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Abstract 
In the present paper we consider the case of a Dirac field in a finite time do-
main and coupled to an external field. We decompose the field and its Ham-
iltonian in terms of creation and annihilation operators and path integrate it 
via Grassmannian variables techniques. In that way we obtain its finite time 
domain Green function. We use it in the perturbative study of the interaction 
of Dirac particles with classical electromagnetic waves. 
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1. Introduction 

Quantum field theory is an important area of physics with various applications 
[1] [2] [3] [4]. It studies the dynamics of particles of various characteristics in-
cluding spin, charge and mass.  

In the present paper, we intend to give techniques for the study of finite time 
evolution within quantum field theory (See [5] for earlier attempts). More par-
ticularly we consider the case of finite time domain Dirac fields [6]-[11] evolu-
tion and study them via path integral methods. We begin from their standard 
Lagrangian and Hamiltonian densities, expand the fields in terms of anticom-
muting creation and annihilation operators and path integrate the correspond-
ing Hamiltonian via standard Grassmannian variables techniques [12]. So, on 
considering vacuum to vacuum transitions we derive the corresponding Green 
function. It gives the whole dynamical information of the physical system. We 
use it in the study of Dirac particles’ interaction with an external field [6] [7] [8], 
specifically a classical electromagnetic wave. We use perturbative methods with 
respect to the electromagnetic field and keep first-order terms. From the derived 
expressions we can study the time evolution of the distribution in space of quan-
tities such as the probability density and therefore of the possible motion of the 
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particles. More particularly here we derive for certain times contour plots of the 
probability density of a particle initially at rest which has a Gaussian spinor form. 
We observe that due to the interaction the particle’s probability density spreads 
and the particle moves away from its initial position. 

The present paper proceeds as follows. In section 2 we give the present Dirac 
field system, expand the field in terms of anticommuting creation and annihila-
tion operators and path integrate the Hamiltonian within a finite time domain to 
extract the transition amplitude between Grassmann states and more particu-
larly between vacuum states. Then in section 3, we use that result to obtain the 
Green function. In section 4 we use that Green function in order to perturbat-
ively extract the time evolution of the probability density of a Gaussian Dirac 
particle interacting with an electromagnetic wave and give appropriate contour 
plots. Finally, in section 5, we give our conclusions. 

In the present paper we set 1c = = . Then 2 1
137

e α=  , where α  is the  

fine structure constant. Below we maintain the mass symbol m for clarity and 
finally in our calculations we set 1m =  as well. The electron rest energy is 2mc  
while the Rydberg energy has value 2 2 2mc α . The atomic units of length, time  

and energy are 
2

2me
 , 

3

4me
  and 

4

2
me


 respectively. 

2. System and Path Integration 

We consider a Dirac field Ψ  of mass m coupled to a current X. Its Lagrangian 
is 

( )L i m X Xµ
µγ= Ψ ∂ − Ψ + Ψ +Ψ                  (1) 

and its corresponding classical action 

( ) ( )3
0 , d dI X x i m X Xµ

µτ γ Ψ = Ψ ∂ − Ψ + Ψ +Ψ ∫ ∫           (2) 

µγ  are Dirac matrices and 0β γ+ +Ψ = Ψ = Ψ . 
We introduce the current in order to use standard properties of the Green 

function and obtain it after integrating the whole system (see Equation (55) be-
low). 

So according to variational considerations, the free field Ψ  obeys the equation 

( ) 0i mµ
µγ ∂ − Ψ =                         (3) 

called the Dirac equation.  
The momentum canonically conjugate to the spinor field has the form 

L iπ +∂
= = Ψ
∂Ψ

                         (4) 

and the quantum Hamiltonian is given as 

( )3 3d dH x L x i m X Xπ α β+  = Ψ − = Ψ − ⋅∇ + Ψ − Ψ −Ψ   ∫ ∫




 .      (5) 

Here we study fermions. So Ψ  and +Ψ  must satisfy equal time anticom-
mutation relations, 
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( ) ( ){ } ( )3, , ,x t y t x yα β αβδ δ+Ψ Ψ = −
                   (6) 

