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Abstract 
In this paper, we consider the dynamics of modulated waves in an unmagne-
tized, non-isothermal self-gravitating dusty plasma model. The varying charge 
on the moving dust, as it moves in and out of regions of differing electron and 
ion densities (due to changes in the electrostatic potential), will be out of 
phase with the equilibrium charge. The effect of the dust is to increase the 
phase velocity of the ion-acoustic (IA) waves i.e. decrease the Landau damp-
ing. In the low-amplitude limit and weak damping, we apply the reductive 
perturbation method on the model that resulted to the complex cubic Ginz-
burg-Landau (CCGL) equation. From these results, it is observed that, the 
plasma parameters strongly influence the properties of the solitary wave solu-
tion namely, the amplitude and the width. The effects of non-isothermal elec-
trons, gravity, dust charge fluctuations and drifting motion on the ion-acoustic 
solitary waves are discussed with application in astrophysical contexts. It is also 
observed that the number of charges residing on the dust grains increases the 
modulational stability of the plane waves in the plasma, thus, enhancing the 
generation of modulated waves. 
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1. Introduction 

Dust is quite common throughout the universe and represents much of the solid 
matter in it. On the other hand, the gaseous component of matter is often io-
nized (at least partially), and thus the dust co-exists with plasma and forms a 
“dusty plasma” [1] [2] [3] [4]. The motion of a dust particle can be influenced by 
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a large number of different effects, such as gravity, radiation pressure, plasma or 
gas drag and electromagnetic forces. The motion is further complicated by the 
fact that the size of a dust particle may change with time and that the dust charge 
is changing if its velocity varies or if the ambient conditions, such as plasma 
temperature and radiation field, change. The effect of the dust is to increase the 
phase velocity of the ion-acoustic (IA) waves. This effect has been shown to 
damp the coherent oscillations of electro-statically supported dust rings [5] and 
to damp the oscillations of levitated dust particles in plasma sheaths at surfaces 
of solid bodies [6]. The dust charge variation may cause damping of the modes 
in the dusty plasma system [7]. It is well-known that most of the astrophysical 
objects and proto-stars contain a significant fraction of dust particulates, which 
can be charged due to a variety of processes. Specifically, we note that charged 
dust grains in interstellar spaces, circumstellar disks, supernova remnants, dark 
molecular clouds, nebulae, etc., are held under the combined influence of elec-
tromagnetic and gravitational forces [3] [8] [9] [10]. Accordingly, the knowledge 
of collective processes in gravitating cosmic dusty plasma is rather essential for 
understanding the dynamics and transport of charged dust grains. 

For the purposes of this work we define a dusty plasma as an ensemble of dust 
particles immersed in a (perhaps partially ionized) plasma consisting of elec-
trons, ions, and neutrals. Dust particles can be charged by various means, for 
example, by photo-ionization or absorption of charged particles. If such charged 
dust particles exist in a plasma, i.e. in a conducting fluid, the interaction between 
the particles and externally applied electric and magnetic fields (e.g. a planetary 
magnetic field) is modified by the presence of the plasma [1]. For instance, a ne-
gatively charged dust, or for that matter any negatively charged particle, will be 
surrounded by a plasma which is not charge neutral everywhere but has a posi-
tive charge density near the grain because it tends to attract the positive ions and 
repel the negative electrons. This positive charge density partially screens out the 
negative dust charge and reduces the strength of the interaction. This “debye 
screening” effect is a unique consequence of the fact that the dust is immersed in 
a plasma [1] [2]. 

Highly charged massive dust grains present in a plasma may exhibit charge 
fluctuation in response to certain types of oscillations incorporated to the plasma. 
Under this situation, the grain charge becomes a time dependent and self-con- 
sistent variable [11] [12]. The consequent modification in the collective proper-
ties of a dusty plasma in response to the variation of charge is studied for non 
complicated plasma systems [13] [14]. It may be noted that the existence of IA 
wave on a very slow time scale of dust dynamics was investigated for the first 
time by Rao et al. [15]. They also showed the formation of rarefaction type IA 
soliton solution in a simple dusty plasma system. Similarly, Ma and Liu [16] 
discussed the existence of rarefaction IA soliton solution in a plasma in presence 
of dust charge fluctuation. Using a reductive perturbation theory, Xie et al. [17] 
derived small amplitude IA soliton and double layers in dusty plasma with vary-
ing dust charges and they had shown that only rarefaction waves exist when the 
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Mach number lies within an appropriate regime depending on the system para-
meters. 

