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Abstract 
In this paper we reconsider the range-restricted GMRES (RRGMRES) me-
thod for solving nonsymmetric linear systems. We first review an important 
result for the usual GMRES method. Then we give an example to show that 
the range-restricted GMRES method does not admit such a result. Finally, we 
give a modified result for the range-restricted GMRES method. We point out 
that the modified version can be used to show that the range-restricted 
GMRES method is also a regularization method for solving linear ill-posed 
problems. 
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1. Introduction 

We consider the problem of finding a solution x∈  to the nonsymmetric li-
near systems [1] [2]  

,Ax b=                            (1) 

where   is a real separable Hilbert space with inner product ( ),⋅ ⋅  and norm 
( )1 2,⋅ = ⋅ ⋅  and :A →   is a bounded linear operator. We further assume 

that A is invertible on its range ( )A , that is, for any ( )b A∈ , the Equation 
(1) has a unique solution x∈ . 

The generalized minimal residual (GMRES) method, proposed by Saad and 
Schultz [3], is one of the most popular iterative methods for solving large linear 
systems of equations with a square nonsymmetric matrix. It is an extension of 
the minimal residual method (MINRES) for symmetric systems. In the past four 
decades, numerous variants of GMRES appeared. In 1988, Walker [4] proposed 
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the Householder GMRES, which uses an algorithm that uses the House-holder 
reflections to orthogonalize the basis vectors and thus has better numerical sta-
bility. Saad [5] in 1993 proposed to accelerate the GMRES by using the variable 
preconditioner at each iteration step. Morgan [6] established the GMRES with 
deflated restarting by deflating the eigenvalues of small magnitude, which maybe 
hampers the convergence of GMRES. 

For a nonzero vector v∈ , the Krylov subspace ( ),m A v  is defined by  

( ) { }2 1, span , , , , , 1,2, .m
m A v v Av A v A v m−= =   

Let the initial guess 0 0x = . At the m-th step, the GMRES method obtains an 
approximation mx , where mx  solves the linear least-squares problem  

( ),
min .

mx A b
b Ax

∈
−


 

In the implementations of GMRES, the Arnoldi process [7] is used to establish 
an orthonormal basis of the Krylov subspace ( ),m A v . The Arnoldi process 
based on the modified Gram-Schmidt procedure is described as follows. 

Algorithm 1 Arnoldi process  
1) Let 1v v v= .  
2) For 1,2, ,j m=    
3) j jw Av= .  
4) For 1,2, ,i j=    
5) ( ),ij i jh v w= .  
6) j j i ijw w v h= − .  
7) End For  
8) 1,j j jh w+ = .  
9) 1 1,j j j jv w h+ += .  
10) End For  
Obviously, if  

( ) ( )1dim , dim , ,m mA v A v m+= =   

then 0mw =  and the Arnoldi process breaks down after the basis { } 1

m
j j

v
=

 of 
( ),m A v  has been determined. 

Calvetti, Lewis, and Reichel have showed that the GMRES method has the 
following important property ([8], Lemma 2.3). 

Theorem 1. Let the linear operator :A →   be invertible on ( )A . As-
sume that ( ) ( )1dim , dim ,m mA b A b m+= =  . Then the iterate mx  generated 
by the GMRES method applied to the Equation (1) with the initial approximate 
solution 0 0x =  satisfies  

.mAx b=  

Conversely, assume that mAx b=  with ( ),m mx A b∈ . Then the Arnoldi 
process breaks down after the orthonormal basis { } 1

m
j j

v
=

 of ( ),m A b  has been 
determined.  

The range-restricted GMRES (RRGMRES) method [9] [10] [11] [12] is also an 
important iterative method for solving general nonsymmetric linear systems. 
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This method uses the Krylov subspace ( ),m A Ab  and has several advantages 
over the GMRES method especially for linear ill-posed problems. Since 

( ) ( ),m A Ab A⊂  , the RRGMRES method restricts the computational solu-
tion to ( )A . 

However, the following example shows that the second half of Theorem 1 
does not hold for the RRGMRES method. 

