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Abstract 
A generalized flexibility–based objective function utilized for structure damage 
identification is constructed for solving the constrained nonlinear least squares 
optimized problem. To begin with, the generalized flexibility matrix (GFM) 
proposed to solve the damage identification problem is recalled and a modal 
expansion method is introduced. Next, the objective function for iterative op-
timization process based on the GFM is formulated, and the Trust-Region al-
gorithm is utilized to obtain the solution of the optimization problem for 
multiple damage cases. And then for computing the objective function gra-
dient, the sensitivity analysis regarding design variables is derived. In addi-
tion, due to the spatial incompleteness, the influence of stiffness reduction 
and incomplete modal measurement data is discussed by means of two nu-
merical examples with several damage cases. Finally, based on the computa-
tional results, it is evident that the presented approach provides good validity 
and reliability for the large and complicated engineering structures. 
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1. Introduction 

Due to influences of working environment, material aging and overloading, 
structural deterioration will occur in various types of structures such as civil en-
gineering, mechanical engineering, marine engineering and so on. Once the 
structure is unstable and failure, casualties and financial losses will follow. 
Therefore, damage identification for engineering structures during the early 
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stage is very necessary [1]. In actual projects, damage identification methods are 
classified into two types of methods as destructive and non-destructive methods 
[2]. 

As one of the non-destructive methods, vibration-based methods have been 
widely applied. This kind of method generally uses variations in the dynamic 
properties of damaged and undamaged structures, especially in the utilization of 
natural frequency, mode shapes, and modal flexibility [3]. For example, Maity et 
al. evaluated the differences in natural frequencies with Genetic Algorithm (GA) 
method to estimate structural damage extents [4]. For dealing with damage re-
gions of complex shapes, a level set model was proposed to depict the damage 
regions by Zhang et al. [5]. Based on frequency response data, Guo et al. devel-
oped an objective function with constitutive relation error, and transformed the 
damage detection into a nonlinear optimization problem [6]. According to rela-
tive natural frequency change curves, Sha et al. [7] presented a new probabilistic 
damage metric via the use of Bayesian data fusion. By using discrepancies in 
natural frequencies as frequency shift coefficient (FSC), Dubey et al. [8] utilized 
the minimization of FSC to access a roughly quantitative damage extent. How-
ever, the natural frequency is easy to be effected by working temperature, am-
bient humidity and other external environment factors [9]. 

Compared with the natural frequency, the vibration mode could provide more 
abundant information about structures with less sensitive to environmental 
changes. An improved form of the curvature mode shape was applied in beam 
structures for detecting multiple damage cases by Cao et al. [10]. Based on the 
eigen-sensitivity analysis, Yan et al. [11] developed a closed-form solution for 
modal flexibility sensitivity to determine the damage position as well as its sever-
ity. For multiple damage cases of truss structures, Seyedpoor [12] developed a 
damage identification approach by utilizing flexibility-based damage indicator 
and differential evolution method. In consideration of high sensitivity for strain 
modes, Cui et al. utilized eigensystem realization algorithm based on strain re-
sponse to develop a novel damage identification method [13]. Dahak et al. mo-
nitored variations of natural frequency and curvature mode shapes of measured 
structures to detect structural damage condition [14]. Pooya et al. [15] used the 
discrepancies between the modal curvature obtained from the impaired struc-
ture and the computed modal curvature as an indicator to detect damage loca-
tions. In addition, modal strain energy (MSE) has been employed for analyzing 
the damage condition of complex bridges [16] and a jacket offshore platform 
[17]. 

The definition of GFM [18] was firstly introduced by Li et al. in 2010. In 
comparison with the initial flexibility matrix method [19], the effect of high-order 
modes in GFM is decreased reasonably and only few low-order natural modes 
and frequencies are required. Therefore, the GFM has received widespread at-
tention. Masoumi et al. presented an objective function on the basis of GFM for 
solving a constrained optimization problem in damage detection procedure via 
Imperialist Competitive Algorithm (ICA) [20]. Considering the non-negativity 
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of the damage index, an improved GFM approach without and with noises was 
proposed by Liu et al. [21]. Later, the improved GFM is applied to deal with in-
complete mode shape data of structural damage problem [22]. A damage identi-
fication process for a jacket-type offshore platform structure was presented by 
using GFM and optimal genetic algorithm by Aghaeidoost et al. [23]. 