On the other hand, Schekinov [18] studied analytically the non-linear proper-
ties of IA waves in a dusty plasma consisting of cold dust grains of constant 
charge and non-isothermal ions. Mamun [19] studied non-linear small ampli-
tude IA waves considering non-isothermal ions. The effect of non-linear dust 
grain charging on large amplitude electrostatic waves in a dusty plasma with 
trapped ions has been studied by Nejoh [20]. Kakati and Goswami [13] studied 
non-linear shock-like IA waves considering non-isothermal ions and adiabatic 
dust charge variations using the reductive perturbation technique. El-Labany et 
al. [21] revisited the same problem and studied the critical density solitary waves 
and small amplitude IA waves in hot dusty plasma with non-isothermal ions. 
Also, the effect of non-adiabatic dust charge variations on non-linear IA waves 
with non-isothermal ions has been investigated by Ghosh et al. [22]. The ampli-
tude and width of such solitary waves are shown to be significantly changed by 
the gravitational effects on the dusty plasma. 

The presence of charged massive dust grains can significantly modify the li-
near and non-linear wave propagation through plasma. When the size of the 
dust grains becomes considerable, the gravitational effects of dust grains be-
come important though the effect is certainly negligible for electrons and ions. 
In fact, a number of authors have considered non-linear wave propagation in 
self-gravitating dusty plasma where there is a competition between gravitational 
attraction and electrostatic repulsion between the charged grains, apart from 
other electromagnetic effects. It has been found that the gravitational effect can 
also significantly influence the non-linear wave propagation through dusty plasma 
[23]. 

The objective of the present paper is to study the existence and characteristics 
of ion-acoustic waves in un-magnetized, self-gravitating dusty plasmas consist-
ing of warm positive ions, non-isothermal electrons and dust particles with 
charge variations. Thus we apply for the first time the cylindrical coordinate 
system to a self-gravitating dusty plasma model and derive the complex cubic 
Ginzburg-Landau (CCGL) equation. The main motivation of the present work 
being to investigate the effects of dust charge fluctuations and non-isothermal 
electrons on the non-linear waves associated with the IA waves in dusty plas-
mas. By using the reductive perturbation technique, the small amplitude IA 
waves are described by the complex cubic Ginzburg-Landau (CCGL) equation. It 
is shown that the amplitude of the waves increases with the population of fast or 
non-isothermal electrons. We have also examined the modification of electros-
tatic dusty plasma wave spectra due to the presence of a gravitational force, 
which basically acts on the dust fluid. It is found that both the electrostatic fields 
and equilibrium density in homogeneities contribute to the propagation and 
stability of IA waves in self-gravitating dusty plasma systems. Propagation and 
damping of ion-acoustic waves have been investigated both theoretically and 
experimentally [24] [25] [26] [27]. It is well known that the charged dust grains 
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in interstellar medium, dark molecular clouds, supernova remnants, nebulae are 
held under the combined influence of electromagnetic and gravitational forces 
[1] [28]. Hence the consideration of charged dust particles in self-gravitating 
plasma can lead to new information to understand the various mechanisms in 
interstellar spaces [29] [30] [31]. Also, the gravitational attractions on the dusty 
plasma particles cause damping of sub-luminal (slower) waves propagating in 
the plasma systems. 