( ) ( ){ } ( ) ( ){ }, , , , , , 0x t y t x t y tα β α β
+ +Ψ Ψ = Ψ Ψ =

    .          (7) 

We expand the fields in creation and annihilation operator components 

( )
( )

( ) ( )
34

3
1

d, , , , e
2

ip x

r p

p mx t b p r t w p r
Eα α

⋅

=

Ψ =
π

∑∫
 



             (8) 

( )
( )

( ) ( )
34

3
1

d, , , , e
2

ip x

r p

p mx t b p r t w p r
Eα α

+ + + − ⋅

=

Ψ =
π

∑∫
 



            (9) 

and let the sources have the form 

( )
( )

( ) ( )
34

3
1

d, , , , e
2

ip x

r p

p mX x t p r t w p r
E

χ ⋅

=

=
π

∑∫
 



             (10) 

( )
( )

( ) ( )
34

3
1

d, , , , e
2

ip x

r p

p mX x t p r t w p r
E

χ∗ − ⋅

=

=
π

∑∫
 



   .         (11) 

We have set 
2 2

pE m p= +

                      (12) 

( )

1
0

,1
2

zp

p

p

pE m
w p E mm

p
E m

+

 
 
 
 +

=  + 
 
  + 







                 (13) 

( )

0
1

,2
2
p

p

z

p

pE m
w p E mm

p
E m

−

 
 
 
 +

=  + 
 −  + 







                 (14) 

( ),3
2

1
0

z

p

p

p

p
E m

E m p
w p

E mm
+

− 
 + 
 + −

=  
+ 

 
  
 







                 (15) 

and 

( ),4
2

0
1

p

p z

p

p
E m

E m p
w p

E mm

−− 
 + 
 +

=  
+ 

 
  
 







                 (16) 

https://doi.org/10.4236/jamp.2023.1112250


E. G. Thrapsaniotis 
 

 

DOI: 10.4236/jamp.2023.1112250 3931 Journal of Applied Mathematics and Physics 
 

where x yp p ip± = ± . 
The spinors satisfy the following orthogonality and completeness relations 

( ) ( ), , p
rr

E
w p r w p r

m
δ+

′′ =


                     (17) 

( ) ( ), ,r r r rrw p r w p rε ε ε δ′ ′′ =
                    (18) 

( ) ( )
4

1
, , p

r

E
w p r w p r

mα β αβδ+

=

=∑


                   (19) 

where 1rε =  for 1,2r =  and 1rε = −  for 3,4r = . 
In order ( )xαΨ

  and ( )xβ
+Ψ
  to satisfy the anticommutation relations (6, 7), 

b  and b+  must satisfy 

( ) ( ){ } ( ) ( )3 3, , , 2 p
rr

E
b p r b p r p p

m
δ δ+

′′ ′ ′= π −


               (20) 

( ) ( ){ } ( ) ( ){ }, , , , , , 0b p r b p r b p r b p r+ +′ ′ ′ ′= =
    .           (21) 

Now, on using the above information the Hamiltonian (5) takes the following 
form 

( )
( ) ( ) ( ) ( ) ( ) ( )( )

34

3
1

d , , , , , , , ,
2

r p
r p p

p m mH E b p r b p r p r t b p r p r t b p r
E E

ε χ χ+ + ∗

=

 
= − + 

π   
∑∫ 

 

      . (22) 

We observe that it constitutes of the sum of single mode Hamiltonians of the 
form 

( )0
mH Eb b b b
E

χ χ+ + ∗= − +                  (23) 

where b  and b+  are annihilation and creation operators for fermions which 
satisfy the anticommutation relations (20, 21). They are a reflection of the Pauli 
principle. We intend to evaluate the propagator. Initially we consider the free 
case with the following Hamiltonian for one fermion 

1H Eb b+=                        (24) 

We intend to construct a path integral representation of the evolution opera-
tor ( ) 1

