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Abstract 
Radial Basis Function methods for scattered data interpolation and for the 
numerical solution of PDEs were originally implemented in a global manner. 
Subsequently, it was realized that the methods could be implemented more 
efficiently in a local manner and that the local approaches could match or 
even surpass the accuracy of the global implementations. In this work, three 
localization approaches are compared: a local RBF method, a partition of un-
ity method, and a recently introduced modified partition of unity method. A 
simple shape parameter selection method is introduced and the application of 
artificial viscosity to stabilize each of the local methods when approximating 
time-dependent PDEs is reviewed. Additionally, a new type of quasi-random 
center is introduced which may be better choices than other quasi-random 
points that are commonly used with RBF methods. All the results within the 
manuscript are reproducible as they are included as examples in the freely 
available Python Radial Basis Function Toolbox. 
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1. Introduction 

Radial basis function (RBF) methods are well-established for scattered data in-
terpolation and for solving PDEs in complexly shaped domains. Contributing 
factors to the popularity of RBF methods are their simplicity, ease of use, and 
flexibility. The methods are simple and easy to use as their implementation only 
involves solving linear systems of equations and matrix-vector multiplication. 
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The extreme flexibility of RBF methods is due to the fact that there is complete 
freedom as to where centers may be located. 

RBF methods were originally implemented in a global manner. The approxi-
mation of a derivative at one center used information from all other centers in a 
domain. In recent years researchers have realized that it is more efficient and 
that possibly greater accuracy could be obtained by implementing the methods 
in a local manner in which only a small subset of centers is used to calculate a 
derivative approximation at any one point. The localization methods include the 
local RBF method, a partition of unity (PU) method, and a modified PU method 
that was recently introduced. The modified PU method was introduced and ap-
plied in reference [1] but an analysis of the differences between the standard and 
modified PU methods was not given. The modified PU method has been subse-
quently applied in [2] and [3]. 

After briefly reviewing the global RBF method, the three localization methods 
are presented. All four methods are used to approximate derivatives at scattered 
center locations and to solve a time-dependent PDE problem. Scripts that repro-
duce all results in this manuscript are located in the folder /papers/JAMP2023/ 
of the Python Radial Basis Function Toolbox (PRBFT) distribution. The PRBFT, 
available from [4], is open source software that uses RBFs for interpolating scat-
tered data and for the numerical solution of partial differential equations (PDEs). 
Throughout, modules names from the PRBFT are listed in italic type that im-
plement the algorithms discussed. Also, listed in italic type are the names of 
scripts that produce the results in the manuscript. 

The primary objective of this work is to demonstrate the effectiveness of local 
RBF methods in comparison to the global RBF method. In particular, a modified 
PU method is shown to be more efficient than the traditional PU method while 
still being as accurate as the traditional method. The modified PU method is es-
pecially efficient for approximating higher order derivatives. Secondary objec-
tives include reviewing a regularization technique, artificial viscosity techniques, 
and shape parameter selection methods that can be implemented with both the 
global and local approaches. Finally, a new quasi-random center distribution will 
be examined that has superior properties when compared to the current qua-
si-random center distributions that are currently used in RBF methods. 

2. Global RBF Method 

A function : dΦ →   is a radial basis function if there exists a function 
[ ): 0,φ ∞ →  for which ( ) ( )x rφΦ =  where 2r x=  for all dx∈ . RBF 

interpolation uses a set of N distinct points { }1 , ,c c
NX x x=   in d  called 

centers. No restrictions are placed on the shape of problem domains or on the 
location of the centers. The RBF interpolant has the form  

( ) ( )21

N
c

N k k
k

f x a x xφ
=

= −∑                    (1) 

where a is a vector of expansion coefficients. The RBF expansion coefficients are 
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determined by enforcing the interpolation conditions  

( ) ( ) , 1,2, ,c c
N k kf x f x k N= =                  (2) 

which result in a N N×  linear system  

.Ba f=                           (3) 

The symmetric matrix B with entries  

( )2
, , 1, ,c c

jk j kb x x j k Nφ= − =                  (4) 

is called the system matrix. 
The linear algebra routines in the PRBFT are based on the system matrix be-

ing symmetric positive definite (SPD) so that a Cholesky factorization is appli-
cable. Three commonly used RBFs that result in a SPD system matrix which are 
included in the toolbox are the Gaussian (GA) RBF  

( ) 2 2
e ,rr εφ −=                         (5) 

the inverse quadratic (IQ) RBF  

( ) 2 2
1 ,

1
r

r
φ

ε
=

+
                       (6) 

and the inverse multiquadric (IMQ) RBF  

( )
2 2

1 .
1

r
r

φ
ε

=
+

                       (7) 

The GA, IQ, and IMQ are representative members of the class of global, infi-
nitely differently RBFs containing a shape parameter, ε , that interpolate with 
exponential accuracy under suitable circumstances [5]. 

