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0 - RO
E pen Access Fractional differential equations are generalizations of integer differential equa-

tions and more accurate than integer models in reflecting certain properties of
things [1]-[6]. Fractional differential equations have a wide range of applications
in the fields of fluid dynamics, stochastic equations, and control systems [7] [8]
[9] [10] [11].

Atangana-Baleanu-Caputo (ABC) is a fractional derivative centered on the
Mittag-Leffler function proposed by Atangana and Baleanu [12]. The nondeter-
ministic nature of ABC derivatives with Mittag-Leffler kernel can effectively take
into account the nondeterministic dynamics and more appropriately capture var-
ious features of real systems [13] [14] [15] [16]. For instance, Salari and Ghanbari

[17] studied the existence and multiplicity of the following ABC fractional deriv-
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ative boundary value problems

{Ascp;(Ascm@)-vh(r,y<r>>=o,re[o,11,

y(0)=y(1)=0,
where "®“D} is ABC fractional derivative, %< r<1, v>0, h:[01]xR—>R

is L'-Caratheodory function. The existence and numerical estimation of solu-
tions to the equations are investigated by means of variational methods.

In addition, impulse differential equations are suitable models for describing
real processes that rapidly deviate from the state at a specific moment in time,
which cannot be expressed by classical differential equations. Impulse differen-
tial equations have a wide range of applications in many fields such as physics,
management science, population dynamics and so on [18] [19] [20]. Some phys-
ical problems have sudden changes and discontinuous jumps, and in order to
model and study these problems in depth, many researchers and scientists have
taken a keen interest in the study of fractional differential equations with im-
pulses. For example, Yang and Zhao [21] studied existence and optimal controls
of the following non-autonomous impulsive integro-differential evolution equa-

tion
( ) A(t)x(t)+ f (t,x(1),Gx(t))+B(t)u(t),te J :=[0,b],t £ t,,
(

2 Az
( ) g(x)=

where A(t):D(A)c X — X is a family of densely defined and closed linear
opertor which generates an evolution system {U (t,;s):0<s<t< b} on X,
{B(t) it 0} is a family of linear operators from Y to X. The existence of weak
solutions to the equation was proved through the Krasnoselakii’s fixed point
theorem. Subsequently, a minimization sequence was constructed to prove the
existence of optimal control pairs for differential evolution control systems.
Nowadays, although some achievements have been made in the study of frac-
tional differential equations with impulse conditions, few studies have been
made on the existence of solutions to fractional differential equations with
Atangana-Baleanu-Caputo derivative. Therefore, inspired from the above con-
tributions, the existence of solutions to a class of fractional differential equations

of type ABC with impulse conditions is studied on the following problem
AeDru(t) = f(tu(t), ABCD“u(t)),t eJ=[01],0<a<1
Au(t,) =1, (u(t, ))k 12, (1)
au(0)+bu(1)=0

"D represents the Atangana-Baleanu-Caputo fractional derivative,

where
and f:JxRxR—>R is given continuous functions, Au(t,)=u (tk* ) -u (tk') ,
and u(tk+ ), u(t,z ) are the left and right limits of u(t) respectively. Assuming
that u(t) is left-continuous at t=t,, that is u(t,)= u(tk‘). Let 1, eC(J,R),
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0=ty <t <--<t, <t =1, and Jy=[0t,],d; =(t;,t,],--, I, =(t,.1]. We ob-
tain that there is at least one solution by the Banach and Krasnoselakii fixed
point theorems. In addition, an example is given to illustrate the validity of the
main results.

The rest of this paper is organized as follows. In Section 2, some basic defini-
tions, lemmas, and theorems are presented. Then in Section 3, the existence of a
solution for the nonlinear fractional differential equation is obtained by Banach
and Krasnoselakii fixed point theorems. Section 4 discusses the Hyers-Ulam sta-
bility of solutions. At last, an example is given in the last part to support our
study.

2. Preliminaries

In this section, we recollect some basic concepts of fractional calculus and auxiliary
lemmas, which will be used throughout this paper. Suppose that X =C (J R) is
a Banach space and equipped with the norm ||u]|= max,, |u (t)| .