1 e iH tU t −= . To proceed we introduce Grassmann variables ξ , ξ  within 
a Grassmann algebra ℑ  and represent the Hamiltonian operator 1H  as an 
operator acting on functions defined on that Grassmann algebra ℑ . Then 

1H Eξ
ξ
∂

=
∂

, ξ ∈ℑ .                   (25) 

Functions of ξ  constitute a vector space of dimension two. 
What motivates to use Grassmann variables is the fact that they obey a similar 

algebraic structure with the anticommutation structure obeyed by the Fermionic 
operators b+  and b . So, we proceed via standard path integral techniques [1] 
[12]. At first, we suppose that t is small and get 

( ) ( ) ( ) ( )12 2
1 1 e e iEtU t itE O t O tξξξξξ ξ ξ

ξ
′− −′− ∂′ = − + = + ∂ 

.     (26) 
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Then we use the group property 

2 1 2 1d d eU U U Uξ ξξ ξ ξ ξ ξ ξ ξ ξ′′ ′′′′ ′′ ′′ ′′ ′ ′=∫            (27) 

to write the evolution operator at finite time 

( ) ( )
1

1 1
1

, lim d d exp ,
n

f f i i k k k kn k
U t t iSξ ξ ξ ξ ξ ξ

−

→∞ =

 =  ∏∫           (28) 

where 

( ) ( )
1

1 1 1 1
1 1

,
n n

k k k k k n n k k
k k

S i i Eξ ξ ξ ξ ξ ξ ξ ε ξ ξ
−

− − −
= =

= − + −∑ ∑           (29) 

f it t
n

ε
−

=                            (30) 

and 

0 ,i n fξ ξ ξ ξ= = .                        (31) 

In the large n limit we obtain the path integral representation for the matrix 
elements of ( )1 ,f iU t t  

( )
( )

( )
( ) ( ) ( )1 1, exp ,

f f

i i

t

f f i i
t

U t t D t D t iS
ξ ξ

ξ ξ

ξ ξ ξ ξ ξ ξ
=

=

 =  ∫          (32) 

with 

( ) ( ) ( ) ( ) ( ) ( )1 , d
f

i

t

f f
t

S i t t t t i t E tξ ξ ξ ξ ξ ξ ξ = − + − ∫  .          (33) 

The above expressions immediately generalize to the case of the Hamiltonian 
(23). Then we obtain the path integral 

( )
( )

( )
( ) ( ) ( )0 , exp ,

f f

i i

t

f f i i
t

U t t D t D t iS
ξ ξ

ξ ξ

ξ ξ ξ ξ ξ ξ
=

=

 =  ∫         (34) 

and the action 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 ,

d
f

i

t

f f
t

S

mi t t t t i t E t t t t t
E

ξ ξ

ξ ξ ξ ξ ξ χ ξ χ ξ∗  = − + − + +   ∫ 

 (35) 

where 

( )
( )0d

0 , e

t f

ti

i tH t

f iU t t
− ∫

= .                    (36) 

The path integral (34) with action (35) is Gaussian and therefore it can be 
evaluated exactly. The saddle point equation obtained by varying ( )tξ  yields 

0mi E
E

ξ ξ χ− + =                     (37) 

with solution 

( ) ( ) ( ) ( )e d ei

i

t
iE t t iE t

i
t

mt i
E

τξ ξ τ χ τ− − − −= + ∫              (38) 
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Similarly, the variation of ( )tξ  gives 

0mi E
E

ξ ξ χ∗− − + =                      (39) 

with solution 

( ) ( ) ( ) ( )e d e
f

f
t

iE t t iE t
f

t

mt i
E

τξ ξ τ χ τ− − − − ∗= + ∫ .             (40) 

In the above equations we have taken into account boundary conditions. 
Finally, we restore the variables appearing in Equation (22) and perform 

standard manipulations within Equation (35) to obtain the propagator 

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

0

2

, , ; , , ; ,

exp , e ,

d , e , , , , e ,

1 d d , , e , ,
2

p f i

f
p f p i

i

f f
p

i i

f f i i

iE t t
f i

t
iE t t iE t t

f i
p t

t t
iE t t

p t t

U p r t p r t X X

p r p r

mi t p r p r t p r t p r
E

m t t p r t p r t
E

ξ ξ

ξ ξ

ξ χ χ ξ

χ χ

− −

− − − −∗

′− −∗

= 


+ +

  ′ ′−       

∫

∫ ∫













 

 

   

 

  (41) 

To derive that the normalization constant in Equation (41) is one we set 
0χ χ∗= =  and use the semigroup property. 