Example. Let  

0 0 0 1 0
1 0 0 0 0

, .
0 1 0 0 0
0 0 1 0 1

A b

   
   
   = =
   
   
   

 

The matrix A is invertible, and thus the equation Ax b=  has a unique solu-
tion. The solution is  

0
0

.
1
0

x

 
 
 =
 
 
 

 

We have  

2 3 4

1 0 0 0
0 1 0 0

, , , .
0 0 1 0
0 0 0 1

Ab A b A b A b

       
       
       = = = =
       
       
       

 

Clearly, ( )3 ,x A Ab∈ . However, since ( )4dim , 4A Ab = , the Arnoldi 
process does not break down after the orthonormal basis { }1 2 3, ,v v v  of 

( )3 ,A Ab  has been generated. 

2. Main Results  

In this section we shall show that a result slightly different from Theorem 1 
holds for the RRGMRES method. For deducing the result, we require the fol-
lowing lemma. Although its proof is similar to that of ([8], Lemma 2.2), we in-
clude the proof for completeness. 

Lemma 2. Assume that the linear operator :A →   is invertible on its 
range ( )A . Then  

( ) ( )dim , dim , , 1,2,3, .m mA A Ab A Ab m= =    

Proof. It is obvious that ( ) ( )dim , dim ,m mA A Ab A Ab≤  . Now we assume 
that ( ) ( )dim , dim ,m mA A Ab A Ab<  . Then, there is a ( ),mw A Ab∈ , 0w ≠  
such that 0Aw = . Since A is invertible on its range ( )A , it follows that 

0Aw =  if and only if 0w = . This contradiction shows that  
( ) ( )dim , dim ,m mA A Ab A Ab=  .  

We are in a position to present the main result of this note. 
Theorem 3. Let the linear operator :A →   be invertible on ( )A . As-
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sume that ( ) ( )1dim , dim ,m mA Ab A Ab m+= =  . Then the iteration mx  gen-
erated by the RRGMRES method applied to the Equation (1) with the initial ap-
proximate solution 0 0x =  satisfies  

.mAx b=  

Conversely, we assume that mAx b=  with ( ),m mx A Ab∈  and  
( )dim ,m A Ab m= . Then the Arnoldi process breaks down after the orthonormal 

basis { } 1

m
j j

v
=

 of ( ),m A Ab  or the orthonormal basis { } 1

1

m
j j

v
+

=
 of ( )1 ,m A Ab+  

has been generated. 
Proof. It is clear that ( ) ( )1, ,m mA Ab A Ab+⊂  . Under the assumption that 

( ) ( )1dim , dim ,m mA Ab A Ab m+= =  , we have  

( ) ( )1, , .m mA Ab A Ab+=   

It follows from Lemma 2 that ( ) ( )1dim , dim ,m mA A Ab m A Ab+= =  , which 
together with ( ) ( )1, ,m mA A Ab A Ab+⊂   shows that ( ) ( )1, ,m mA A Ab A Ab+=  . 
Thus, we have ( ) ( ), ,m mA Ab A A Ab=   and ( ) ( ), ,m mAb A Ab A A Ab∈ =  . 
It shows that there is a ( ) ( ), ,m m mw A Ab A A Ab∈ =   such that mAb Aw= , 
i.e., ( ) 0mA b w− = . Since A is invertible on ( )A , it follows that 0mb w− = . 
Note that ( ),m mw A A Ab∈  . Thus, there exists an ( ),m mx A Ab∈  such that 

m mAx w b= = . 
Conversely, we assume that there exists an ( ),m mx A Ab∈  such that 

mAx b= . If ( ) ( )1dim , dim ,m mA Ab A Ab m+= =  , the result holds naturally, 
i.e., the Arnoldi process breaks down after the orthonormal basis { } 1

m
j j

v
=

 of 
( ),m A Ab  has been generated. Thus, we only need to consider the case 

( )1dim , 1m A Ab m+ = + . Since ( ),m mx A Ab∈ , it follows that  
( ) ( )1, ,m mb A A Ab A Ab+∈ ⊂  . Then, ( )1 ,mAb A A Ab+∈  , which shows that 
( ) ( )1 2dim , dim ,m mA A Ab A Ab+ +=   and ( ) ( )2 1, ,m mA Ab A A Ab+ +=  .  

