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Abstract 
This work considers a special case of Lotka-Volterra equations, which means 
that in the system of two ordinary differential equations, we take the four pa-
rameters equal to one. The reason is that we want just to illustrate the proce-
dure to reduce that system to only one ordinary differential equation, such 
that we know its analytical solution. This idea will be applied to study the re-
lations between a system of three ordinary differential equations, and a couple 
of partial differential equations. Lotka-Volterra equations are solved numeri-
cally by a fourth-order predictor-corrector method, which is initialized by an 
improved Euler method with a rather small time step because it is only a 
second-order algorithm. Then, it is proposed a model with three species, de-
fined by ordinary differential equations. 
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1. Introduction 

Lotka-Volterra model [1] [2] is a well known system of ordinary differential equa-
tions that model interactions between two species, that it is numerically approx-
imated by an Adams-Bashfort predictor and a corresponding Adams-Moulton 
corrector scheme [3]. Since an implicit exact solution for Lotka-Volterra equa-
tions is known, the numerical values may be compared with those defined for 
the exact solution to verify that predictor-corrector method produces good re-
sults [4]. Next, taking like a motivation Lotka-Volterra equations, we consider a 
couple of partial differential equations that have a similar structure. Then, a sys-
tem of three ordinary differential equations [5] is related to that system of two 
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coupled partial differential equations that is studied from a geometric point of 
view, with MATLAB [6]. It is shown that curves that are solutions of the system 
of ordinary differential equations are contained in the surface defined by a equa-
tion that it turns to be a solution of both partial differential equations. 

2. Statement of the Problem 

Given the system of ordinary differential equations 

d ,
d
d
d

x x xy
t
y xy y
t

 = −

 = −


                          (1) 

where we consider the following initial conditions  

( )
( )

0

0

0 ,

0 1

x x e

y y

 ≡ =


≡ =
                         (2) 

by applying chain rule  
d d d ,
d d d
y y x
t x t
=                           (3) 

then, solving for d dy x   

d d d ,
d d d
y y t
x x t
=                           (4) 

by substituting each Equation of (1) in (4) 

d 1.
d 1
y y x
x x y

−
=

−
                          (5) 

Next step is to introduce an equation that satisfies initial conditions (2), that is  

ln .x y xy e+ = +                         (6) 

Let us check that also satisfies the differential Equation (5). By taking deriva-
tives with respect to x on both sides of (6)  

d 1 d1 ,
d d
y yx y
x xy x

 + = + 
 

                     (7) 

in other words  

d 1 d 11 ,
d d
y y
x y x x

+ = +                        (8) 

that is  

1 d d 11 ,
d d
y y

y x x x
− = −                        (9) 

in an equivalent way  

d 1 11 ,
d
y x
x y x
  −

− = 
 

                     (10) 

furthermore  
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d 1 1,
d
y y x
x y x
 − −

= 
 

                       (11) 

in consequence, we obtain the result by solving in (11) for the derivative. 
On the other hand, system of diferential Equation (1) can be written in the 

following way  

( ) ( )
( ) ( )

, , ,

, ,

x t f t x y

y t g t x y

′ =

′ =

                       (12) 

besides initial conditions (2). 
Improved Euler method applied to each equation gives  

( ) ( )( )( )

( ) ( )( )( )

1 1

1 1

, , , , , , ,
2

, , , , , ,
2

n n n n n n n n n n n

n n n n n n n n n n n

hx x f t x y f t x hf t x y y

hy y g t x y g t x y hg t x y

+ +

+ +

 = + + +

 = + + +


     (13) 

since  

( )
( )

, , ,

, ,
n n n n n n

n n n n n n

f t x y x x y

g t x y x y y

 = −


= −
                    (14) 

by substituting the first Equation of (14)  

( )( ) ( )( )1 1, , , , , , ,n n n n n n n n n n n nf t x hf t x y y f t x h x x y y+ ++ = + −      (15) 

that is  

( )( ) ( )( )1 1, , , , , 1 , ,n n n n n n n n n n nf t x hf t x y y f t h x hx y y+ ++ = + −      (16) 

again, by the first Equation of (14)  

( )( ) ( )( )( )1, , , , 1 1 ,n n n n n n n n n nf t x hf t x y y h x hx y y+ + = + − −       (17) 

in an equivalent way  

( )( ) ( )( )1, , , , 1 1 ,n n n n n n n n nf t x hf t x y y x h hy y+ + = + − −         (18) 

by sustituting (18) into the first Equation of (13)  

( )( )( )1 1 1 ,
2n n n n n n n n
hx x x x y x h hy y+ = + − + + − −          (19) 

that is  

( )( )( )1 1 1 1 ,
2n n n n n n
hx x x y h hy y+ = + − + + − −           (20) 

in consequence  

( ) ( )( )1 1 2 1 .
2n n n n n
hx x x y h y+ = + − + −              (21) 

Similarly, from the second Equation of (13)  