In order to obtain the final form of the Grassmannian amplitude we have to 
integrate diagonally between the initial variable η  and the final one ζ . I.e. 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

, ,

0

, , ; , , ; ,

d , d , e , ,

, , ; , , ; , , ,

f i

p r p r

f i

U p r t p r t X X

p r p r p r p r

U p r t p r t X X p r p r

ξ ξ

ζ η

ξ ξ ζ ξ

ξ ξ ξ η

=

×

∫
 

 

   

   

         (42) 

For the similar case of coherent states see [13] [14].  
Now 

( ) ( ) ( ) ( ), , exp , ,p r p r p r p rζ ξ ζ ξ = − 
                 (43) 

and 

( ) ( ) ( ) ( ), , exp , ,p r p r p r p rξ η ξ η = − 
                 (44) 

So, on evaluating the Grassmannian integral that appears we obtain 

( ) ( )( )
( ) ( )

( )
( )( )

( ) ( ) ( ) ( )

( )
2

, , ; , , ; ,

, ,
exp ln 1 e

1 e

e ed , , , , , ,
e e e e

d d , , ,

p f i

p f i

f p p

p i p f p i p f
i

i

f i

iE t t

iE t t

t iE t iE t

iE t iE t iE t iE t
p t

t

f
p t

U p r t p r t X X

p r p r

mi t p r p r t p r t p r
E

m t t p r t p t
E

ζ η

ζ η

ζ χ χ η

χ λ

− −

− −

−
∗

− −

∗


= − + +
 +

 
+ +  + + 

 
′−  

 

∫

∫





 

   





 

 

   

 ( ) ( ), , , , ,
f

i

t

i
t

t t t p r tχ
′ ′ 


∫


 (45) 
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We have set 

( ) ( ) ( )( )
( )

( ) ( )

( )

sin
22cos

, , , , e
1 e cos

2

p

p f i

p f i
p

piE t t
f i iE t t

p f i

E t t
E t t

E t t
p t t t t i

E t t
λ ′− −

−

 −
 ′− −
 ′−  ′ = − = −

 −+  
 
 













  (46) 

Finally 

( ) ( )( )

( ) ( )
( )

( )( )

( ) ( ) ( ) ( )

( )
2

, , ; , , ; ,

, ,
exp ln 1 e

1 e

e ed , , , , , ,
e e e e

d d , ,

p f i

p f i

f p p

p i p f p i p f
i

f

i

f i

iE t t

iE t t

t iE t iE t

iE t iE t iE t iE t
p t

t

p t

U p r t p r t X X

p r p r

mi t p r p r t p r t p r
E

mi t t p r t t
E

ζ η

ζ η

ζ χ χ η

χ

− −

− −

−
∗

− −

∗



= − + +
 +


 
+ +  + + 

 
′+ Θ  

 

∫

∫





 

   





 

 

   

 ( )
( ) ( )

( )
( )

sin
2

, ,

cos
2

f

i

p f i
pt

t p f i

E t t
E t t

t p r t
E t t

χ

 −
 ′− −

   ′ ′− 
 −       

∫









 (47) 

( )t t′Θ −  is the step function. 
We can obtain the finite time domain Green function of Dirac fields from the 

present considerations. We do that in the next section. 