The rest of the paper is organized in the following manner. In Section II, we 
present in general the hydrodynamic equations for the ion and dust fluids, den-
sity distribution for the non-isothermal electrons and the model equation of the 
dust fluid has been obtained from the dust continuity and dust momentum equ-
ations along with Poisson’s equation which relates the self-gravitational potential 
and the dust mass density. Section III is devoted to the derivation of the complex 
cubic Ginzburg-Landau (CCGL) equation using reductive perturbation method 
and the single mode periodic solutions of the CCGL equation. We shall revisit 
elliptic equation methods and apply them to obtain periodic solutions of the 
CCGL equation in terms of Jacobi elliptic function and Weierstrass elliptic func-
tion. In Section IV, we present the stability analyses of the plane wave and peri-
odic wave solutions. In Section V, we present a brief conclusion and the possible 
applications of our investigation.  

2. Basic Equations and Mathematical Model 

We consider fully ionized and un-magnetized dusty plasma consisting of posi-
tive ion fluid, non-isothermal electrons and charge fluctuating dust particles. 
The non-linear dynamics or behaviour of IA waves, whose phase velocity is 
much smaller (larger) than the electron (ion) speed, propagating in such a dusty 
plasma system as governed by the gravitational force acting on the electrons and 
the ions is neglected, because em , i dm m . The dynamics of the dust fluid is 
governed by the continuity equation and the equation of motion for the dust 
described by:  

 ( ) 0.d
d d

n n v
t

∂
+∇ ⋅ =

∂



                         (1) 

 ( ) .d B d d
d d d

d d d

v K T Zv v n
x n

σ
φ ψ

µ µ
∂

+ ⋅∇ + ∇ = ∇ −∇
∂



   

               (2) 

where dn  and dv  are the perturbations in the dust number density and the 
dust fluid velocity, respectively, and ψ  and φ  are the perturbed gravitational 
potential and electrostatic potential. dZ  is the number of electrons residing 
onto the dust grain surface normalized by its equilibrium value 0dZ , i eT Tσ =  
is the non-isothermal temperature ratio and d d im mµ = . The system of equa-
tions (1) and (2) of the non-linear dust dynamics is closed by the two Poisson’s 
equations, one for electrostatic potential, φ  and the other for gravitational po-
tential, ψ .  

 2 .e i d dn n Z nφ∇ = − +


                      (3) 
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 ( )2 4 .e e i i d dG m n m n m nψ∇ = +π +


                  (4) 

The number density perturbations of the electron and ion fluids, in the local ap-
proximation are given by the Maxwell Boltzmann’s distributions [32]  

 ( )0 0exp exp .e e e
B e

en n n
K T
φ αφ

 
= = 

 
                (5) 

 ( )0 0exp exp .i i i
B i

en n n
K T
φ βφ

 
= − = − 

 
               (6) 

Here, 0en  and 0in  are the densities for the electrons and the ions at 0φ = . 

eT  and iT  are the plasma temperatures for the electrons and ions, respectively. 
We note that the dust grain is charged by the plasma currents at the grain 

surface. This means that dZ  is not constant but varies with space and time. We 
also consider a simple situation in which the charging current originates from 
the collections of electrons and ions hitting the dust grain surface. 

The charge neutrality condition at equilibrium requires that:  

 0 0 0.i e d dn n Z n= +                        (7) 

where 0en , 0in  and 0dn  are the unperturbed electron, ion, and dust number 
densities, respectively, and 0dZ  is the unperturbed number of charges residing 
on the dust grains measured in unit of the electron charge [33].  

3. The CCGL Equation and Single Mode Periodic Wave Trains 

To study electrostatic solitary structures in the un-magnetized gravitating dusty 
plasma mode under consideration, we construct a weakly non-linear theory of 
IA waves with small but finite amplitude. The scaling of the independent va-
riables leads to the derivation of the evolution equation of the system which in 
this case is the complex cubic Ginzburg-Landau (CCGL) equation.  

3.1. The CCGL Equation of the System 

Solitons and periodic wave models describe mechanical processes that occur in 
non-linear systems e.g. dusty plasma. The model under consideration is based 
on the assumption that the dust grains are seen as cylindrical-shaped particles. 
In cylindrical geometry, the operators take the form below:  

 

1ˆ ˆ ˆ ,

ˆ ˆ ˆ ,
ˆ ˆ ˆ ˆ 1,
ˆ ˆ ˆ ˆ 0

r z

d r r z z

r r

r r

e e e
r r z

v v e v e v e
e e e e
e e e e

θ

θ θ

θ θ

θ θ

θ
∂ ∂ ∂∇ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ = + +

 ⋅ = ⋅ =


⋅ = ⋅ =





                   (8) 

This leads to the normalized form of Equations (1)-(4) expressed in cylindrical 
geometry. 