The evaluation of the interpolant (1) at M points jx  can be accomplished by 
multiplying the expansion coefficients by the M N×  evaluation matrix H that 
has entries entries  

( )2
, 1, , and 1, , .c

jk k j kh x x j M k Nφ= − = =            (8) 

Derivatives are approximated by differentiating the RBF interpolant as  

( )( ) ( )21

N
c

N k k
k

f x a x xφ
=

= −∑                    (9) 

where   is a linear differential operator. The operator   may be a single 
differential operator or a linear differential operator such as the Laplacian. Eva-
luating (9) at the centers X can be accomplished by multiplying the expansion 
coefficients by the evaluation matrix H  with entries  

( )2
, , 1, , .c c

jk j kh x x j k Nφ= − =                 (10) 

That is, f H a≈  . Alternatively, derivatives can be approximated by multip-
lying the function values at the center locations, ( ){ }

1

Nc
k k

f x
=

, by the differentia-
tion matrix 1D H B−=   since  

( ) ( )1 1 .f H a H B f H B f− −≈ = =                  (11) 
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Recent monographs [5] [6] [7] [8] on RBF methods can be consulted for more 
information. 

In the next sections, three topics are reviewed that are important in the im-
plementation of RBF methods: the location of centers, regularization of ill-con- 
ditioned linear algebra operations, and the selection of a good value of the shape 
parameter. 

2.1. Center Locations 

While RBF methods work with randomly scattered centers, random centers have 
a tendency to clump up in certain areas while leaving other areas completely 
uncovered. For this reason quasi-random centers, such as ( )1 2,p p -Halton and 
p1-Hammersley points, have become popular with RBF methods. The numbers 
p1 and p2 are prime numbers that are parameters to the methods. In particular, 
Halton centers are often used as a result of the points being featured in a popular 
RBF monograph [6]. Quasi-random sequences are often called low discrepancy 
sequences. The discrepancy of a sequence is computed by comparing the actual 
number of sample points in a given volume of multidimensional space with the 
number of sample points that should be there assuming a uniform distribution. 
In other words, the discrepancy of a sequence of centers measures how well they 
cover a domain. It is well-known that the discrepancies of both Halton and 
Hammersley sequences get larger as the number of space dimensions increase. 

A new quasi-random sequence, called a Rd sequence, has been described in [9] 
(The reference is a blog post as the author does not work in academia and the 
work was not published in a journal). Rd sequences have superior low discre-
pancy characteristics when compared with Halton and Hammersely points. Ad-
ditionally, the method is parameter free and is easy to implement efficiently. 
Figure 1 compares the coverage of a circular domain with Halton and R2 points. 
For each dimension, the generation of Rd points is dependent on a constant dφ  
that is the unique positive largest root of the equation 1 1 0dx x+ − − = . In one 
dimension ( )1 1 5 2φ = +  which is the well-known golden ratio and in two 
dimensions 2 1.3247179572φ =  which has been termed the plastic constant. 

 

 
Figure 1. 500N =  centers on a circle of radius one (quasiRandomCenters.py). Left: qua-
si-random (2, 3) -Halton points provide a better coverage than do random points. Right: R2 points 
provide a superior coverage compared to other quasi-random points. 

https://doi.org/10.4236/jamp.2023.1112245


S. A. Sarra 
 

 

DOI: 10.4236/jamp.2023.1112245 3871 Journal of Applied Mathematics and Physics 
 

The method is started by giving it an arbitrary point 0
dα ∈ . The choice of 

the initial point is arbitrary and does not affect the key characteristics of the dis-
tribution of points. After selecting the initial point, the rest of the points are 
found via the simple iteration  

( )( )0 mod1 , 1,2,3,kx k kα α= + =                 (12) 

where  

2
1 1 1, , , .d
d d d

α
φ φ φ
 

=  
 


 

2.2. MDI Regularization 

Equations (3) for the expansion coefficients and (11) for the differentiation ma-
trix assume that the system matrix is invertible. The IQ, GA, and IMQ system 
matrices are SPD and thus invertible. While invertible, the system matrix is typ-
ically very poorly conditioned. The eigenvalues of B satisfy  

min 1 2 max0 Nλ λ λ λ λ< = ≤ ≤ ≤ =  and the matrix condition number in the 
2-norm is ( )2 max minBκ λ λ= . For a fixed set of centers, the shape parameter af-
fects both the accuracy of the method and the conditioning of the system matrix. 
Figure 2 shows the condition number of the system matrix and the error over a 
range of the shape parameter from interpolating the function  

( ) ( )sine xf x π=                        (13) 

on the interval [ ]1,1−  using a fixed number of 60N =  centers given by  

( )( )( )
( )

1

1

sin 0.99cos 1
, 0,1, , 1.

sin 0.99c

k N
x k N

−

−

−
=

π
= −  

The centers cluster mildly near the boundaries which is beneficial to the accura-
cy of RBF methods. The interpolant is evaluated at 200 evenly spaced points. The 
results are typical of RBF methods in that the method is most accurate for 
smaller values of the shape parameter where the system matrix is ill-conditioned. 