( ) ( )( )1 1 2 1 .
2n n n n n
hy y x y h x+ = + − + −              (22) 

From initial conditions (2), we choose 1 512h = , so that, with 0n = , we ob-
tain  
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( ) ( )

1

1

2.718281828459,
1 11 1 2 1 1.0033616

1024 512

x e

y e e

= ≈

  = + − + − ≈   

         (23) 

in the following step  

2

2

2.71826398,
1.0067346

x
y
≈

 ≈
                     (24) 

applying again, improved Euler method  

3

3

2.71822822,
1.0101188

x
y
≈

 ≈
                     (25) 

Calculated points and initial conditions iniciales, are denotated in the follow-
ing way: ( ) ( )0 0, ,1A x y e= = , ( )1 1,B x y= , ( )2 2,C x y= , and ( )3 3,D x y= . These 
points are shown in Figure 1. 

Up to now, we have considered a time step given by 1 512h =  that is rela-
tively small because improved Euler is a low order method. But, since we already 
have, beside the initial values, three ordered pairs of approximated values, it is 
possible to apply fourth order predictor scheme  

( )( ( )

( ) ( ))
1 1 1

2 2 3 3

55 , 59 ,
24

37 , 9 , ,

m m m m m m

m m m m

hx x f x y f x y

f x y f x y

+ − −

− − − −

= + −

+ −



           (26) 

similarly  

( )( ( )

( ) ( ))
1 1 1

2 2 3 3

55 , 59 ,
24

37 , 9 , ,

m m m m m m

m m m m

hy y g x y g x y

g x y g x y

+ − −

− − − −

= + −

+ −



           (27) 

then, a corrector method of fifth order is also considered  
 

 
Figure 1. Exact solution (6), and points obtained by (21), (22), and (26), (27), (28), (29). 
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( )( ( ) ( )

( ) ( ))
1 1 1 1 1

2 2 3 3

251 , 646 , 246 ,
720

106 , 19 , ,

m m m m m m m m

m m m m

hx x f x y f x y f x y

f x y f x y

+ + + − −

− − − −

= + + −

+ −

 

  (28) 

besides  

( )( ( ) ( )

( ) ( ))
1 1 1 1 1

2 2 3 3

251 , 646 , 246 ,
720

106 , 19 , .

m m m m m m m m

m m m m

hy y g x y g x y g x y

g x y g x y

+ + + − −

− − − −

= + + −

+ −

 

  (29) 

these schemes, are known as Adams-Bashfort and, Adams-Moulton. In this way, 
we obtain from the four points , ,A B C  y D , with 1 512h =  the following 
predictions  

4

4

2.71816549,
1.01351437

x
y
≈

 ≈





                       (30) 

and then, the corrections  

4

4

2.71816460,
1.01359883

x
y
≈

 ≈
                       (31) 

By defining ( )4 4,pE x y= , from the points , ,B C D , and pE , we calculate the 
predictions  

5

5

2.71808279,
1.01700624

x
y
≈

 ≈





                      (32) 

and then, the corrections  

5

5

2.71808191,
1.01643729

x
y
≈

 ≈
                      (33) 

Next, we define ( )5 5,pF x y= , and from the points , , pC D E , and pF , we 
obtain the predictions  

6

6

2.71798206,
1.02050936

x
y
≈

 ≈





                      (34) 

and then, the corrections  

6

6

2.71798025,
1.02059439

x
y
≈

 ≈
                      (35) 

Now, by defining ( )6 6,pG x y= , from the points , , pA C E  and pG , we are 
going to double the value of 1 256h =  because we are using a higher order 
method than improved Euler. So, by applying Adams-Bashfort we obtain  

7

7

2.71772389,
1.02746678

x
y
≈

 ≈





                      (36) 

and then, we make a correction with Adams-Moulton  

7

7

2.71772123,
1.02763628

x
y
≈

 ≈
                      (37) 

Next step: we define ( )7 7,pH x y= , we consider the points , ,p pC E G , and 
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pH , we get the following predictions with Adams-Bashfort  

8

8

2.71739061,
1.03455447

x
y
≈

 ≈





                      (38) 

and then, by applying Adams-Moulton  

8

8

2.71738546,
1.03472549

x
y
≈

 ≈
                      (39) 

Finaly, we define ( )8 8,pK x y=  
In Figure 1 it is shown the exact solution (6) of studied case of Lotka-Volterra 

equations, and the points obtained by numerical methods. 