Definition 2.1 [12] Let ueH'(c,d), ¢<d, and a<(0,1). The ABC frac-

tional derivative for function u of order « is defined as

¢ Dfu(t) Mﬁu'(:)ea[—‘““‘@“Jx,

:1—a l-a

where B(a) is a normalized function and B(0)= B(l) =1, E,_, denotes Mit-
tag-Leffler function.

Definition 2.2 [22] Let u be a function, then the AB fractional integral of or-
der a €(0,1) Is defined by

1eu(t) = ;E:‘)u(m (o ra u(EE-e) e

Lemma 2.3 [23] For a e(n,n+1],n=0,1,2,---, the following result hold

A1EPEDfU(t) =u(t)+ ¢y +ot+--+Ct",

where ¢, is unknown arbitrary constants, i=0,1,---,n.

Theorem 2.4 [24] (Banach fixed point theorem) Let X be a Banach space,
Gr c X be closed, and T :G; —> G, is a contraction operator, then T has a
unique fixed point.

Theorem 2.5 [25] (Krasnoselakii fixed point theorem) Let W be a nonempty;,
convex, and closed subset of X. Consider two operators W,,W, satisty

1) W, (v,)+W,(v,)eW forall v;,v,eW,

2) W, isa contraction operator,

3) W, is continuous and compact,

then there exists at least one solution We X , such that W, (w)+W, (w)=w.

Lemma 2.6 Let he X, then the unique solution for the following problem

A Dfu(t)=h(t),ted =[0,1],0< e <1,
Au(t ) =1 (u(t)).k=12-,m, )
au(0)+bu(1)=0,

DOI: 10.4236/jamp.2023.1112249

3916 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.1112249

X.F. Linetal.

is

' (t-¢)" T h(£)dg 3)

Proof Applying "1 to both side of **;D{u(t)=h(t), then the equation
(2) can be written in the following equivalent form
u(t)="817h(t)-c,,
where ¢, isaunknown constant.
When telJ;, from Lemma 2.6 it follows that
l-«a a t a1
t)=——h(t)+————| h(&)(t- dé—c,.
U() B((Z) ()+B(a)r(a)‘[0 (5)( Zj) 5 Co
When tel,,

(0= G0 G o) 0 g,

N l1-a /. a t a-1
u(t, )=—)h(t1 )+Wjoh(§)(t—§) dé —c,,

()= 0w,

(24

os)

(
from Au(t1)=u(t1*)—u(tl‘)= Il(u(tl)), we get

5" (4 By (b8 M - (u)
from the continuity of 4 it follows that

o (=) n(&)de + 1, (u(t) <.

a

Thus, when teJ,;, we have
l-a a t _ pyet

() =g MO g Ty (-8 e

a

+Wjol(t1 —&) T h(&)dE+ 1, (u(ty))+c,,

Using the same method, when teJ,, we can get
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u(t)= ;E(j)h(t)* B(a;{r(a)ﬁ(t—f)Hh(s‘)de‘ .
" Ba ) ZL” )d§+Z'( (t))-¢
By au(0)+bu(1)=0, we have
a(l-a)

Co =

l-«a a 1 a1
(a+b)B(a)h( )+ a+b{ B(a )h(1)+|3(a)l“(a)-[ti(l_§) h(¢)ds
sl (-9 e S )

i-1

"B(a)r(a

Hence, inserting the values of ¢, we get the solution (3). This completes the

proof. O

3. Main Results

In this section, we transform the problem (1) into the fixed point of the operator
H, and then prove the existence of solutions of the problem (1) by using Banach
and Krasnoselakii fixed point theorems.

In order to obtain the main results of this paper, the following hypotheses
must be satisfied.

(H1) There exist constants K, K, such that for any u(t),v(t)eC(J,R), we
have

[f (£0(0).v(0) = f (6T 7)) < K (u 0]+ v-])
[ (u(t0)) =1 (v(t))] < KeJu-vl;
(H2) There exist constants A, B, C, , such that
|f(tu,v)|< Ay +BgJul+C, |v];
(H3) Since 1, (u(t,))€C(J,R), then there exists a constant M, such that
|Ik(u(tk))|£ M
Let H:X — X be defined by

Hu(t) =222 £ (t,u(t), *Dgu (1))

B()

+mﬁ(t—é)‘“ F(£u(¢). "5Dku(£))ds

(a+b)§f’a) Ma )JT<1-5>“f(f:u(:)ﬁBzDz (¢)) ( (t))
amparE e f(f,u@),“‘sozu(s))d:
(afb%(af(o.u(o»AB%D:u(o)%bf(Lu(l),ABngua))).