The evolution equation can be obtained by the multiple-scale expansion me-
thod. This method was first applied in [34] and has been used in many branches 
of science. In order to study the dynamics of small amplitude IA waves in the 
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presence of dust charge variation, we derive an evolution equation from the sys-
tem of Equations (1)-(4), employing the reductive perturbation technique [35] 
by introducing the stretched coordinates [36] ( )1 2 kr Mtξ ε= − , 3 2tτ ε=  and 

1 2ζ ε θ−= , where ε  is a small parameter and M is the Mach number (which 
represents the ratio of the speed of the object (dust grains) relative to the fluid 
(plasma) to the speed of acoustic waves relative to the fluid). The variables rv , 
vθ , dn , en , in , ψ , and φ  are expanded in a power series as follows:  

 

2 3 4
1 2 3 4

1 2 3 4
2 3 4

0 1 2 3 4
2 3 4

0 1 2 3 4
2 3 4

0 1 2 3 4
2 3 4

1 2 3 4
2 3 4
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3 2 5 2 7 2 9

3

2

2 4

,
,
,

,
,

,

r r r r r

d d d d d d

e e e e e e

i i i i i i
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n n n n n n

θ θ θ θ θ

ε ε ε ε
ε ε ε ε
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ε ε ε ε
ε ε ε ε

ψ εψ ε ψ ε ψ ε ψ
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= + + + +
= + + + +
= + + + + +
= + + + + +
= + + + + +
= + + + +
= + + +






















 + 

             (9) 

We substitute these expansions into Equations (1)-(7) expressed in cylindrical 
geometry and collect terms at different powers of the parameter, ε . At the low-
est order, for the continuity and the momentum equations, we obtain:  

 1 1 1 1
0 0

, .B d d
r d r d

d d d d

K T ZMv n Mv n
n n

σ
ψ φ

µ µ
= = − +             (10) 

while the two Poisson’s equations yield:  

 1 1 1 0.e i d dn n Z n− + =                        (11) 

 1 1 1 1 0.e e i i d dm n m n m n+ + =                      (12) 

The Boltzmann’s distribution of ion and electron number densities can be ex-
pressed in the following form:  

 

1 1 0

1 1 0
2

2
2 2 1

2
2

2 2 1

,
,

,
2

2

e e

i i

e

i

n n
n n

n

n

αφ
βφ

ααφ φ

ββφ φ

=
 = −

 = +


 = +


                       (13) 

For the next higher order terms of both the continuity and the momentum equ-
ations, we obtain:  

 1 2 1 1 0 12
0 1

0

2 1 1 0.d d d d dr
d d

d

n n Mn n n vvM n n
n M

θ

τ ξ ξ ξ τ τ ζ
∂ ∂ ∂ ∂∂

− + + + + =
∂ ∂ ∂ ∂ ∂

       (14) 

 
2

1 1 22 2 2
12

0 00

0.d d B d d dr
d

d d d dd

n n K T n ZvM MM n
n nn

σ φ ψ
τ ξ ξ µ ξ µ ξ ξ

∂ ∂ ∂∂ ∂ ∂
− + + − + =

∂ ∂ ∂ ∂ ∂ ∂
     (15) 

Taking second derivatives on Equations (14) and (15) with respect to the stretched 
coordinates result to an anonymous fourth order partial differential equation 
which can be expressed in terms of the electrostatic potential, 1φ  only. 

As we are interested in weakly non-linear propagating wave solutions of the 
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self-gravitating dusty plasma, we apply the reductive perturbation technique. To 
achieve this goal, we introduce a small parameter ε  and proceed with the subs-
titutions 2

2 2a aε→ , 2
3 3a aε→ , 4 4a aε→ , 3

5 5a aε→ , 6 6a a→ , 7 7a a→ , 

8 8a a→ , 2
9 9a aε→ , into the anonymous equation (Appendix). 

