∑            (5) 

Proof 1 Using (2), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

0 0 0

0

0

2

~ ,

2

,

2

,

,

,

, .

pp

x x y x y

p

x y

p

x y

v x u x v x u y u x u y u x x y

v x u y u x u y u x x y

v y u y u x u y u x x y

ω ω

ω

ω

−

∈Ω ∈Ω ∈Ω

−

∈Ω

−

∈Ω

∆ = − −

= − −

= − −

∑ ∑ ∑

∑

∑  

From the above equality, we deduce  
( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
0

0
2

,

2

,

p
x

p

x y

v x u x

u y u x u y u x v y v x x y

ω

ω

∈Ω

−

∈Ω

∆

= − − − −

∑
∑ , which completes 

the proof.  
It’s worth noting that the existence of nonlinear operators ( )2p pω∆ >  causes 

difficulties when we construct the Maximun principle of system (4). 
Lemma 2.2 (Maximun Principle). Suppose that 0d >  and K are constants. 

For any 0T > , assume that ( ),u x t  is continuous with respect to t in [ ]0,TΩ× , 
is differentiable with respect to t in [ ]0,TΩ× , and further satisfies  

( ) ( ]
( ) ( ) ( ]
( )

0

0

0

0, , 0, ,

, 0, , 0, ,
,0 0, ,

pu d u Ku x t T
t

u x t x t T
u x x

ω
∂ − ∆ + ≥ ∈Ω × ∂

 ≥ ∈∂Ω ×
≥ ∈Ω

              (6) 

then ( ), 0u x t ≥  in [ ]0,TΩ× .  
Proof 2 By setting ( )0e ,K tv u x t−= , where 0K  is a positive constant satisfy-

ing 0 0K K+ > , we deduce ( ) ( ) 00 1e e p K tK tp p pu v vω ω ω
−∆ = ∆ = ∆ . Thus we have  

( ) ( ) ( ) ( ]02 0
0e 0 for , 0, .p K t pv d v K K v x t T

t ω
−∂

− ∆ + + ≥ ∈Ω ×
∂

          (7) 

Notice that ( ),v x t  are continuous on [ ]0,T  for each x∈Ω  and Ω  is finite, 
we can find ( ) [ ]0 0, 0,x t T∈Ω×  such that ( ) [ ] ( )0 0 0,, min min ,x t Tv x t v x t∈Ω ∈= . 

For the case that 0x ∈∂Ω , in view of the boundary condition of u in (6), we 
have ( ) ( )0 0

0 0 0 0, e , 0K tv x t u x t−= ≥ . Thus we have ( ), 0v x t ≥  in [ ]0,TΩ× , which 
implies ( ), 0u x t ≥  in [ ]0,TΩ× . 

For the case that 0
0x ∈Ω , the above equation implies ( ) ( )0 0 0, ,v x t v y t≤  for 
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any y∈Ω . In view of the definition of p
ω∆ , we have  

( ) ( ) ( ) ( ) ( )( ) ( )
0

0

2
0 0 0 0 0 0 0 0 0

~ ,

, , , , , , 0.
pp

y x y

v x t u y t u x t u y t u x t x yω ω
−

∈Ω

∆ = − − ≥∑  (8) 

Meanwhile it follows from the differentiability of ( ),v x t  in ( ]0,T  that  

( )0 0, 0.v x t
t
∂

≤
∂

                        (9) 

By substituting (8) and (9) into (7), we have ( ) ( )0 0 0, 0K K v x t+ ≥ . Noting 
that 0 0K K+ > , we deduce ( )0 0, 0v x t ≥ , which means [ ] ( )0,min min ,x t T v x t∈Ω ∈ . 
Therefore, we have ( ), 0v x t ≥  in [ ]0,TΩ× . That is ( ), 0u x t ≥  in [ ]0,TΩ× .  

Lemma 2.3 (Strong Maximun Principle). Suppose that 0d >  and K are con-
stants. For any 0T > , assume that ( ),u x t  is continuous with respect to t in 

[ ]0,TΩ× , is differentiable with respect to t in [ ]0,TΩ× , and satisfies (6). If 
( )*,0 0u x >  for some * 0x ∈Ω , then ( ), 0u x t >  in [ ]0 0,TΩ × .  
Proof 3 Using the above maximum principle, we have ( ), 0u x t ≥  in [ ]0,TΩ× . 