 

 

Figure 2. Results from interpolating the function ( ) ( )sine xf x π=  over a range of the shape parameter The 

script mdiRegularization.py produces the results. Left: accuracy versus the shape parameter. Right: system 
matrix condition number versus the shape parameter. 
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A challenging aspect of working with RBF methods is dealing with the poorly 
conditioned system matrix. A regularization technique known as the method of 
diagonal increments (MDI) can be used to mitigate the effects of ill-conditioning. 
MDI was first used in the 1940’s [10] to regularize ill-conditioned linear systems 
resulting from the use of the normal equations in least squares problems in the 
field of Statistics. Reference [11] demonstrated that MDI regularization can be 
used to mitigate the effects of the poor conditioning of RBF system matrices and 
in most cases ensure that the theoretically SPD RBF system matrix remains nu-
merically SPD (NSPD) so that Cholesky factorization can be used. Instead of 
solving the system  

Ba f=                             (14) 

the regularized system  

( )B I a fµ+ =                          (15) 

is considered. The parameter µ  is a small positive constant called the regula-
rization parameter and I is the identity matrix. The matrix B Iµ+  is better 
conditioned than B as the condition number κ  satisfies  

( ) ( )max max

min min

.B I Bλ µ λ
κ µ κ

λ µ λ
+

+ = < =
+

 

A good choice of the parameter is 5 Mµ =   where M  is machine epsilon in 
the floating point number system being used. 

In both images in Figure 2 the dot on the solid blue line indicates the point at 
which the system matrix ceases to be NSPD as the shape parameter is decreased 
and for which a Cholesky factorization fails. In this example, the failure occurs at 

2.1ε ≤  and LU factorization is used to produce the remaining solid error curve 
for 2.1ε ≤ . With 2.1ε = , ( ) 5.0e17Bκ ≈  and with smaller values of the shape 
parameter the condition number curve oscillates as the condition number can 
not be accurately calculated in double precision in this range. 

The calculation is repeated using MDI with 5e 15µ = −  and the system ma-
trix remains NSPD over the entire shape parameter range so that a Cholesky 
factorization is applicable. MDI reduces the condition number and allows better 
accuracy in the severely ill-conditioned range. With MDI the error curve is 
smoother and is free of the large oscillations that were present in the unregula-
rized approximation. 

2.3. NSPD Shape Parameter Selection 

Methods used to select a value of the shape parameter include but are not li-
mited to critical conditioning and leave one out cross validation (LOOCV). 
Critical conditioning [12] is a trial and error brute force method that selects the 
value of the shape parameter so that the condition number of the system matrix 
is in a range, for example ( )14 1610 10Bκ≤ ≤ , where the RBF method is most 
accurate. LOOCV [6] selects a shape parameter by minimizing the least squares 
error of an interpolant for which one of the centers has been left out. 
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The approach used here is based on the system matrix being NSPD. In the left 
image Figure 2 the smallest error occurs when 1.15ε = . Of course in real prob-
lems where the exact function is unknown this information is unavailable. In-
stead, an effective and safe choice is to use the value at which the system matrix 
first ceases to be NSPD as the shape parameter is decreased. In the example of 
Figure 2 the shape parameter is selected as 0 2.1ε = . After 0ε  is selected, the 
calculation is then repeated using MDI. In the example, the regularized solution 
is approximately one decimal place more accurate at 0ε . 

2.4. An Example Derivative Approximation 

For the purposes of introducing the methods, the operator 1 x yu u= +  and the 
Laplacian operator 2 xx yyu u= +  are approximated for the function  

( ) ( ) ( )2 5, e cosx yu x y xy+=                   (16) 

on a circular domain of radius one that is centered at ( )1 2,1 2 . The domain is 
discretized with 1177N =  R2 points. The global RBF, the local RBF method, 
the RBF PU method, and a modified RBF PU method will be used to approx-
imate the two differential operators. The three local methods will be imple-
mented so that the number of supporting centers is the same. The criteria used 
evaluate the methods will be their error in the infinity norm. 

The script differentiationGlobal.py uses the global RBF method to evaluate the 
derivatives of function (16). The max errors in approximating 1  and 2  re-
spectively are 9.42e-04 and 8.64e-02. A shape parameter of 1.84ε =  was se-
lected via the NSPD approach of section 2.3 and a MDI regularization parameter 
of 5e 15µ = −  was used. 