The number of degrees of freedom (DOFs) of the measured modal shapes 
matching that of the finite element model (FEM) is essential in the damage iden-
tification process. However, in practice, only a portion of DOFs can be measured 
because of the restricted number of sensors, especially for large engineering 
structures. This problem can be solved by modal condensation or modal expan-
sion. Mirza et al. [24] developed a simplified FEM of the physical test substruc-
ture and used a model updating technique to correct the initial finite element 
model to generate more information of DOFs. Based on improved eigenvalue 
equations and eigenvalue shifting technique, Qu et al. [25] proposed dynamic 
cohesive matrix constraint equations and a new iteration format to improve 
computational accuracy and efficiency. 

The article is organized as follows. Primarily, in Section 2, the damage identi-
fication problem is constructed. Meanwhile, FEM and the modal expansion me-
thod for incomplete modal data are reviewed. In Section 3, an optimized ma-
thematical framework for structure damage identification is established, and an 
objective function is developed through calculating differences of GFM of the 
structures before and after damaged. Furthermore, the derivation for sensitivity 
analysis for solving the optimized problem by Trust-Region algorithm is then 
given. Numerical examples and conclusions are presented in the last two sec-
tions. 

2. The Generalized Flexibility Matrix 
2.1. Formulation 

In this article, only the reduction of structural stiffness for each element is as-
sumed to be the main cause of the structural damage and the mass matrix before 
and after damage keep unchanged, as well as the number of degree of freedoms 
(DOFs). Based on this assumption, the stiffness matrix of the damaged structure 
is described as 

( )
1

eN
e

d u j uj
j
α

=

= −∑Κ K Kα ,                    (1) 

where dK  and uK  represent overall stiffness matrix of the damaged predic-
tion model with dimension n × n and the one of the undamaged structure, re-
spectively. e

ujK  describes the stiffness matrix of the jth element in an unda-
maged structure with expended dimension n × n. ( )0 1.0j jα α≤ ≤  denotes the 
dimensionless damage index of corresponding jth element stiffness matrix, and 

0jα =  indicates that the corresponding element has not been harmed. jα  can 
be interpreted as any geometric or physical parameter of the prediction model, 
such as moment of inertia, stiffness, boundary condition and so on. eN  is the 
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count of finite elements. Therefore, the damage identification problem becomes 
the problem of finding a set of values ( )1,2, ,j ej Nα =  . 

2.2. The Generalized Flexibility Matrix 

The GFM is reviewed in this section. First, consider the free vibration of struc-
tural eigenproblem with the expression 

=K MΦ ΦΛ ,                         (2) 

where K  and M  are structural stiffness and mass matrix with dimension 
n×n. ( )1 2, , , ndiag λ λ λ= Λ  and [ ]1 2, , , n= ϕ ϕ ϕΦ  are matrices of eigenva-
lues and corresponding eigenvectors, and satisfy the mass-normalized condition, 
such that 

T =KΦ Φ Λ ,                         (3) 

and 
T =M IΦ Φ ,                         (4) 

where I  is the identity matrix with dimension n×n. As the flexibility matrix 
F  is the inverse matrix of K  in Equation (3), F  can be expressed by 

T
1 1 T

2
1

n
j j

j jω
− −

=

= = =∑F K
ϕ ϕ

ΦΛ Φ .                  (5) 

Note that the flexible matrix described above contains complete mode shapes 
of a structure. However, its application in actual operation has indicated that 
only a few low-order modes could be obtained accurately during the modal 
identification procedure. 