By setting ( )0e ,K tv u x t−= , where 0K  is defined as in the proof of Lemma 2.2, 
which satisfying 0 0K K+ > , we have  

( ) ( )
( )

0

*

2
0

,

e 0.p K t p

x t

v d v K K v
t ω

−∂ − ∆ + + ≥ ∂ 
            (10) 

Notice that ( ),v x t  are continuous on [ ]0,T  for each x∈Ω  and Ω  is fi-
nite, we deduce that [ ] ( )0,: max max ,x t TM v x t∈Ω ∈= < +∞ . Plugging (2) into (10), 
we have  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ]

0

* 0

0

* 0

0

0

*
22 * * *

~ ,

*
0

2 2 * * *
0

~ ,

2 2 * * *
0

2 2 * *
0

,
e , , , ,

,

2 e , , ,

2 e , ,

2 e , for 0, .

pp K t

y x y

p p K T

y x y

p p K T

p p K T

v x t
d v y t v x t v x t x y

t

K K v x t

d M x y v x t K K v x t

d M D x v x t K K v x t

d M D x K K v x t t T

ω

ω

ω

ω

−−

∈Ω

− −

∈Ω

− −

− −

∂
≥ − −

∂

− +

≥ − − +

≥ − − +

 ≥ − + + ∈ 

∑

∑ (11)

 

Since ( ) ( )* *,0 ,0 0v x u x= > , (11) implies that  

( ) ( ) ( ) ( ) ( ) ( ) ( ]
2 2 *0

02 e* *, ,0 e 0 for 0, .
p p K Td M D x K K t

v x t v x t Tω
− − − + +  ≥ > ∈     (12) 

We prove the result by contradiction. If ( ), 0u x t >  in [ ]0 0,TΩ ×  cannot hold, 
there would exists a point ( ) [ ]0

0 0, 0,x t T∈Ω ×  such that ( )0 0, 0u x t = , which im-
plies ( ) [ ] ( )0 0 0,, min min , 0x t Tv x t v x t∈Ω ∈= = . By (7), we have  

( ) ( )
( )

0 0

0 0

2
0

,

e 0.p K t p

x t

v d v K K v
t ω

−∂ − ∆ + + ≥ ∂ 
             (13) 

Since v is differential with respect to t in ( ]0,TΩ× , it follows that 
( )0 0,

0
x t

v
t
∂

≤
∂

. 

Thus (13) implies that  
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( ) ( )
( )

( ) ( )0 0

0 0

2
0 0 0 0 0

,

e , , 0p K t p

x t

vd v x t K K v x t
tω

− ∂
∆ ≤ + + ≤

∂
        (14) 

By (2), we also have ( )0 0, 0pv x tω∆ ≥ . In view of ( )0 0, 0v x t =  and ( ), 0v x t ≥ , 
we have ( ) ( ) ( )0

0

1
0 0 0 0~ ,, , , 0p p

y x yv x t v y t x yω ω−
∈Ω

∆ = =∑ . The above inequality 
implies that  

( ) 0
0 0, 0 for any and ~ .v y t y y x= ∈Ω                (15) 

On the other hand, since 0Ω  is connected, for * 0x ∈Ω , there exists a path 
*

0 1~ ~ ~ nx x x x= . By (15), we obtain that ( )1 0, 0v x t = . Employing the above 
argument repeatedly, we shall induce ( )*

0, 0u x t =  in order, which contradicts 
with (12). The proof is completed.  