3. Why Localize 

A comparison of the global RBF method with another well-known global me-
thod, the Chebyshev pseudospectral (CPS) method [13], is useful. In 1d the CPS 
method is implemented on a grid consisting of the Chebyshev-Gauss-Lobatto 
(CGL) points, ( )( )cos 1kx k N− π= −  where 0,1, , 1k N= − , which cluster 
densely around the endpoints of the interval [ ]1,1−  and are more sparsely lo-
cated in the interior of the interval. In 2d, the CPS method is implemented on a 
tensor product grid of the 1d grid. 

Consider differentiating a function on a 2d tensor product grid constructed 
from a 1d grid with 16N =  CGL points and let the unknowns be organized in 
a 2 1N ×  vector. The approximate derivative is calculated via the matrix-vector 
multiplication df Df=  where the differentiation matrix (DM) D is 2 2N N×  
with 4 65536N =  elements. However, only 12.1 percent of the elements are 
non-zero due to the orthogonality of the basis functions. The sparsity structure 
of the CPS DM is shown in the left image of Figure 3. As N increases to 32, 64, 
96, and 128 the percentage of nonzero elements drops respectively to 6.2, 3.1, 2.1, 
and 1.6 percent. 
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Figure 3. Sparsity of differentiation matrices. Nonzero elements are shaded blue:  Left: 
The global Chebyshev pseudospectral method. Right: The local RBF method. 

 
In contrast, all of the elements are nonzero in the global RBF method DM. As 

constructed, the global RBF method uses too many supporting centers in order 
to calculate a derivative at one point which can lead to unreasonably high com-
putational costs and a reduction of accuracy. If the local RBF method were to be 
implemented on the same tensor product grid as the CPS method with a stencil 
size 2 1n N= − , its DM would have the same number of nonzero elements as 
does the CPS DM. The sparsity structure of the local RBF DM with 31n =  is 
shown in the right image of Figure 3. 

The derivative is an inherently local property. Thus only using points in the 
immediate neighborhood of the point where a derivative is being calculated in-
tuitively makes more sense than using every center in the entire domain. It is 
easy to construct an example to illustrate the consequences of using the global 
method with too many centers and to illustrate that the local method can be 
more accurate than the global method. To do so, the operator 1 x yf f= +  is 
approximated for the well-known Franke function [14]  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

1 1 1 19 2 9 2 9 1 9 1
4 4 49 10

1 19 7 9 3 9 4 9 74 4

3 3, e e
4 4

1 1e e
2 5

x y x y

x y x y

f x y
− −   − − − + − +      

− −   − − − − − − −      

= +

+ −

        (17) 

that is frequently used in conjunction with RBF methods. The calculation is 
done in the complexly shaped domain in Figure 4. 

First, the number of centers is fixed at 5000N =  and the stencil size of the lo-
cal method is varied from 10 to 200. The max error versus stencil size is shown in 
the left image of Figure 5. In this example, the best accuracy occurs with 50n = . 
The optimal stencil size is problem dependent, but in two space dimensions the 
optimal size is usually between 20 and 100. In the right image of Figure 5, the 
number of centers N is varied from 1000 to 5000 and the local method stencil size 
is fixed at 40n = . For 1800N ≤ , the global method is more accurate than the 
local method with 40n =  but as N is increased the error of the global method 
does not decrease. Rather it stagnates around 0.001. On the other hand, the error 
from the local method continues to decrease as N increases and at 5000N =  the 
local method is significantly more accurate than the global method. 
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Figure 4. 1100N =  scattered centers on a complexly shaped 
domain. The operator 1  is approximated for the Franke 
function (17) on the domain. 

 

 

Figure 5. Global versus local derivative approximation. Left: fixed number of centers ( 5000N = ) 
and varying stencils size n (globalVsLocalFixedN.py). Right: fixed stencils size 40n =  and va-
rying number of centers (globalVsLocalVaryN.py). 

4. How to Localize 

There are multiple ways that the RBF method can be localized. The ways include: 
the local RBF (LRBF) method (also called the RBF finite difference method but 
not used here due to its connection with polynomial based methods), a partition 
of unity (PU) approach that originated in the field of finite elements, and a mod-
ified partition of unity (MPU) method that was first used with a rational RBF 
method in reference [1]. With each of the three localization approaches, various 
options exist on how to implement particular elements of the methods such as 
shape parameter selection, regularization, stencil size, center locations, applica-
tion of artificial viscosity for stable time-stepping, etc. 