Moreover, by Lemma 2, we obtain  

( ) ( )1 1dim , dim , .m mA A Ab A Ab+ +=   

Therefore,  

( ) ( )2 1dim , dim , 1m mA Ab A Ab m+ += = +   

and ( ) ( )1 2, ,m mA Ab A Ab+ +=  , which proves that the Arnoldi process breaks 
down after the orthonormal basis { } 1

1

m
j j

v
+

=
 of ( )1 ,m A Ab+  has been generated.  

We note that the first half of Theorem 3 has been given out in ([13], Theorem 
2.3) as A is a nonsingular matrix. However, the second half of Theorem 3 is a 
new result, which shows a main difference between GMRES and RRGMRES. 

The example from the previous section can verify the second part of Theorem 
3. In this example, ( )3 ,x A Ab∈  and ( )4dim , 4A Ab = . Thus, the Arnoldi 
process in RRGMRES don’t break down until the orthonormal basis of 

( )4 ,A Ab  has been generated. 
We can validate the other case of the second part of Theorem 3 by setting the 

coefficient matrix A as the identity matrix. In this case, x b= ,  
( ) ( )1 2, ,x A Ab A Ab∈ =  . Thus, the Arnoldi process in RRGMRES breaks down 
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after the orthonormal basis of ( )1 ,A Ab  has been generated. 
In linear discrete ill-posed problems, the right-hand side vector of the non-

symmetric linear systems (1) is usually contaminated by an error. We denote the 
perturbed linear system by  

,Ax bδ=                            (2) 

where e b bδ= −  is an error vector, and e δ≤  with 0δ > . If e  or its 
fairly accurate estimate is known, the discrepancy principle is used to estimate a 
regularization parameter. When the GMRES method is applied to solve the per-
turbed linear system (2), the iterations will be terminated as soon as  

,mb Ax
δ

δ αδ− ≤                        (3) 

where mx
δ

 is the mδ -th iterate, and α  is an appropriate positive number. 
The following theorem [8] shows that the usual GMRES method is a regulari-

zation method for solving linear ill-posed problems. 
Theorem 4. Let δ  satisfy 0 δ ε< ≤  with ε  being an appropriate positive 

number, and let e δ≤ . Choose the initial solution to be 0 0x = . Let mx
δ

 be 
determined by the usual GMRES method with the discrepancy principle (3). 
Then  

0
lim sup 0,m

b b
x x

δδδ δ→
− ≤

− =  

where x is the solution of (1).  
We point out that Theorem 1 is an essential result for proving Theorem 4, see 

[8]. 
Extensive numerical experiments have shown that the RRGMRES method 

may yield better approximate solutions than the usual GMRES method, see, for 
example, [9] [11] [14] [15] [16]. However, as far as we know, analysis of the re-
gularization property of the RRGMRES method has not been done theoretically. 
We find out that by making use of Theorem 3 and following almost the same 
arguments in [8], it can be shown that when the associated error-free right-hand 
side lies in a finite-dimensional Krylov subspace, the RRGMRES method is also a 
regularization method for solving linear ill-posed problems. So, we present the 
result in the following theorem and omit its proof. 

Theorem 5 Let δ  satisfy 0 δ ε< ≤  with ε  being an appropriate positive 
number, and let e δ≤ . Choose the initial solution to be 0 0x = . Let mx

δ
 be 

determined by the RRGMRES method with the discrepancy principle (3). Then  

0
lim sup 0,m

b b
x x

δδδ δ→
− ≤

− =  

where x is the solution of (1).  

3. Conclusion  

The RRGMRES method uses the range-restricted Krylov subspace, and has some 
advantages over the usual GMRES method for linear ill-posed problems. In this 
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paper, we have shown that the result about the break-down of the Arnoldi process 
in the RRGMRES may be different from the one in the usual GMRES. The result 
can be used to show that the RRGMRES is a regularization iterative method.  