With the combination of the mass-normalized condition and Equation (5), 
the GFM gF  is defined as [18] 

( ) ( )1 T 1 T 1 TLLg L−− − − −= = =F F MF MΦΛ Φ ΦΛ Φ ΦΛ Φ .        (6) 

Compared with flexibility matrix in Equation (5), it demonstrates that the 
GFM has a greater impact by several lower-order modes. In particular, when 

0L = , Equation (6) becomes F  in Equation (5). For 1L = , the GFM gF  is 
expressed as 

2 Tg −=F ΦΛ Φ .                         (7) 

In this paper, only 1L =  is considered. 

3. The Proposed Method 
3.1. Objective Function 

On the basis of GFM, an optimization model is employed as a damage detection 
problem for searching a series of damage extents ( )0 1.0 1,2, ,j ej Nα≤ ≤ =  , 
i.e. 

( ) ( )g g
exp dα α= −f F F ,                     (8) 
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where g
expF  is the n × n experimental measured GFM, i.e. 2 Tg

exp exp exp exp
−=F Φ Λ Φ , 

expΦ  and expΛ  are eigenvector matrices and eigenvalue matrices of the actual 
damaged structure, respectively. ( )g

dF α  is the analytical GFM which corres-
ponds to global stiffness matrix dK  of the damaged prediction model, ex-
pressed by 

( ) ( ) ( ) ( )T2g
d d d d

−=F α α α αΦ Λ Φ ,                 (9) 

where ( )d αΛ  and ( )d αΦ  are matrices of eigenvalues and the corresponding 
eigenvectors for the damage prediction model. The issue is to find a set of values 

( )0 1.0 1,2, ,j ej Nα≤ ≤ =   through minimizing the discrepancy between data 
from experimental measurement and data from the analytical damaged model. 
When 2-norm is applied to analyze the discrepancy quantitatively, the objective 
function becomes 

( ) ( )( ) 2

2o vecΠ = fα α ,                    (10) 

and  

( )( )
1

2

n

vec

 
 
 =
 
 
 

f
f

f

f


α ,                     (11) 

where ( )( )vec f α  is a vector with dimension 2 1n ×  by stacking columns of 
( )f α , and ( )1,2, ,i i n=f   is the ith column. 
In order to avoid erroneous estimates that would be induced by very small 

values of 2-norm, Equation (10) is modified with dividing by the initial estimate, 
so that the final minimization problem is formulated as 

( )( )
( )( )

( )

2

2
2

0 2

min

s.t. 0 1 1,2, ,j e

vec

vec

j Nα

Π =

≤ ≤ =

f

f



α

α

α                 (12) 

3.2. Optimization Algorithm 

The optimization model above is actually a nonlinear least squares problem 
(NLS) with constraint conditions and can be solved by Trust-Region (TR) algo-
rithm. For this propose, the TR algorithm is firstly reviewed [26] [27]. The gen-
eral formulation of the question is expressed by 

( ) ( )2 2

2 2
min

s.t. , 1,2, ,i i il x u i m

= −

≤ ≤ =
x

G x y A x



                  (13) 

where ,m mR R∈ ∈A x  and mR∈y . The TR algorithm provides the principle 
idea of transforming Equation (13) into the kth step iterative TR sub-problem 

( ) ( ) ( ) 2

2

2

min

s.t.
, 1,2, ,

k k k k k

k k

i i il x u i m

= +

 ≤ ∆


≤ ≤ =

x
s G x J x s

s



Ψ

              (14) 
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where kx  represents the current point, ks  denotes the solution of Equation 
(14), k∆  represents trust-region area at kth step. ( )kJ x  is the Jacobian ma-
trix of ( )A x . Then the actual reduction is defined as 

( ) ( )k k k kAre = − +s G x G x s ,                  (15) 

the predicted reduction is described as 

( ) ( )k k k kPre = − +s x x sΨ Ψ ,                  (16) 

and the ratio of actual reduction to predicted one is defined as 

k
k

k

Arer
Pre

=
s
s

.                          (17) 

For solving the NLS with constraint condition, the framework of Trust-Region 
(TR) algorithm is given in Table 1 as follows. 