4.1. LRBF—The Local RBF Method 

Variations of the local RBF method for the solution of steady and time-dependent 
PDEs were first used in references [15] [16] and [17]. Recent applications of lo-
cal RBF methods include [18] [19] [20] [21]. 

At each of the N centers, the local RBF method considers a local interpolant of 
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the form  

( ) ( )2
,

i

c
n k k i

k I
f x a x xφ ε

∈

= −∑                  (18) 

where a is a vector of expansion coefficients and iI  is a vector associated with 
center i that contains the center number and the indices of the n − 1 nearest 
neighboring centers. The shape parameter iε  may be different at each center. 
Each center and its n − 1 neighbors are called a stencil. Two typical stencils, one 
for a boundary center and one for an interior center, are shown in the left image 
of Figure 6. The stencils are efficiently constructed using a kd-tree structure [22]. 

Enforcing the interpolation conditions  

( ) ,n k k if x f k I= ∈                     (19) 

on each stencil gives N, n n×  linear systems  
Ba f=                           (20) 

to be solved for the expansion coefficients where the matrices B are local system 
matrices with elements  

( ) ( ) ( )
2
, , , 1 , , .c c

jk j k i i ib x x j k I I nφ ε= − =              (21) 

In a manner analogous to that of the global method, the local method ap-
proximates derivatives of a function f at the center locations as  

( ) ( )2
, .

i

c c
i k i k i

k I
f x a x xφ ε

∈

= −∑                  (22) 

Equation (22) can be written more concisely as a dot product  

( )if x h a= ⋅                         (23) 

where a is the 1n×  vector of RBF expansion coefficients and h is a 1 n×  vec-
tor containing the elements  

( )2
, , .c c

i i k i ih x x k Iφ ε= − ∈                 (24) 

The dependence on the RBF expansion coefficients can be removed from (23) by 
noting that  

( ) ( ) ( ) ( ) ( )1 1
i i i if x hB f I hB f I w f I− −= = = ⋅           (25) 

 

 

Figure 6. Two ways to localize (localMethodImages.py). Left: The local RBF method. Right: A 
partition of unity approach. 
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where the stencil weights are given by  
1.w hB−=                           (26) 

That is, the weights are the solution of the linear system  

.wB h=                            (27) 

Then space derivatives are approximated by multiplying the function values at 
the centers of the stencil by the weights. 

The script differentiationLocal.py uses the local RBF method to evaluate the 
derivatives of function (16) with a stencil size of 80n = . The max errors in ap-
proximating 1  and 2  respectively are 8.20e-05 and 7.60e-03. NSPD shape 
parameter selection was used on each stencil and a MDI regularization parame-
ter of 5e 15µ = −  was used in solving the linear systems for the weights. In this 
example, the local method is more accurate than is the global method. 

4.2. PU—RBF Partition of Unity 

In the context of scattered data interpolation, it appears that a partition of unity 
(PU) method was first described in [23] and was later analyzed in more detail in 
[24]. Reference [25] details the application of the PU method to the numerical 
solution of PDEs by the finite element method. A recent use of the PU method 
with RBFs is described in [26]. 

A partition of unity method is implemented by constructing an overlapping 
covering { } 1

M
i i=

Ω  of the domain Ω . Each iΩ  in the covering is called a patch. 
For simplicity, it is assumed that the patches are circles with centers ( )0 0 0,i i ic x y=  
and radii iR . The right image in Figure 6 displays an example cover of a domain. 
In general, it is not necessary that the patches be circular, as they may be shaped as 
squares, ellipses, etc. The PU method is applicable in higher dimensions as well, 
for example in 3d the patches could be cubes or spherical in shape. Associated 
with each center in Ω  is the index function  

( ) { }| 1, ,c c
i k k iP x i x i M= ∈Ω =                  (28) 

which is used to keep track of how many patches that each center is located in. 
A family of compactly supported, non-negative, continuous functions { }iw  

which are constructed via Shephard’s method [27] as  

( ) ( )
( )( )

1, , .
c

i k

c
i kc

i k c
j kj P x

C x
w x i M

C x
∈

= =
∑

               (29) 

is used to implement the method. A possible choice for ( )iC x  in (29) is a 
compactly supported Wendland function [28] RBF such as W32  

( ) ( ) ( )6 21 35 18 3C r r r r
+

= − + +                  (30) 

where  

( ) ( )6
6 1 0 11

0 1
r rr

r+

 − ≤ <− = 
>

                  (31) 
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W32 is in 4C  and is positive definite in up to three space dimensions. Compact 
support on each patch is guaranteed if the Wendland functions (30) used to 
construct the weight functions (29) are specified as  

( ) 2 .i
i

i

x c
C x C

R
 −

=   
 

 

As a result, the weight functions satisfy the partition of unity property  

( )
( ) 1.

c
i k

i
i P x

w x
∈

=∑  

Additionally, ( ) 0iw x =  if ( )ii P x∉ . A function f is approximated locally by 

is  on each patch iΩ . Then due to properties of the weight function the local 
approximations are put together as  

( )
( )

( ) ( ).
i

i i
i P x

s x s x w x
∈

= ∑                     (32) 

The approximation at each x is a linear combination of the local approxima-
tions on each patch containing x with the largest weight being placed on patches 
where x is located near the center of the patch and less weight is placed on patch 
approximations where x is located near the boundary of a patch. 