Using the strong maximum principle, we easily have the following Lemma.  
Lemma 2.4 Suppose that for each 0x∈Ω , ( ) [ )( ), 0,w x C⋅ ∈ +∞  is differen-

tiable in ( )0,+∞ . Assume that 0, 0, 0d α β> ≥ >  are constants. If w satisfies  

( ) ( ) ( )

( ) ( ) ( )

0

0
0

, , 0, ,

,0 0, ,

pw d w w x t
t

w x w x x

ω α β∂ − ∆ ≥ ≤ − ∈Ω × +∞ ∂
 = ≥ ≡ ∈Ω/

          (16) 

or  

( ) ( ) ( ) ( )

( ) ( ) ( )

0

0
0

, , 0, ,

,0 0, ,

pw d w w w x t
t

w x w x x

ω α β∂ − ∆ ≥ ≤ − ∈Ω × +∞ ∂
 = ≥ ≡ ∈Ω/

        (17) 

then  

( ) ( )liminf , limsup ,
t t

w x t w x tα α
β β→+∞ →+∞

 
≥ ≤ 

 
 uniformly for 0x∈Ω .    (18) 

Lemma 2.5 Let ( ),S I  be a solution to the system (4) defined for [ ]0,t T∈  
for any ( )0,T ∈ +∞ . There exist a constant M such that ( )0 ,S x t M≤ ≤ , 

( )0 ,I x t M≤ ≤  for ( ) [ ]0, 0,x t T∈Ω × . 
Proof 4 Applying Lemma 2.2 to the system (4), we obtain ( ), 0S x t ≥ , 

( ), 0I x t ≥  for ( ) [ ]0, 0,x t T∈Ω × . Consequently, S I+  satisfies  

( ) ( ) ( )pS I
d S I S I

t ω λ µ
∂ +

− ∆ + ≤ − +
∂

 for ( ) [ ]0, 0,x t T∈Ω ×  with  

( )( ) ( ) ( )0 0,0S I x S x I x+ = +  for 0x∈Ω . By choosing  

( ) ( )( )0 0 0: max ,max xM S x I xλ
µ ∈Ω

 
= + 

 
, and applying Lemma 2.2 again, we have 

( ) ( ), ,S x t I x t M+ ≤  for ( ) [ ]0, 0,x t T∈Ω × .  

Owing to the priori estimate of Lemma 2.5, we present the following global 
existence theorem.  

Theorem 2.6 System (4) possesses a unique solution for all [ )0,t∈ +∞ .  

3. Global Stability of the Disease-Free and Endemic  
Equilibria 

Theorem 3.1 Define the basic reproduction number 
( )0 :r λβ

µ µ α
=

+
, and the 
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endemic equilibrium ( )* *,S I  with *S µ α
β
+

= , *I λ µ
µ α β

= −
+

. The disease- 

free equilibrium ,0λ
µ

 
 
 

 is globally asymptotically stable if 0 1r < , but the en-

demic equilibrium ( )* *,S I  is globally asymptotically stable if 0 1r > .  

Proof 5 We first prove the case of the disease-free equilibrium ,0λ
µ

 
 
 

. By 

Lemma 2.5, we have ( ) ( )0 , , ,S x t I x t M≤ ≤  for ( ) [ )0, 0,x t ∈Ω × +∞ . Then we 
find that S satisfies  

( ) ( )

( ) ( )

0

0
0

, , 0, ,

,0 0, .

pS d S S x t
t

S x S x x

ω λ µ∂ − ∆ ≤ − ∈Ω × +∞ ∂
 = ≡ ∈Ω/

             (19) 

Applying Lemma 2.4, for any small 1 0ε > , there exists 1 0t >  such that  

( ) ( ) [ )0
1 1, , for , , .S x t x t tλ ε

µ
< + ∈Ω × +∞               (20) 

Moreover, we have  

( ) 0limsup , uniformly for .
t

S x t xλ
µ→+∞

≤ ∈Ω               (21) 

Plugging (20) into system (4), we see that I satisfies  

( ) ( )

( ) ( )

0
1 1

0
1 1

, , , ,

, , , .

pI d I I x t t
t

I x t I x t x

ω
βλ βε µ α
µ

  ∂
− ∆ ≤ + − − ∈Ω × +∞  ∂  

 = ∈Ω

 

Since 0 1r < , we choose 
( )

1

µ µ α βλ
ε

µβ
+ −

<  such that 1 0βλ βε µ α
µ

+ − − < .  