Significantly, the TR algorithm requires the Jacobian matrix of the objective 
function with related design variable ( )1,2, ,j ej Nα =  , i.e. 

( ) ( ) ( ) ( )1 2, , ,
eNα α α α =  J J J J ,              (18) 

and 

( )

T
2 T 3 T 22 , 1,2, ,

i

i
i

e
i i

vec

vec i N

α
α

α α α
− − −

 ∂
=  ∂ 
 ∂ ∂ ∂

= − + − = 
∂ ∂ ∂  

fJ



Φ Λ Φ
Λ Φ ΦΛ Φ ΦΛ

    (19) 

where ( )J α  is the Jacobian matrix with size 2
en N× . Then, the sensitivities of 

eigenvalues and eigenvectors to the model updating parameter ( )1,2, ,j ej Nα =   
will be deduced below by nelson method [28]. 

3.3. Sensitivity Analysis 

In this paper, it is supposed that the ith eigenvalue iλ  is simple so that the cor-
responding eigenvector iϕ  is unique. Directly differentiation Equation (2) with 
respect to jα  yields 

( ) 0,  1,2, ,i i
i i i e

j j j j

j Nλ
λ λ

α α α α

 ∂ ∂∂ ∂
− + − − = =  ∂ ∂ ∂ ∂ 

K MK M M 

ϕ
ϕ .    (20) 

Premultiplying Equation (20) by T
iϕ  and combining with Equation (2), the 

sensitivity of the ith eigenvalue iλ  can be achieved, i.e. 

T , 1,2, ,i
i i i e

j j j

j Nλ
λ

α α α

 ∂ ∂ ∂
= − =  ∂ ∂ ∂ 

K M
ϕ ϕ .            (21) 

For obtaining the sensitivity of the ith eigenvector iϕ , the expression in Equ-
ation (20) becomes 

( ) i i
i i i

j j j j

λ
λ λ

α α α α

 ∂ ∂∂ ∂
− = − − −  ∂ ∂ ∂ ∂ 

K MK M Mϕ
ϕ .         (22) 
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Table 1. Trust-Region (TR) algorithm. 

Trust-Region (TR) algorithm for constrained nonlinear least squares problem 

Step 1. Given initial iterative point 1
mR∈x , ( ) 2

en N
k R ×∈J x , 1 0∆ > , 0 1ε< < , 0η > , 

3 4 10 1τ τ τ< < < < , 20 1τ≤ <  and set : 1k = ; 

Step 2. if ( ) ( )T

2
k k ε≤J x G x  then stop; otherwise, get ks  from solving Equation (15); 

Step3. Compute k
k

k

Are
r

Pre
=

s
s

; 1

,         if ,   go to step 1
,  if ,   go to step 4

k k
k

k k k

r
r

η
η+

<
=  + ≥

x
x

x s
; 

[ ]
3 4 22

1

1 2

, ,   if

, ,           if
k k k

k

k k k

r

r

τ τ τ

τ τ
+

 ∆ < ∆ = 
∆ ∆ ≥

s
; 

Step 4. Compute a new function ( )k k+x sΨ , : 1k k= +  and go to step 2. 

 
Note that coefficient matrix iλ−K M  in Equation (22) has a rank of 1n − , 

and ordinary methods cannot be directly used to solve the equation. Based on 
Nelson method, the maximum absolute value in iϕ  needs to be firstly deter-
mined, and its location is recorded as k. After that, a new coefficient matrix iA  
is formed by taking the kth row and column of iλ−K M  to be zero while the 
kth diagonal elements of the matrix to 1. Setting the kth row of the coefficient  
matrix on the right side of Equation (22) be zero to form iB . The particular so-
lution ix  of Equation (22) can be obtained by solving i i i=A x B , and the ei-

genvector derivative i

jα
∂
∂
ϕ

 can be defined as 

i
i ij i

j

x c
α
∂

= +
∂
ϕ

ϕ .                         (23) 