3. Green Function 

According to the discussion of the previous section in the case of the Hamilto-
nian (23) the vacuum-to-vacuum amplitude in the presence of sources is 

( ) ( )( )

( ) ( )
( )

( )
2

0, ;0, ; , exp ln 1 e

sin
2

d d , , , ,
cos

2

p f i

f f

i i

iE t t
f i

p
t t p

pp t t

U t t X X

E T
E t t

mi t t p r t t t p r t
E TE

χ χ

− −

∗



= +



 
′− −     ′ ′ ′+ Θ −            

∫ ∫











 

  (48) 

where f iT t t= − . 
In the case of the Hamiltonian (22) we can proceed via similar steps to arrive 

to a superposition of expressions of the form (48). In our manipulations we have 
to take into account that ,4, 3r rε =  is negative. Therefore the sign of time is 
modified (see Equation (50) below). 

Moreover, we transform the functional dependence on ,χ χ∗  back to the 
dependence on ,X X . To achieve that we make use of the orthonormality of the 
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w spinors 

( ) ( ), ,r rrw p r w p rε δ ′′ =
                       (49) 

Then we obtain the generating functional ( ),Z X X  of the correlation func-
tions of the Dirac Lagrangian in the case of a finite time domain in the following 
form 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

2
3

3

2

, 1

4

, 3

d, 0,0 exp d d
2

sin
2

, , , , , ,
cos

2

sin
2

, , ,
cos

f f

i i

t t

p pt t

p
p

r r p

p
p

r r p

p m mZ X X Z i t t
E E

E T
E t t

p r t w p r t t w p r p r t
E T

E T
E t t

p r t w p r t t
E T

χ χ

χ

∗

′=

∗

′=


   ′=    π  


  
′− −  

  ′ ′ ′ ′× Θ −  
    

 
′ − − 

 ′− Θ −

∫ ∫ ∫

∑

∑

 













   

  ( ) ( ), , ,

2

w p r p r tχ



′ ′ ′       

 

 (50) 

Now since 

( ) ( ), 0rp m w p rε− =
                      (51) 

we can write 

( ) ( ) ( ) ( )
2 2 4

1 1 , 1
, , , ,

2r r r r

p m
w p r w p r w p r w p r

m′ ′= = =

+ ′ ′=  
 

∑∑ ∑            (52) 

and 

( ) ( ) ( ) ( )
4 4 4

3 3 , 1
, , , ,

2r r r r

p m
w p r w p r w p r w p r

m′ ′= = =

− ′ ′=  
 

∑∑ ∑            (53) 

So on using the above equations, Equation (50) becomes 

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( )
( ) ( )

3 34
3 3

3 3
1

34

3
1

, 0,0

d dexp d d d d , , , e
22 2

sin ( )
2 de , , , e

2cos
2

f f

i i

t t
ip x

r p pt t

p
p

ip x x ip

rp p

Z X X Z

t tp p mi t t x x p r t w p r
E E

E T
E t t

p mp m w p r p r t
E T E

χ

χ

′∗ − ⋅

= ′

′⋅ − ′′

′= ′′

=

 ′Θ −′ ′ ′ ′ ′× 
π π

 
′− −  ′′  ′′ ′ ′′ ′ ′× +

  π
 
 

∑∫ ∫ ∫ ∫ ∫ ∫

∑ ∫

 

 





  







 

 

( )
( ) ( ) ( ) ( )

( )

( )

( )
( ) ( )

34

3
1

34

3
1

sin
2d , , , e

22 cos
2

de , , , e
2

x

p
p

ip x

r pp p

ip x x ip x

r p

E T
E t t

t tp m p r t w p r p m
E TE E

p m w p r p r t
E

χ

χ

′⋅

′∗ − ⋅

= ′

′− ⋅ − ′′ ′⋅

′= ′′

 
′ − − ′Θ −′  ′ ′− − − −
 π
 
 

′′ ′′ ′ ′′ ′ ′× − − 
π 

∑∫

∑∫







 



 

  

 



 

 

 (54)
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Therefore, since the Green function is given as 

( ) ( ) ( ){ }

( ) ( )
2

0

, ; 0 , , 0

1 ,
0,0 X X

G x x t t T T t x t x

Z X X
Z X X

δ
δ δ

= =

′ ′ ′ ′− − = Ψ Ψ

= −

   