Derivatives are approximated by applying a linear differential operator   to 
(32) as  

( )
( )

( ) ( ) .
i

i i
i P x

s x s x w x
∈

 =  ∑                   (33) 

A drawback of the method is that as the order and complexity of   increase, 
the repeated use of the product rule applied to (33) and the quotient rule applied 
to (29) can quickly result in an unwieldy expression containing a large number 
of derivatives to evaluate. For example, consider a function of two variables  

( )1 2,x x  and let 
1x
∂

=
∂

 . Then  

( )
( )

( ) ( ) ( ) ( )
1 1 1i

i i i i
i P x

s x s x w x w x s x
x x x∈

∂ ∂ ∂
= +

∂ ∂ ∂∑            (34) 

where  
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If 
2

2
1x

∂
=
∂

 , then  

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2
1 1 11 1

2
i

i i i i i i
i P x

s x s x w x w x s x w x s x
x x xx x∈

∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂∂ ∂∑   (36) 

and the second partial derivative of the weight function is becoming unwieldy 
after Equation (35) is differentiated again. For this reason, the module rbfPU.py 
only implements the PU method for first and second order derivatives. 
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The script differentiationPU.py uses the RBF partition of unity method to 
evaluate derivatives of function (16). The max errors in approximating 1  and 

2  respectively are 1.30e-04 and 7.94e-03. The NSPD method was used to select 
the shape parameter on each patch and a MDI regularization parameter of 

5e 15µ = −  was used in forming the local differentiation matrices for each patch. 
The cover of the domain consists of 25 circles. In this example, the PU method 
was more accurate than the global method but not as accurate as the local me-
thod. 

4.3. MPU—Modified RBF Partition of Unity 

In order to overcome the major drawback of the PU method the following mod-
ification has been proposed [1]. In the modified method, values of the weight 
function (29) still depend on the location of x within a patch, but then are con-
sidered constants rather than functions of x for approximating derivatives which 
the modified method calculates as  

( )
( )

( ).
i

i i
i P x

s x w s x
∈

= ∑                     (37) 

Derivative values at a point x are simply linear combinations of their values 
from each patch the point is contained in. That is, derivative values at a point in 
the MPU method are put together exactly as interpolants are in the PU method. 
For first derivatives, the two approaches can be seen to be equivalent. However, 
for higher order derivatives there is a slight difference in the two methods. It is 
problem dependent as to which approach is most accurate. In the examples 
within, the MPU method is slightly more accurate in approximating derivatives 
above order one and is significantly simpler to implement. 

The script differentiationSarraPU.py uses the RBF modified partition of unity 
method to evaluate derivatives of function (16). The max errors in approximat-
ing 1  and 2  respectively are 1.28e-04 and 6.70e-03. The NSPD method was 
used to select the shape parameter on each patch and a MDI regularization pa-
rameter of 5e 15µ = −  was used in forming the local differentiation matrices 
for each patch. In this example, the modified PU method is slightly more accu-
rate than is the standard PU method. As was the case in the standard PU exam-
ple, the cover of the domain consists of 25 circles. This number was selected be-
cause it results in 80 being the average number of centers in each patch which is 
the same as the stencil size used by the local RBF method in this example 
(Figure 7).  

4.4. PU and Modified PU Method Differences 

For first order derivatives, the term  

( )
( ) ( )

i
i i

i P x
s x w x

x∈

∂
∂∑                      (38) 

in (34) is zero and the PU and modified PU methods are equivalent. For second 
order derivatives, the term  
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Figure 7. Magnitude of the terms (38) in the left image and (39) in the right image (vertical 
axis) verus center number (horizontal axis) that are theoretically zero but may not be in float-
ing point arithmetic. 

 

( )
( ) ( )

2

2
1i

i i
i P x

s x w x
x∈

∂
∂∑                     (39) 

in (36) is zero. The only difference between the PU and modified PU methods 
for second order derivatives is the term  

( ) ( )
1 1

2 .i iw x s x
x x
∂ ∂
∂ ∂

                    (40) 

that appears in Equation (36) of the PU method but is not in Equation (37) of 
the modified PU method. 