Next, we consider the following variable transformations:  

 ( ) 3, .sχ ε ξ τ ε τ= − =                        (16) 

where ε  and 3ε  are chosen in such a way as to balance the effects of 
non-linearity and damping. Using these transformations, terms of order 4ε  give 
the modified Burgers Korteweg-de Vries (MBKdV) equation.  

 
3 2 2

2 21 1 1 1 1 1
1 1 1 13 2 2 .

2 2 2 2 2 2
N F S R H W

s
φ φ φ φ φ φ

φ φ φ φ
χ χ χχ χ χ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + − +  ∂ ∂ ∂ ∂∂ ∂ ∂  

 (17) 

If we assume a low-amplitude oscillation of the electrostatic potential of the 
dusty plasma, i.e. ( )1 1 1φ δφ δ=   and a weak damping such that N Nδ→  
and 2H Hδ→ , Equation (17) can be written as:  

 

3
2 2 2 21 1 1 1

1 1 1 3

2 2
2 1 1

12 2

2 2 2 2

.
2 2

N F S R
s

H W

φ φ φ φ
δ φ δφ δ φ

χ χ χ

φ φ
δ δ φ

χχ χ

∂ ∂ ∂ ∂
= − + +

∂ ∂ ∂ ∂

∂ ∂ ∂
− +  ∂∂ ∂  

           (18) 

The multiple-scale expansion is a perturbation technique in which both the car-
rier waves and the amplitude are treated in the continuum limit [37] [38]. It is 
thus incumbent on us to use this technique to obtain the evolution equation of 
the MBKdV equation when the non-linearity and damping are balanced. The 
method involves introducing two time and spatial scales i.e. the fast time and spa-
tial scales for the oscillations and the slow time and spatial scales for the envelope 
amplitude. This method has been used to derive the non-linear Schrödinger equa-
tion from the KdV equation in Ref. (38). We introduce a new time scale i

iT sδ=  
and a space scale i

iX δ χ= , with each value of iT  and iX  being treated as an 
independent variable. This leads to a perturbation series of operators from all 
the independent variables:  

 2

0 1 2

,
s T T T

δ δ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
                    (19) 

0 1

.
X X

δ
χ
∂ ∂ ∂

= +
∂ ∂ ∂

 

According to the multiple-scale expansion method, the ansatz for the solution 

1φ  must be consistent with the series expansion of the differential operators in 
powers of the small parameter, δ  [37] [38] adopted in Equation (19). Let us 
therefore write 1φ  as a perturbation series and consider only terms to the first 
order in, δ :  

 ( )* 2 * 2
1 e e e e .i i i iA A C B Bφ δΦ − Φ Φ − Φ= + + + +             (20) 

where the amplitudes A, C and B as well as their corresponding complex conju-
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gates *A , *C  and *B  are functions of ( 1T , 2T , and 1X ) and 0 0kX TωΦ = − , 
with k the normal mode wave number and ω  the angular velocity of the wave. 
We then substitute Equation (19), Equation (20) into Equation (18) and look for 
relations between terms of same order in δ  proportional to e i± Φ , 2e i± Φ . 

To the order 0δ , the annihilation of terms in e i± Φ  gives the group velocity 
dispersion relation of linear waves:  

 
3

.
2

Rkω =                              (21) 

To the order 1δ , the cancellation of terms in e i± Φ  gives  

 
2

1 1

3 0.
2

A Rk A
T X
∂ ∂

+ =
∂ ∂

                       (22) 

To the order 1δ , the annihilation of terms in 2e i± Φ  gives  

 
3

2
3

2 .
6

Fk Wk iNB A
k

+ −
=                       (23) 

To the second order in the perturbation 2δ , terms with zero exponential de-
pendence yield:  

 
2

2
2

1 1

20, .
3

AC FF C A
T X Rk

∂∂
− = =

∂ ∂
                 (24) 

To the second-order approximation 2δ , annihilation of terms in e i± Φ  gives 
the complex cubic Ginzburg-Landau (CCGL) equation:  

 
2

2
2

2 1

0.A Ai P Q A A i A
T X

ρ∂ ∂
− + + =

∂ ∂
                 (25) 

Equation (25) is the CCGL equation and generally speaking, it represents one of 
the most studied non-linear equations in the physics world today. This equation 
describes the evolution of the envelope amplitude of the electrostatic field poten-
tial, 1φ  in the one-dimensional cylindrical dusty plasma. 