         (55) 

upon performing the functional derivations, we get 
( )

( )
( ) ( )

( )
( )

( ) ( )
( )

( )

3

3

, ;

sin
2d e

22 cos
2

sin
2

e
2

cos
2

p
p

ip x x

pp

p
p

ip x x

pp

G x x t t T

E T
E t t

t tpi p m
E TE

E T
E t t

t t
p m

E TE

′⋅ −

′− ⋅ −

′ ′− −

  
′− −  ′Θ −  = − +  π     

 
′− +  ′Θ −   + −  

    

∫





  









  





 

     (56) 

or 
( )

( )
( ) ( )

( )
( )

( ) ( )
( )

( )

3
2

3

2

, ;

sin
2d e e

1 e2

sin
2

e e
1 e

p

p

p

p

p
E Tp

i ip x x
iE T

p

p
E Tp

i ip x x
iE T

p

G x x t t T

E T
E t t

t tpi p m
E

E T
E t t

t t
p m

E

− ′⋅ −
−

− ′− ⋅ −
−

′ ′− −

  
′− −  ′Θ −  = − + +π 


 

′− +  ′Θ −   + − + 


∫












  







  



 

   (57) 

Further after appropriate geometric series expansions Equations (56, 57) can 
be written in the form 

( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3
1

3
0 0

1

0 0

, ;

d e e 1 e e 1 e
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n niE inE T iE i n E Tip x
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τ τ

τ τ

τ

τ

τ

∞ ∞
− − − +⋅

= =
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− − − +− ⋅

= =

Θ  = + − − −  
 π 

Θ −  − − − − −  
 

∑ ∑∫

∑ ∑

   

   

 



 





 (58) 

We should expect that after the integrations the above series converge and 
therefore, we can truncate them. Alternatively, we can bypass the poles in Equa-
tion (57) if we introduce a constant µ  which is smaller but close to one and 
write Equation (57) in the form 

( )
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( ) ( )

( )
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3
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2d e e

1 e2
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t t
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′− +  ′Θ −   + − + 











  



 

We can use the above expressions in the study of the propagation of Dirac 
fields in a finite time domain spacetime. 

4. Application 

Now we apply the above theory to the propagation of a Dirac particle interacting 
with an external (classical) electromagnetic field characterized by its potential 
Aµ . Then the action will have the form 

( ) ( )3, d dI A x i e A mµ µ
µ µτ γ γ Ψ = Ψ ∂ − − Ψ ∫ ∫            (60) 

and according to variational considerations Ψ  satisfies the equation 

( ) 0i e A mµ µ
µ µγ γ∂ − − Ψ =                      (61) 

while the corresponding Green function ( )2 2 1 1, ; , ;AG x x Tτ τ   obeys the equation 

( ) ( ) ( ) ( ) ( )3
2 2 2 2 2 1 1 2 1 2 1, , ; , ;Ai eA x m G x x T i x xτ τ τ δ δ τ τ ∂ − − = − − 

         (62) 

Green functions are important as functionally they are the inverses of the dy-
namic operators describing the evolution of the various systems. So combined 
with perturbation theory they constitute a powerful tool. Below we apply that 
mathematical structure to the present system. 

In fact here we intend to consider the time evolution of a Dirac spinor and 
calculate its probability density as a function of time. Let initially the Dirac par-
ticle spinor be ( ) ( ),0y yψ ϕ=  . Then the final spinor ( ),x Tψ   is 

( ) ( ) ( )3 0, d , ; ,0;Ax T yG x T y T yψ γ ϕ= ∫
                  (63) 

and its four current ( ),j x Tµ   has the form 

( ) ( ) ( ), , ,j x T e x T x Tµ µψ γ ψ=
                     (64) 

Now we suppose that eAµ  is small enough to be treated as a perturbation so 
that AG  may be expressed as an (asymptotic) expansion in eAµ . Then via 
standard methods [2] we can get the integral equation 

( )

( ) ( ) ( ) ( )