Acknowledgements 

This research was funded by the Natural Science Foundation of Hunan Province 
under grant 2017JJ2102. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Colton, D. and Kress, R. (2013) Inverse Acoustic and Electromagnetic Scattering 

Theory. Springer-Verlag, Berlin. https://doi.org/10.1007/978-1-4614-4942-3  

[2] Diao, H., Li, H., Liu, H. and Tang, J. (2023) Spectral Properties of an Acous-
tic-Elastic Transmission Eigenvalue Problem with Applications. Journal of Diffe-
rential Equations, 371, 629-659. https://doi.org/10.1016/j.jde.2023.07.002  

[3] Saad, Y. and Schultz, M. (1986) GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific Com-
puting, 7, 856-869. https://doi.org/10.1137/0907058  

[4] Walker, H. (1988) Implementation of the GMRES Method Using Householder Trans-
formations. SIAM Journal on Scientific Computing, 9, 152-163. 
https://doi.org/10.1137/0909010  

[5] Saad, Y. (1993) A Flexible Inner-Outer Preconditioned GMRES Algorithm. SIAM 
Journal on Scientific Computing, 14, 461-469. https://doi.org/10.1137/0914028  

[6] Morgan, R. (2002) GMRES with Deflated Restarting. SIAM Journal on Scientific 
Computing, 24, 20-37. https://doi.org/10.1137/S1064827599364659  

[7] Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia. 
https://doi.org/10.1137/1.9780898718003  

[8] Calvetti, D., Lewis, B. and Reichel, L. (2002) On the Regularizing Properties of the 
GMRES Method. Numerische Mathematik, 91, 605-625.  
https://doi.org/10.1007/s002110100339  

[9] Calvetti, D., Lewis, B. and Reichel, L. (2000) GMRES-Type Methods for Inconsis-
tent Systems. Linear Algebra and Its Applications, 316, 157-169. 
https://doi.org/10.1016/S0024-3795(00)00064-1  

[10] Cao, Z. and Wang, M. (2002) A Note on Krylov Subspace Methods for Singular 
Systems. Linear Algebra and Its Applications, 350, 285-288. 
https://doi.org/10.1016/S0024-3795(02)00310-5  

[11] Bellalij, M., Reichel, L. and Sadok, H. (2015) Some Properties of Range Restricted 
GMRES Methods. Journal of Computational and Applied Mathematics, 290, 310-318. 
https://doi.org/10.1016/j.cam.2015.05.008  

[12] Lin, Y., Bao, L. and Cao, Y. (2013) Augmented Arnoldi-Tikhonov Regularization 
Methods for Solving Large-Scale Linear Ill-Posed Systems. Mathematical Problems 
in Engineering, 2013, 1-11. https://doi.org/10.1155/2013/548487  

[13] Baglama, J. and Reichel, L. (2007) Augmented GMRES-Type Methods. Numerical 

https://doi.org/10.4236/jamp.2023.1112247
https://doi.org/10.1007/978-1-4614-4942-3
https://doi.org/10.1016/j.jde.2023.07.002
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0909010
https://doi.org/10.1137/0914028
https://doi.org/10.1137/S1064827599364659
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1007/s002110100339
https://doi.org/10.1016/S0024-3795(00)00064-1
https://doi.org/10.1016/S0024-3795(02)00310-5
https://doi.org/10.1016/j.cam.2015.05.008
https://doi.org/10.1155/2013/548487


Y. Q. Lin 
 

 

DOI: 10.4236/jamp.2023.1112247 3908 Journal of Applied Mathematics and Physics 
 

Linear Algebra with Applications, 14, 337-350. https://doi.org/10.1002/nla.518  

[14] Buccini, A., Onisk, L. and Reichel, L. (2023) Range Restricted Iterative Methods for 
Linear Discrete Ill-Posed Problems. Electronic Transactions on Numerical Analysis, 
58, 348-377. https://doi.org/10.1553/etna_vol58s348  

[15] Calvetti, D., Lewis, B. and Reichel, L. (2001) On the Choice of Subspace for Iterative 
Methods for Linear Discrete Ill-Posed Problems. International Journal of Applied 
Mathematics and Computer Science, 11, 1069-1092. 

[16] Neuman, A., Reichel, L. and Sadok, H. (2012) Implementations of Range Restricted 
Iterative Methods for Linear Discrete Ill-Posed Problems. Linear Algebra and Its 
Applications, 436, 3974-3990. https://doi.org/10.1016/j.laa.2010.08.033  

 
 
 

https://doi.org/10.4236/jamp.2023.1112247
https://doi.org/10.1002/nla.518
https://doi.org/10.1553/etna_vol58s348
https://doi.org/10.1016/j.laa.2010.08.033

	Some Results on the Range-Restricted GMRES Method
	Abstract
	Keywords
	1. Introduction
	2. Main Results 
	3. Conclusion 
	Acknowledgements
	Conflicts of Interest
	References