The imaginary term in the CCGL equation causes damping of the amplitude. 
The non-linearity (self-trapping), the damping and the dispersion coefficients 

r iQ Q iQ= + , ρ  and P, respectively, are expressed in terms of dusty plasma 
parameters:  

 
2 2

2
5 11 ,

12 12 2 12r
F FWk kS NQ
Rk R Rk

= + − −                (26) 

2
7 ,
122i

FN WNQ
RRk

= − −  

2 3, .
2 2

Hk RkPρ = =  

The variations of constants P, rQ , iQ , ρ  and of the product rPQ , iPQ  with 
respect to the wave vector, k are represented in Figure 1 and Figure 2. Since the 
dispersion coefficient is real, the modulational instability depends on the sign of 
the product rPQ . According to Benjamin-Feir instability criterion, plane waves 
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Figure 1. Variation of coefficients (a) P, (b) rQ , (c) iQ , (d) rPQ , in terms of the wave 

vector, k of the carrier wave for the parameters 0.05δ = , 0.0125σ = , 0.8ε = ,  
70000000dZ = . 
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Figure 2. Variation of coefficients (a) iPQ , (b) ρ , in terms of the wave vector, k of the 

carrier wave for the parameters 0.05δ = , 0.0125σ = , 0.8ε = , 70000000dZ = . 

 
are unstable for positive values of rPQ , while they are stable for negative values. 
In the present case, the complex cubic Ginzburg-Landau (CCGL) equation ob-
tained from the un-magnetized, non-isothermal self-gravitating dusty plasma 
model clearly indicates that information encoding and transmission in the form 
of an electromechanical wave travelling along the system can also emerge as 
modulated structures. 

More importantly, the sign of rPQ  determines the nature of the solutions of 
Equation (25). If rPQ  is positive, then Equation (25) is said to admit a stable 
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envelope soliton solution that has a vanishing amplitude as 1X →∞  and cor-
responds to a small-amplitude pulse. However, if the product rPQ  is less than 
zero, then a dark (envelope hole) soliton will propagate with finite amplitude as 

1X →∞  [38] [39]. Thus, one expects to find in the dusty plasma spatially loca-
lized pulses for any wave carrier whose wave number is in the positive range of 

rPQ .  

3.2. Periodic Wave Solutions of the CCGL Equation 

The above complex cubic Ginzburg-Landau (CCGL) Equation (25) is a universal 
equation that is of major importance in continuum mechanics, plasma physics 
and optics. From a fundamental point of view, the CCGL equation permits us to 
investigate a travelling-wave profile characterized by an abrupt rise to the excited 
state and a drop back down to the refractory state with periodic pulse generation 
observed in the soliton theory [40]. 

The perturbation techniques developed for soliton solutions include the adia-
batic perturbation method, the perturbed inverse scattering method, homoge-
neous balance method, the Lie-transform method and the variational method 
[40]. Since we are dealing with the complex cubic Ginzburg-Landau (CCGL) 
equation, it is incumbent on us to look for a propagating wave solution of the 
form: [41] [42]  

 ( ) ( ) ( ), 2
1 2, e .TiA X T Y ςθ

ς=                      (27) 

where 1 2gX v Tς = − . Substituting Equation (27) into Equation (25), we obtain:  

 
2

2 3 0,g r Tv Y PY P Y Q Y Yς ςς ςθ θ θ− + + − =               (28) 

 32 0.g iv Y PY PY Q Y Yς ςς ς ςθ θ ρ− − − + + =              (29) 

A further simplification of Equations (28) and (29) may be achieved if we assume 
that z ςθ= , 2Yϕ = , 2Y zΨ =  and 