3. A Model for Three Species 

We take as motivation, the Lotka-Volterra equations to propose the couple of 
partial differential equations  

1 ,
1

1
1

z z x
x x z
z z y
y y z

∂ − =  ∂ − 

∂ −  =  ∂ − 

                       (40) 

then, we define the following system of ordinary differential equations  

d ,
d 1
d ,
d 1
d 2
d 1

x x
t x
y y
t y
z z
t z


= −

 = −


=
−

                         (41) 

from the first Equation of (41)  
1 d 1,

d
x x

x t
−

=                          (42) 

that is  

1 d1 1,
d
x

x t
 − = 
 

                        (43) 

then, we obtain  
dd d ,xx t
x

− =                          (44) 

by integrating  

1ln ,x x t c− = +                         (45) 

similarly, from the second Equation of (41)  

2ln ,y y t c− = +                        (46) 

next, from the third differential Equation of (41), we get  
1 d 1,
2 d

z z
z t
−

=                          (47) 
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that is  

1 d1 2
d
z

z t
 − = 
 

 

1 d1 2,
d
z

z t
 − = 
 

                        (48) 

implying that  
d d 2d ,z z t
z
− =                         (49) 

by integrating  

3ln 2 ,z z t c− = +                         (50) 

as a consequence, we have the following equations  

1

2

3

ln ,
ln ,
ln 2

x x t c
y y t c
z z t c

− = +
 − = +
 − = − +

                      (51) 

by adding each corresponding side of Equation of (51), we obtain  

ln ln ln ,x y z x y z c+ + − − − =                   (52) 

that can be expressed in the following way  
1 1 1 1 1 1ln ln ln ln ln ln ,
2 2 2 2 2 2

x y z x y x z y z c+ + − − − − − − =       (53) 

multiplicating by 2  

2 2 2 ln ln ln ln ln ln ,x y z x y x z y z c+ + − − − − − − =         (54) 

that is  

2 2 2 ln ln ln .x y z xy xz yz c+ + − − − =               (55) 

Let us consider the value 6c e e= − , that is  

2 2 2 ln ln ln 6 .x y z xy xz yz e e+ + − − − = −             (56) 

Then, in the system (41), we will have the following initial conditions  

( )
( )
( )

0 ,

0 ,

0

x e

y e

z e

 =


=
 =

                         (57) 

now, let us consider the first Equation of (51)  

1ln ,x x t c− = +                        (58) 

then we substitute x e= , if 0t = , to obtain  

1ln 0 ,e e c− = +                        (59) 

that is  

11 0 ,e c− = +                         (60) 

by solving for the constant  

1 1,c e= −                          (61) 
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in consequence, from (58)  

ln 1.x x t e− = + −                       (62) 

Similarly, the second Equation of (51), now becomes  

ln 1.y y t e− = + −                       (63) 

Next, we consider the third Equation of (51)  

3ln 2 ,z z t c− = − +                       (64) 

by imposing the initial condition  

( ) 3ln 2 0 ,e e c− = − +                      (65) 

where, the constant is given by  

3 1,c e= −                          (66) 

in consequence  

ln 2 1.z z t e− = − + −                      (67) 

Now, by adding the three solutions (62), (63), and (67), variable t is canceled  

ln ln ln 3 3.x y z x y z e+ + − − − = −                (68) 

that can be written in the following way  
1 1 1 1 1 1ln ln ln ln ln ln 3 3.
2 2 2 2 2 2

x y z x y x z y z e+ + − − − − − − = −    (69) 

multiplicating by 2  

2 2 2 ln ln ln ln ln ln 6 6.x y z x y x z y z e+ + − − − − − − = −      (70) 

that coincides with (56) after applying logarithms properties (see Figure 2). 

4. Main Results  

Let us take partial derivatives with respect to x on both sides of (56)  

2 2 0,x xxz z yzz y
x xy xz yz

+∂
+ − − − =

∂
                (71) 

that is  
12 2,x xxz z zz

x x xz z
+∂

− − − = −
∂

                 (72) 

 

 

Figure 2. Surface defined by Equation (56). 

meters
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multiplying both sides of (72) by xz  

( )2 2 ,x x
zxz z xz z xz xz
x
∂

− − + − = −
∂

               (73) 

in other words  

2 2 2 2 ,z zxz z x xz
x x
∂ ∂

− − = −
∂ ∂

                  (74) 

from where, we obtain  

,z zxz x z xz
x x
∂ ∂

− = −
∂ ∂

                     (75) 

that is  

( ) ( )1 1 ,zx z z x
x
∂

− = −
∂

                     (76) 

in consequence, we recover the first Equation of system (40). Therefore, the sur-
face defined by (56) satisfies the first partial differential Equation of system (40). 

Similarly, it can be check that the Equation of the surface (56), also satisfies 
the second partial differential Equation of the system (40) of partial differential 
equations. 

5. Conclusion and Suggestions  

Lotka-Volterra equations are solved by the improved Euler method and fourth- 
order predictor-corrector scheme Adams-Bashfort and Adams-Moulton. Then a 
three-species model is defined by a couple of partial differential equations, which 
are transformed into a system of three ordinary differential equations, which are 
not coupled between them. It was shown that solutions of the system of three 
ordinary differential equations are contained in the surface defined by the solu-
tion of the couple of partial differential equations. Future work will be addressed 
to study systems of three ordinary differential equations [7] [8], which are ac-
tually coupled. This means that each right-hand side of these differential equa-
tions depends on at least two independent variables. 
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