Considering the derivative of Equation (4) with related jα  and Equation 
(23), one obtains 

T
ij i ic = − Mxϕ .                         (24) 

As a result, the sensitivities of eigenvalues and eigenvectors can be given 

T

T

, 1,2, , ;   1,2, ,

i
i i i

j j j
e

i
i ij i i i

j

i NR j N
x c

λ
λ

α α α

α

  ∂ ∂ ∂
= −   ∂ ∂ ∂   = =

∂ = −∂

K M

Mx
 

ϕ ϕ

ϕ
ϕ ϕ

.      (25) 

3.4. Modal Expansion Method 

Since the number of DOFs obtained from the experiment is less than that of fi-
nite element model, the modal expansion method is adopted in this paper. The 
assumption is that the total DOFs of FEM of the structure are in two parts, 
measured and unmeasured DOFs, which are denoted by subscripts m and s, re-
spectively. Thus, Equation (2) can be represented by a partition matrix in the 
following form  
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mj mjmm ms mm ms
j

sj sjsm ss sm ss

λ
         =      
         

K K M M
K K M M

ϕ ϕ
ϕ ϕ

.           (26) 

From Equation (26), it can be seen that 

( )sm mj ss sj j sm mj ss sjλ+ = +K K M Mϕ ϕ ϕ ϕ .             (27) 

According to Equation (27), the unmeasured model data sjϕ  can be calcu-
lated as 

( ) ( )1
sj ss j ss sm j sm mjλ λ

−
= − − −K M K Mϕ ϕ .            (28) 

Setting the coefficient matrix of Equation (28) to the transformation matrix 
T , we have 

( ) ( )1
ss j ss sm j smλ λ

−
= − − −T K M K M ,             (29) 

where T  is estimated from the undamaged structure. Therefore, total DOFs 
can be expressed by the unit matrix I , the transformation matrix T  and the 
measured data mjϕ , i.e. 

mj
j mj

sj

   
= =   

  

I
T

ϕ
ϕ ϕ

ϕ
.                   (30) 

4. Numerical Examples 

Two simulation models are introduced in this part. Each of the two examples 
takes account of two damage scenarios. All the simulated damage scenarios only 
result in reducing stiffness of specified elements. If the calculated extent of damage 
is less than 5%, the related element is considered to be undamaged [18]. All NLS 
with constraint conditions problems included in the examples are implemented 
by the trnlspbc command in Intel® oneAPI Math Kernel Library. 

Example 1: A grid structure model is introduced in Figure 1. The modulus of 
elasticity of the material is 207 GpaE = , the mass density is 37800 kg mρ = , 
and the Poisson’s ratio is 0.3ν = . The width and height of the structure are 40 
m and 4 m. The corresponding finite element model has 160 elements and 50 
nodes. Each node of the model has 6 DOFs and the bottom four nodes are con-
strained so that the number of total DOFs is 276. Two damage cases with com-
plete modal data presented in Table 2 are preset for this example. 

 

 
Figure 1. A grid structure. 
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Table 2. Damage scenarios in example 1. 

Damage scenarios Damage element number Damage extents 

Scenario I 
No. 146 
No. 150 

15% 
20% 

Scenario II 
No. 104 
No. 105 
No. 113 

15% 
20% 
25% 

 
In this example, damage condition can be ascertained simply by the use of the 

first frequency and the related vibration shape, and the corresponding measured 
model data is considered to be complete. The damage positions for the cases 
given in Table 2 are illustrated in Figure 2 as well as the corresponding compu-
tational results using the presented approach are illustrated in Figure 3. For 
damage scenario I, the predefined damage positions are mapped exactly on ele-
ment 146 with damage extents 0.1411, and element 150 with stiffness reduction 
0.2105. In other words, the relative errors to the preset values are 0.89% and 
1.05%, respectively. In scenario II, the damage extents and locations calculated 
are 0.1393, 0.2158and 0.2394 for elements No. 104, No. 105 and No. 113, respec-
tively. It can also be obtained that in comparison with the preset values, the rela-
tive errors of the calculated results are 1.07%, 1.58% and 1.06%, respectively. All 
these results indicate that this approach has the capability of precise identifica-
tion of the damaged elements. 