Theorem 3.1 Assume that (H1) hold, then Equation (1) has the unique solu-
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tion if
2K, (a+b)(1-a)I(a+1)+mK,(1-K,B(a))l (a+1)+ K [(a+b)a+b+m] 1
(a+b)(1-K,)B(a)T (a+1) '

Proof In order to prove the uniqueness and existence of the solution to prob-

lem (1), we first show that His a compression operator, assuming that u,U e X,
|Hu - Ha]|
=max,., |Hu — H]|

— max, 1_—“[f (tu(t),**5Dru(t)) - f (La(t).o* Dra(t))]

B(a)

(
K21 ) - (o) ] 50 (1) - #Dsa (1)

Sl e o) -s(e)| oru(e) - “5ozm(eyJoe

(a+b)ET;)r(a)Jtil(l_f)a_l[|u(f)—ﬁ(§)|+|ABﬁD,?U(é)— weeDru(£)||dg
+(a+b)BK(1a)r( )Zf: (t -y [Ju(&)-T(&)]+[**5Dzu () - *5DzT(£) Jae
M) a0} 2 (o) 50| *S05u(0) 505500
il -T]| “Sorecy - “orw(y]

Now, we have
|#2Dru(t) - 5Dy (t)| = (tu(t), **5Dru(t)) - f (Lo (1), 5Dra(y))
< K1(|u —u]+|*°5Dru(t) - ABgD{’LT(t)D,
which implies

Ky

#50ru(t) - *gDra ()<

u-]. (5)
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From Equation (5), we get

|Hu — Hal
cfult-a) |u—a]+ K, |u-]
| B(a) 1-K,
Ko LN | N Ki 1=
+—B(a)1“(a)jt1(t é) Du u|+1_K1|u uqd(,E

+(a+b)ET;)r(a)I(l &)’ Du u|+ K, 1|u_a|}d§

Bl o ol ol o

+mK2|u—U|+M -+ g
a+b (a+b)B(a) 1-K,
LDala) fy ml Ky g
(a+b)B(a) 1-K;

L 2Ki(a+b)(1-a)(a+1)+mK, (1-KB(a))I(a+1)
- (a+b)(1-K,)B(a)T'(a+1)
K,[(a+b)a+b+m]

"larb)(- Kl)B(a)F(a+l)|u

Thus, the operator A is a contraction map, by Theorem 2.4, the problem (1)

u—m

.

has a unique solution. O
By theorem 3.1, H is defined under the consideration of Krasnoselskii’s fixed

point theorem as follows:
Hu(t) =Wu(t)+W,u(t),

where

Wu(t)=1-% ¢ (tu(t), ABEQ“‘U(U%ﬁEf (£.u(&), =SDzu(£))de

s -8 £ (£u(e). #5Dzu(e)) e

G

1

*m(m (0.u(0). **¢Du(0))-+bf (Lu(1), **§Dru(w))),

Bl G (). zu(e)as

t

W,u(t)= @ b)B(

Z'.( ( ))-

i=1

Theorem 3.2 Assume that (H1)-(H2) hold, then system (1) has at least one
solution with the condition

bmK, +me2 <1
(a+b)B(a)T(a+1)(1-K,) a+b

Proof The proof is divided into two steps.
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Step 1: W, isa compression map.
Let W, ={ue X :|u|<r} bea closed bounded setand u,T €W, . Now

[Wu —w,b]
= max,_, [\IV (t)-w,a ()|

ZL

“(aib)B ( TH(gu(9).5pzu(9)

s o >\df+—2| O-Ho0)

‘Gt [Kl(|”‘ﬁ|+|AB§D{’U— e pyal) Jas
bmK,,  _

+a+b|u_u|

et 8 [5[b ot oo o
S{(a+b)8(a;31r?(Koi+1)(1—K Zm+Kb}| ~al.