While the terms (39) and (40) are theoretically zero, they are often not zero in 
floating point arithmetic. This is especially true when a large number of centers 
are in a patch. For this reason they are not included in the function 
rbfPU.globalDM that uses a differentiation matrix based approach while the 
function rbfPU.evaluateDerivates has a logical variable as an argument so that 
the user may experiment with the effects of including or not including the terms. 

Returning to the approximation of 1  and 2  from section 4.2, Figure 8 
shows the magnitude of the terms that are theoretically zero in the PU method. 
The values of (38) are relatively close to machine epsilon while the values of (39) 
are larger. However, either including the terms or disregarding them are of little 
consequence as in this calculation the approximate solution has only two decim-
al places of accuracy. 

The maximum value of the term (40) for 2  is 2.56e-3 while the overall max 
error of the modified PU method for 2  is 6.70e-3 which is smaller than the 
standard PU method error of 7.94e-3. In this example, neglecting the term re-
sulted in the modified PU method being more accurate. In all applications of the 
method so far by the current author, the order of magnitude of the term neg-
lected by the MPU method is the same as that of the error and thus has little ef-
fect on the overall accuracy of the method. In reference [2], where the MPU 
method was also applied, the authors came to a similar conclusion and they also 
argued that the term could safely be neglected. 

5. Time-Dependent PDEs 

The non-homogeneous diffusion equation  
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Figure 8. Magnitude of the neglected term (40) 
(vertical axis) verus center number (horizontal axis) 
by the modified PU method in approximating 2 . 

 

( ) ( )
( )

2 2 2 2 2

2 2

4 cos

5 sin

t xx yyu u u k x y k t x y

k k t x y

 = + + + − − 

 − − − 

         (41) 

is solved on a circular domain of radius 1 that is centered at (1, 1). The domain 
is discretized with 4684N =  scattered R2 centers in the interior of the domain 
and 350 evenly spaced centers on the boundary. The initial condition and Di-
richlet boundary conditions are taken from the exact solution  
( ) ( )2 2, , 1 cosu x y t k t x y = + − −  . In the following examples 2k =  has been used. 
The global, local, PU, and MPU methods are used to discretize the space deriva-

tives of the PDE using the GA RBF and then a fourth-order explicit Runge-Kutta 
method (rbfMisc.rk4) with a small constant time-step size of e4 5t∆ = −  is 
used to advance the solution to time 0.5t = . Each method is regularized via the 
method of diagonal increments from section 2.2 with a regularization parameter 
of 155eµ = − . In each method the shape parameter is selected via the NSPD 
technique from section 2.3. The local method uses a stencil size of 25n =  and 
both partition of unity methods use a total of 25 covering circles. 

At the final time, the global method (heatCircleGlobal.py) relative max error 
is 1.23e-03, the PU method (heatCirclePu.py) relative max error is 3.77e-04, and 
the modified PU method (heatCircleSarraPu.py) relative max error is 3.32e-04. 

As it is, the local method can not be advanced in time as its differentiation 
matrix has eigenvalues with positive real parts as large as 4000 (left image of 
Figure 9). The next section discusses how the addition of artificial viscosity (dis-
sipation) can remedy the situation. 

Artificial Viscosity 

Eigenvalue stability for time-dependent PDEs with space derivatives discretized 
by the RBF method is a well-documented issue, see for example [29] [30]. Fre-
quently, eigenvalues of the discretized space operator have large positive real 
parts which makes stable time integration by explicit methods impossible. This 
is especially true for advection-type PDEs that do not have any inherent stabi-
lizing dissipation. Even for purely dissipative PDE such as the diffusion equation 
(41), eigenvalue stability may still be an issue when local RBF methods are used. 
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Figure 9. Eigenvalues of the differentiation matrix in the complex plane (real part on the horizontal 
axis and imaginary part on the vertical axis) that discretizes equation (41) with the local RBF method 
and stencil size 25n = . Left: without artificial viscosity. Right: with artificial viscosity of the inverse 
system matrix filter type with viscosity parameter 101eµ = − . 

 
There are multiple factors that contribute to the eigenvalue stability problem. 

The instability issues may be inherent to the method, caused by poor condition-
ing of the system matrix, or the result of careless choices in the linear algebra 
routines that are used. If the condition number of the system matrix is larger 
than ( )1610  the likelihood of problems increase. LU factorization ignores 
symmetry and its use on a SPD system matrix rather than a more appropriate 
Cholesky factorization can contribute to eigenvalue stability problems. The 
combination of NSPD shape parameter selection and the use of MDI with Cho-
lesky factorization greatly reduce two of the factors. The remaining factor, that 
the problem is inherent to the method itself, leads to artificial viscosity being 
added to the discretization. 