2
constantT Bθ == . Then (28) and (29) be-

come [43]:  

 2 2 3 24 4 42 4 0,g rv Q B
P P Pςς ςϕϕ ϕ ϕ ϕ ϕ− − Ψ − Ψ − + =         (30) 

 2 0.
2

g iv Q
P P Pς ς

ρϕ ϕ ϕΨ + − − =                  (31) 

In the nonlinear Schrödinger equation (NLSE) limit, 0i iP Q ρ= = = , Equation 

(31) is integrated, giving 
2

gv
C

P
Ψ = Ψ + , C = constant. 

When 0gv = , Equation (30) becomes:  

 2 2 3 24 42 4 0.rQ BC
P Pςς ςϕϕ ϕ ϕ ϕ− − − + =                 (32) 

And when 0gv ≠ , 0C =  Equation (30) becomes:  

 
2

2 2 3
2

442 0.g rv QB
P PPςς ςϕϕ ϕ ϕ ϕ

 
− + + − =  

 
               (33) 
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Let us now introduce the Miura transformation to further simplify Equations 
(30) and (31). We assume that ςϕΨ = . Substituting in Equation (31) gives an 
Abel’s type equation. When 0gv = , Equation (30) reduces to the form:  

 2 2 3242 4 0.
5 5 5

ir QQB
P P P Pς
ρϕ ϕ ϕ  − + + − =      

              (34) 

And when 0gv ≠ , Equation (30) becomes:  

 2 2 3242 4 0.
5 5 5

g irv QQB
P P P P Pς ς

ρϕ ϕϕ ϕ ϕ  + − + + − =      
         (35) 

For the periodic profiles, we reduce Equations (32)-(35) into a Weierstrass’s type 
function [44] [45] (Appendix). We consider the periodic solutions of Equations 
(32)-(35) to be the explicit solutions of Equation (25) which is the complex cubic 
Ginzburg-Landau (CCGL) equation. For Equation (32), we obtain the solution as  

 ( ) ( )1 2 2 3
2 2, , , e .
3

i

r r

B PA X T g g
Q Q

ςθη ς= +              (36) 

For Equation (33), the solution becomes:  

 ( ) ( )
2

1 2 2 3
2 2, , , e .

6 3
ig

r r r

v B PA X T g g
PQ Q Q

ςθη ς
 

= + +  
 

         (37) 

For Equation (34), we have:  

 ( )1 2, e ,iA X T ςθγ=                         (38) 

( )2 3
2 10 , , .

3 6 2i r i r

B P g g
Q Q Q Q
ργ η ς+

= − +
− −

 

For Equation (35), we obtain: (Appendix)  

 ( )1 2, e ,iA X T ςθγ=                        (39) 

( ) ( )1 2
2 3 2 3

2 0 2 0 2

3 3, , , , .
3 6 2
b g g g g g
b b b b b ςγ η ς η ς

 
= − + + − 

 
 

With 2g  and 3g  the invariants and  

 ( ) ( ) ( )2
2 3 2 2 3 1 3, , cn , .g g e e e e eη ς ς κ= − − −              (40) 

Where 1e , 2e  and 3e  are the roots of the cubic equations. 
It is important to note that the primary reason for employing the multi-scale 

analysis is to obtain low-amplitude modulated waves of the self-gravitating dusty 
plasma model Equation (18) and this approximate periodic solution is given by 
Equation (20) which admits elliptic solutions of the form Equation (40). 

Wave modulations in one-dimensional an-harmonic systems are studied by 
the use of a perturbation method established by Taniuti and Yajima [46]. We 
consider a system of non-linear wave equations which admits, in a linear ap-
proximation, a plane wave solution with high-frequency oscillation (e.g. carrier 
waves). Then, for the wave of small but finite amplitude (e.g. IA waves), we in-
vestigate how slowly varying parts of the wave such as the amplitude are mod-

https://doi.org/10.4236/jamp.2023.1111226


F. F. Ngwabe, F. M. M. Kakmeni 
 

 

DOI: 10.4236/jamp.2023.1111226 3597 Journal of Applied Mathematics and Physics 
 

ulated by non-linear self-interactions. A system of equations to determine the 
evolution of the slowly varying parts in the lowest order of an asymptotic expan-
sion is obtained. A stretching transformation shows that, in the lowest order of 
an asymptotic expansion, the original system of equations can be reduced to a 
tractable, single, non-linear equation to determine the amplitude modulation. 
One interesting result is that the non-linearly modulated wave must be accom-
panied by the slowly varying wave which tends to stabilize the modulated wave. 