Hence, W, is a contraction map.

Step 2: W, is continuous and compact.

Firstly, we prove that W, is bounded.

"W1u|| = maX; |W1U (t)|

= max 1-a u ABC Dy (1)) + a t u ABCya |
=M, gy (B0 D00 gy, FEu(e). opru(e))ds
ba ! a-1 ABC ay |
*ar)B(a)ra) k8 T(Eu(e). eDzu(E))de
l-a

)(af (0,u(0), **5Dgu(0))+bf (Lu(2), *5Dfu(1)))

"(a+0)B(a

£1_a[Ag+B |u +C |AB°D“ ()H

+L)J';(t—§)a4[Ag + B, Ju(t)]+C, | **5Dru(t)] Jae

B(a)l"(a o
1_ AB a
er(a[Ag +B, |u(0)|+Cg| Dy U(O)H
er[Ag +B, |u(1)+C, |Asng‘u(1)|]).
In addition
|:Bc Dtau(t)| :‘f (t,u(t), ABC D{”u(t))‘
<A+ By Ju(1) +C, 5% Dru(o)]
this implies
B
|ABthau(t)|§l:Aég +1_ég |u(t)| )

DOI: 10.4236/jamp.2023.1112249 3921 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.1112249

X. F. Linetal.

Substituting Equation (7) into Equation (6), we get

|[\N1u||_ a)(a+b)I(a)+a+2b s C,A, BgCgr
a+b) (a)T(a)
Thus, W, is bounded. Now to prove equicontinuity for W,, let d,7€J,
then

<Lt (2.u(6). “507u(0) - (mun). 5050 (r)
G L= =6 [ (cu(e). MEoru(e))as
o) b ) (Eu(0). om0

<21 u(o)-uto) 0iu() - 50iu()
@) (6=t ()

B(a)[(«) B(a)l(a) B(a)l(a)
ST A, 8, [u(n)+C, *50ju(n)]

< 2k o))+ 0t (o)~ 050
B e e )
+(5—ﬂ)“[%+sg+%+fg_—gﬂ_

This shows that W,u(5)-W,u(n)—>0,as 6 —>7.

Therefore, by Arzela-Ascoli theorem, W, is completely continuous. Accord-
ing to the above steps together with Krasnoselakii fixed point theorem, the oper-
ator H has at least one fixed point, which implies that the problem (1) has at

least one solution on [0,1]. O

4. Hyers-Ulam Stability

In this section, we study the Hyers-Ulam stability of (1). Let & >0, and consider

the following inequalities

*ecpra(t)- f(La(t), 5pra(t)) <e ted =[01], 0<a<1 ©
8
|aa(t) -1, (a(t)|<ek=12,-m

Remark 4.1 A function Ue X Is the solution of inequality (8) if and only if
there exist function @, (t),9,(t)e X such that for t[0,1],

0,(t)<e,9,(t)<e and
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)

{ABCDa () ( ﬁ() ABCDa ())+91() teJ:[O,l],O<0!S1,
A(t ) =1, (0(t)) + 9, () k =1,2,-

Definition 4.2 [22] Equation (1) is Hyers-Ulam stable if there exists v >0
such that for each solution Ue X of the inequlity (8), there exists a solution
Ue X ofEquation (1) such that

Jatt)-u(®) <v(K.K,)e

Theorem 4.3 If assumptions (H1)-(H3) are fulfilled, the Equation (1) is Hyers-
Ulam stable with respect to ¢ .

Proof Based on Remark 4.1, we can say that the solution of the Equation (9) is
_ l-«a - -
0055 1 (000, 00+, (1)

a

“B@r(a) 78 LT (6060) 50r0()+0,() Jos

+(a+b)§?a)F(a)E(l_§ )L H(80(2). 6D(£)) + 8. () Jd¢

+(a+b)B(ot)l“(oc)zj“L(ti _5)“*1[]: (f,l](é‘), ABnga(é))+ 91(5)]d§

i=1
b & 1-

- [Ii (a(t))+9, (t):|+(aT)CB¥(0()|:(af (O,G(O), ABngu(o))Jr 9, (1))
+b( T (L,a(2), *5Dra()+ 9, (1)) ]