Reference [31] suggests two ways to add artificial viscosity to a RBF method 
via application of a viscosity matrix Dν . The first approach uses the inverse 
system matrix (ISM) which damps the spurious eigenvalues while leaving the 
correct eigenvalues intact. In the global and PU methods, Dν  is constructed as 
the solution of the linear system  

D B Iν ν= −  

where I is an identity matrix and ν  is the viscosity coefficient. The viscosity 
matrix can be combined with the discretization of another linear operator as  

D B H Iν ν= −   

where H  is a derivative evaluation matrix. In the local method, the viscosity 
matrix is added by modifying Equation (27) to be  

( )1,0, ,0 .wB h ν= − ⋅                      (42) 

A second approach is to add a power of the discretized Laplacian (LP) opera-
tor kν ∆ . In this case the viscosity matrix is formed just as is any other differen-
tiation matrix (Equations (9)-(11)) and the viscosity can be combined with the 
discretization of other linear differential operators. Each RBF class in the PRBFT 
has a function for the first power of the Laplacian but not higher powers. To get 
higher powers the first power of the operator can be repeatedly applied or else 
the Gaussian RBF can be used for which an explicit formula for any power  
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Figure 10. Solution of PDE (41) by the local method with 25n = . Left: solution at time 0.5t = . Right: 
relative point-wise errors at 0.5t = . 

 
of the operator applied to the GA was given in [31]. The function gax.hyperViscosity 
is programmed with the explicit formula. 

In [31] it is recommend that the ISM filter be used with global methods and 
that the LP viscosity be used with local methods. In our experience, either ap-
proach can be used in either the global or local setting but the ISM filter is easier 
to use as it only contains one user specified parameter, ν , while the LP viscosity 
contains two, ν  and the power k. The function rbfLocal.weights can apply ei-
ther or both of the artificial viscosity types depending on the choice of input pa-
rameters. 

In some problems, especially when the PDE does not have any natural dissip-
ative terms, it can be difficult (in some cases seemingly impossible) to find val-
ues of the parameters ν  and/or k that effectively move all the eigenvalues to 
the left part of the complex plane. Additionally, one must make sure to use the 
smallest ν  possible or else the real parts of the eigenvalues will be moved far 
into the left part of the complex plane and extremely small time steps will be re-
quired for stability with explicit methods. For example in Figure 9, 101eµ = −  
was the smallest value to be used with the ISM filter to successfully shift the ei-
genvalues and the magnitude of the negative real parts of the eigenvalues has 
approximately doubled. 

After adding artificial viscosity, the local method can be used to solve (41). At 
the final time, the local method (heatCircleLocal.py) relative max error is 
4.00e-05. The solution and point-wise error are shown in Figure 10. The me-
thod was stabilized by adding ISM type viscosity with 101eµ = − . Alternatively, 
LP type artificial viscosity with 2k =  and 131eν = −  can be used to stabilize 
the problem and the result has the exact same error as when the ISM filter was 
applied. In summary, of the four methods applied to the time-dependent PDE 
problem, the local method with artificial viscosity was most accurate followed by 
the MPU, PU, and global methods. 

6. Conclusions 

Four ways to implement RBF methods for the numerical solution of PDEs have 
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been discussed: global, local, partition of unity, and modified partition of unity. 
The local method can outperform the global method by selecting a stencil size 
that results in a sparse differentiation matrix. The standard version of the RBF 
PU method is an effective localization method for PDE problems with only 
first-order derivatives or even possibly second-order derivatives. However the 
complexity of the method quickly rises as higher order derivatives appear in 
problems. For this reason, a modified PU method has been implemented that 
calculates derivatives simply as linear combinations of patch results rather than 
using the product rule and quotient rule. The differences between the standard 
and modified PU methods have been examined. The modified PU method is 
more efficient than the standard PU method and on example problems the two 
methods have comparable accuracy. In our future work, the modified PU me-
thod will be used to approximate high-order (greater than two) space derivatives 
in the numerical solution of PDEs. All three of the local methods demonstrated 
comparable accuracy in the example problems. Additionally, all three of the local 
methods were more accurate than the global method in the examples. 

A new type of quasi-random center distribution, Rd points, have been have 
been used as centers with RBF methods. The Rd points have a lower discrepancy 
than the Halton and Hammersley points which are commonly used with RBF 
methods. A shape parameter selection algorithm was presented that is based on 
the system matrix being numerically symmetric positive definite and the method 
was used to select the shape parameter for all four RBF methods. For time-de- 
pendent PDE problems, two ways to add artificial viscosity to ensure eigenvalue 
stability were discussed and it was detailed how the addition of artificial viscosity 
can be implemented with each method. 

All results in this manuscript are reproducible via example scripts in the Py-
thon Radial Basis Function Toolbox [4]. 
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