Example 2: A steel truss bridge is presented in Figure 4. The bridge is 12 me-
ters wide, 10.5 meters high and 90 meters long. The material properties are listed 
below: modulus of elasticity 210 GpaE = , mass density 37800 kg mρ = , Pois-
son’s ratio 0.31ν = . The structural finite element model has 94 elements and 40 
nodes, and the rotations in all three directions of every node are ignored. The 
boundary conditions are defined as all displacement constraints at two points on 
the left side and two horizontal displacement constraints at two points on the 
right side at the bottom. Thus, with the exception of the constrained nodes, each 
node has 3 DOFs, and the total measured DOFs is 112. 

By using the modal expansion technique, the improved algorithm can be ap-
plied to solve incomplete mode problems. Herein, just the first two low-order 
frequencies as well as the corresponding mode shapes have been utilized in ex-
ample 2. Figure 5 illustrates two preset damage locations, which are shown in 
Table 3, along with the extent of damage. The scenario I shown in Figure 5(a) 
depicts the damage locations occurring on element 10 and 37 with damage ex-
tents of incomplete mode shown in Figure 6(a) are 0.1445 and 0. 1714, and the 
corresponding results calculated from complete modal data are 0.1217 and 
0.1757. Therefore, it can be seen that the results from the incomplete modes are 
not as accurate as the results from the complete modes, but the errors to the 
preset values are only 4.45% and 2.14%, respectively. The results for scenario II 
shown in Figure 6(b) expresses that the estimation of incomplete mode is fairly 
accurate, i.e., the damage locations occurring on element 6, 7 and 32 with 0.0868, 
0.1125 and 0.1812 damage extents. From the calculations, the errors to the preset 
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values are 1.32%, 1.25%and 3.12%, respectively. In comparison with complete 
modal data, damage condition is generally determined despite incorrect classifi-
cation of few elements in different positions. These results show that this ap-
proach can produce good approximations to the preset values even with incom-
plete modal data. 

 

 
(a) 

 
(b) 

Figure 2. Damage presets of the grid structure for the two scenarios in 
Table 2. (a) Scenario I. (b) Scenario II. 

 

 
(a) 
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(b) 

Figure 3. Simulation results of the grid bridge structure for the two scenarios 
in Table 2. (a) Scenario I. (b) Scenario II. 

 

 
Figure 4. A steel truss bridge. 

 

 
(a) 

 
(b) 

Figure 5. Damage presets of the steel truss bridge structure for all scenarios in Table 
3. (a) Scenario I. (b) Scenario II. 
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Table 3. Damage scenarios in example 2. 

Damage scenarios Damage element number Damage extents 

Scenario I 
No. 10 
No. 37 

10% 
15% 

Scenario II 
No. 6 
No. 7 
No. 32 

10% 
10% 
15% 

 

 
(a) 

 
(b) 

Figure 6. Simulation results of the steel truss bridge structure for all sce-
narios in Table 3. (a) Scenario I. (b) Scenario II. 

5. Conclusion 

This article presents a new way to detect structural damage via solving con-
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strained nonlinear least squares optimized problem. It is proposed on the basis 
of generalized flexibility matrix to construct an objective function and Nelson’s 
method is utilized to calculate the objective function gradient for each design va-
riable. Also, the modal expansion method is employed for solving incomplete 
mode problems. Then, the proposed method has been verified on two complex 
engineering structures with different damage scenarios for both complete and 
incomplete modal data. It is concluded from computational results that the 
proposed approach provides accurate location and extent of damage with only 
several low-order eigenpairs. As a result, the method could be applied to other 
large engineering structures for damage detection or health monitoring. 
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