3 3 1 1

3
3 3 1 1 2 2 3 3 2 2 2 2 2 2 1 1

0

, ; , ;

, ; , ; d d , ; , ; , , ; , ;

A

T

A

G x x T

G x x T i x G x x T eA x G x x T

τ τ

τ τ τ τ τ τ τ τ= − ∫ ∫

 

       

 (65) 

where we have set (see Equation (56)) 

( ) ( )3 3 1 1 3 1 3 1, ; , ; , ;G x x T G x x Tτ τ τ τ= − −
                  (66) 

So, we suppose that Aµ  is the potential of a plane electromagnetic wave 
propagating along the wavevector k



, with frequency ω , polarization vector 
ε  and amplitude 0∆  Then 

( ) ( ) ( )( )0, e ei k x i k xA x ωτ ωττ ε ε− ⋅ − − ⋅
= ∆ +

 

 



                 (67) 
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and  

( )0 , 0A x τ =
                         (68) 

Further we set 

( )
2

2
3 4

2
2

1
01 e
0
0

y

y σϕ
σ

−

 
 

   =    π 
 
 



                    (69) 

On combining Equations (63, 65) we obtain to first order with respect to A


 
the expression 

( ) ( ) ( )
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−

∫
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 (70) 

Then upon using Equation (56) and substituting Equations (67, 68, 69) we get 
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 (71) 

We notice that 0e∆  has dimension of energy (see the comments at the end 
of the introduction as well). 

After appropriate manipulations (see Equation (59) and the comments above 
that equation) we can derive the following form for the ψ  spinor 

( )
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Moreover according to Equation (64) the probability density has the form 

( ) ( ) ( ) ( ) ( ) ( )
4 20

1
, , , , , ,x T x T x T x T x T x Tδ

δ
ρ ψ γ ψ ψ ψ ψ+

=

= = =∑           (73) 

If 0T =  as we can easily conclude from Equation (69) the probability density 
is spherically symmetric. Moreover, if we let the polarization vector ε  be along 
the x-axis and the wavevector along the z-axis. I.e. 

0
1
0
0

ε

 
 
 =
 
 
 

                           (74) 

and  

( )0,0,k k=


                         (75) 

We can use the above considerations to extract the probability density ρ  for 
various times T. In Figure 1 we give several contour plots. We observe that the 
probability density spreads and that the particle moves away from its initial position. 
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Figure 1. Contour plots of the probability density of a Dirac particle interacting with a 
plane electromagnetic wave which is linearly polarized along the x-axis and propagates 
along the z-axis. We consider contour plots on various planes and for various times T. 
For 0T =  the probability density is spherically symmetric. So, we give one of the iden-
tical contour plot and on setting ( ) ( )1 2 3, , , ,x x x x x y z= =

  we suppose that (i, j, k) is a 

permutation of (1, 2, 3). For larger times we observe that the particle spreads and moves 
in space. Moreover we have used the values 0.3ω = , 0.3k = , 0 5.0∆ = , 1.0σ = , 

0.9µ =  and have applied natural units. I.e. we have set 1m c= = = . 

5. Conclusions 

In the present paper, we considered the case of a Dirac field in a finite time 
do-main. We expanded its Hamiltonian in terms of creation and annihilation 
operators and path integrated via Grassmann variables techniques to extract its 
Green function. We notice that the finite time domain Green function appears 
when the boundary conditions correspond to a finite time interval. 

Moreover, we applied that Green function in the perturbative study of its in-
teraction with a classical electromagnetic field and considered the time evolution 
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of an initially Gaussian spinor. We kept first order terms with respect the field 
and as an application we gave contours plots of the probability density on vari-
ous planes and for various times. From those contour plots we can observe that 
the probability density of the particle as a function of time spreads and that the 
particle moves away from its initial position due to the interaction. 

In conclusion the present method—structure can be applied to various quan-
tum systems and give interesting results concerning their finite time domain 
dynamics. In subsequent publications we intend to consider the case of other 
quantum fields, free or interacting, within finite time domains and study their 
dynamics. 
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