Following Lemma 2.4, we have ( )limsup , 0t I x t→+∞ ≤  uniformly in 0x∈Ω . In 
view of the positivity of I, we have ( )lim , 0t I x t→+∞ =  uniformly in 0x∈Ω . 
Consequently, for any small 2 0ε > , there exists 2 1t t>  such that ( ) 2,I x t ε< , 
for ( ) [ )0

2, ,x t t∈Ω × +∞ . Plugging this into system (4), we see that S satisfies  

( ) ( ) ( )

( ) ( )

0
2 2

0
2 2

, , , ,

, , , .

pS d S S x t t
t

S x t S x t x

ω λ µ βε∂ − ∆ ≤ − + ∈Ω × +∞ ∂
 = ∈Ω

 

It follows from Lemma 2.4 that, for any small 3 0ε > , there exists 3 2t t>  

such that ( ) 3
2

,S x t λ ε
µ βε

> +
+

 for ( ) [ )0
3, ,x t t∈Ω × +∞ . Due to the arbitrari-

ness of 2ε  and 3ε , it follows immediately that  

( ) 0liminf , > uniformly for .
t

S x t xλ
µ→+∞

∈Ω              (22) 

Combining (21) with (22), we obtain ( )lim ,t S x t λ
µ→+∞ =  uniformly for 

0x∈Ω . Thus we prove that ,0λ
µ

 
 
 

 is globally asymptotically stable. 
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We show the endemic equilibrium ( )* *,S I  by using Lyapunov functions. 
Define a Lyapunov function  

( ) ( ) ( ) ( ) ( )
0 0

* * * *
* *

, ,
, ln , ln .

x x

S x t I x t
E t S x t S S I x t I I

S I∈Ω ∈Ω

      
= − − + − −               
∑ ∑  

Then ( ) 0E t ≥  for all 0t ≥ , and ( ) 0E t =  if and only if ( ) ( )* *, ,S I S I= . 
We can compute  

( ) ( )( )

( )( )( )

0

0

*

*

1

1 .

p

x

p

x

SE t d S S SI
S

I d I SI I
I

ω

ω

λ µ β

β µ α

∈Ω

∈Ω

 
′ = − ∆ + − − 

 
 

+ − ∆ + − + 
 

∑

∑
          (23)

 

In view of Lemma 2.1, it is easy to see that 0 0p
x Sω∈Ω

∆ =∑ , thus we have  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( ) ( )

0 0

0

0

* *

*
2

*

1

1 1 ,
2

, 0.
2

p p

x x

p

x

p

x

S SS S
S S

S S y S x S y S x x y
S y S x

S y S xS x y
S x S y

ω ω

ω

ω

∈Ω ∈Ω

−

∈Ω

∈Ω

 
− ∆ = − ∆ 

 
 

= − − −  
 

−
= − ≤

∑ ∑

∑

∑

    (24)

 

Similarly, we have 0

*

1 0p
x

I I
I ω∈Ω

 
− ∆ ≤ 

 
∑ . Plugging this and (24) into (23), 

we have  

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )

0 0

0

0

* *

2 2* * *
* * * *

* 2*

1 1

0

x x

x

x

S IE t S SI SI I
S I

S S I S S
S S I I S S I I

S S

I S S
S

λ µ β β µ α

µ β
β β

µ β

∈Ω ∈Ω

∈Ω

∈Ω

   
′ ≤ − − − + − − +   

   
 − − ≤ − − − − − + − −
 
  

+
≤ − − ≤

∑ ∑

∑

∑

(25)

 

for all , 0S I ≥ . By applying the Lyapunov-LaSalle invariance principle [8], we 
have ( ) ( )* *lim , ,t S I S I→+∞ =  uniformly for 0x∈Ω , which complete the proof.  

4. Conclusion 

Define the basic reproduction number 
( )0 :r λβ

µ µ α
=

+
, and the endemic equili-

brium ( )* *,S I  with *S µ α
β
+

= , *I λ µ
µ α β

= −
+

. We prove that the dis-

ease-free equilibrium ,0λ
µ

 
 
 

 is globally asymptotically stable if 0 1r < , while  

the endemic equilibrium ( )* *,S I  is globally asymptotically stable if 0 1r > . Our 
results extend the stability results of SIR models with graph Laplacian ( 2p = ) 
studied in [2] to general graph p-Laplacian with 2p > . 
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