Let U be the solution of inequality (8), then for every tel, we obtain

~ l-a ~ ABC ~a 7 a t a-1 ~ ABC ~a
0(0) -y (00, 6B+ gy h t-8) F(£0(0). 5Dra(e))de

()}
BBk 8 (600, Eorm@)ae s 2 (aw)
+(a+b)Bkza)r(a)§Ltl (t =€) f(&.a(e),%pra(¢))ds

+W(af (0,(0), **5Da(0)) +bf (La(2), *5Dr(2)))

B(a)T(«)

e @) e

a-+ bll

[[(t-&)"a,(&)de

[ - 91(§)d5+ﬁ[agl )00

2a(1-a)(a+b)I'(a)+a(a+b)+ba+mbaB(a)l(a)+bm

a(a+b)B(a)I(a)

Therefore, for each tel, we get

N

&.
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Ja(t)-u()]

- u(t)—%f(t,u<t>,AB%Dfu(t))—WLju—:)“f(au(&),ABzD;u(r:))dg
“(a+b) bf )F(Q)Il(l—cf)“’l f(&u(s). ABﬁDgu(f))dh%g 1L (u(t)
BBl e o (9 T (£u(). Soru(e)az
—%(af(o,u(o»*‘szosu(o»mf (1u(), “50ru(m)

S{205(1—0:)(a+b)l"(at)+0:(a+b)+boz+mboeB(a:)l"(o:)+bm}ﬂ1

a(a+b)B(a)l'(a)

e (0. S0y - (o). “S0ru(y)
B(a;{r(a)f;(t—é) #(c.a(6), 5pza(¢)) - £ (£u(£), eDzu(£))|de

¢ (u(s) 5Dz (£))
w301l
¢ (.a(), =sprace))

(a+b)B(a F(a)
-1 (8.0(0). #50tu (&) |dz
+(a+1b_)g(a)[a“f(0,ﬂ(o)’ABcl:Déza(O)) f ), 4% DZu( ‘H
et (o, o) - 1 (L, “oru(w)]
Assume & =max{l & |, according to theorem 3.1, it can be concluded that
Ja(t)-u(v)]
S{Za(l—a)(a+b)F(a)+a(a+b)+ba+mbaB(a)F(a)+bm}
a(a+b)B(a)r(a) 1

2K, (a+b)(1-a)T(a+1)+mK, (1= KB(a))T (a+1)+K,[(a+b)a+b+m]
(a+b)(1-K,)B(a)I'(a+1)

_ {2a(1—a)(a+ b)F(a) + a(a+ b) +ba + mbaB(a)F(a) +bm
a(a+b)B(a)r(a)

2K, (a+b)(1-a)T (e +1)+mK, (1- K,B(a))T(a +1)+ K [ (a+b) a+b+m]}

+

+

(a+b)(1-K,)B(a)T'(a +1)

=v(K,K,)e

Hence, by Definition 4.2, we can obtain Equation (1) is Hyers-Ulam stable.
O
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5. Example

In this section, an example is provided to verify the validity of the investigated
results.

Example 5.1 Consider the following fractional differential equation
2

2 u (t . ABC Y3, (t

8Dy (1) = cost 2) ,_sint T tzU( )

(t+7)" 1+u%(t) (t+7)" 1+u’(t)

teld :[0,1],

(10)

Then, forany u,v,U,VeR,and teJ, wehave
[ (tu(t).v(1))~ f (LT (r).7 (t))|<—(|u al+v-v]),
|Ik(u(tk))—Ik(v(tk))|£5|u—v|.

From this, we can obtain K, = 2i5 K, = 4—16 ,when m=5, we have

2K, (a+b)(1-a)I(a +1)+mK,(1-KB(a))[(a+1)+K,[(a+b)a+b+m]
(a+b)(1-K,)B(a)T(a+1)
=0.34850344608358 <1,

bmK, + 2K 0 134835722031918 <1.

(a+b)B(a)l(a+1)(1-K;) a+b

Therefore, from Theorem 3.1, Theorem 3.2 and Theorem 4.3, it can be con-

cluded that example 5.1 has at least one solution and it is Hyers-Ulam stable.
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