The single solutions of the CCGLE in both the NLSE limit and the CCGLE 
with damping term are plotted in Figure 3. It should be noted that for the mod-
ulus, 1m = , the periodic solutions describe a single dip in the NLS equation 
limit (Equations (32) and (33)) and a single pulse or kink in the CCGL equation 
limit (Equations (34) and (35)). In Figure 4, we observe the periodic profiles for 
the squares of the moduli which illustrate the evolution of the periodic wave 
trains described by Equations (32)-(35). Figure 5 shows the periodic envelope 
profiles for the model Equation (20).  

 

 
Figure 3. The single wave profiles (solutions), ( )1 2,A X T  of Equations (32)-(35) for the parameters, 0.08k = , integration constant 

1.0K = , 0.05δ = , 0.0125σ = , 100 rad sB = , modulus, 1m = , 0.8ε = , damping 0.0032ρ = , 2 0.0T =  and 100000dZ = . 
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Figure 4. The square of the modulus of the periodic wave profiles, ( ) 2

1 2,A X T  for the parameters 0.08k = , integration con-

stant 1.0K = , 0.05δ = , 0.0125σ = , 100 rad sB = , modulus, 0.95m = , 0.8ε = , damping 0.0032ρ =  and 100000dZ =  
with 2 0.0T =  and neglecting the mass of the electrons (i.e. 0 kgem = ). 
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Figure 5. The wave profiles, 1φ  of the model Equation (20) for the parameters 0.08k = , 0.05δ = , 0.0125σ = , 100 rad sB = , 

modulus, 0.95m = , 0.8ε = , damping, 0.0032ρ = , 2 0.0T =  and 100000dZ =  neglecting the mass of the electrons (i.e. 
0 kgem = ). 

4. Stability Analysis of the Wave Solutions 

In the previous section, we obtained periodic wave solutions of the CCGL equa-
tion in the un-magnetized self-gravitating dusty plasma model. To discuss the 
stability of these solutions, we superimpose a small perturbation on the solutions 
and analyse the evolution of the perturbation. Stability analysis is an important 
technique in the study of non-linear dynamical systems because it provides an 
effective way of testing the robustness of the wave trains against small perturba-
tion in the amplitude [46]. As shown by Benjamin and Feir [47] in the context of 
fluid dynamics, such stability/instability can be a precursor of localized periodic 
wave trains in systems exhibiting weak non-linearity or weak damping.  

4.1. Stability Analysis of the Single Wave Solutions 

The instability of the plane waves will generate amplitude modulated waves in 
the system. Thus, to discuss the stability of these solutions, we search for plane 
wave solutions in the form:  

 ( ) ( )1 2
1 2 0, e .i X TA X T A ν −Λ=                     (41) 

Where ν  is the wave number and Λ the wave angular frequency. 
We substitute Equation (41) in to Equation (25) to obtain the non-linear dis-

persion relation of the plane waves.  

 2 2
0 .rP Q AνΛ = − −                         (42) 

To examine the linear stability of the plane waves, we consider small perturba-
tions ( )1 2,a X T  and ( )1 2,X Tθ  on the amplitude and phase, respectively, of 
the plane waves such that the solution Equation (41) can be rewritten as:  

 ( ) ( ) ( )1 2 1 2,
1 2 0 1 2, , e .i X T X TA X T A a X T ν θ −Λ +  = +              (43) 
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Where the perturbation amplitude ( )1 2,a X T  is small compared to the plane 
wave amplitude. 

Inserting Equation (43) in the CCGL Equation (25), neglecting the non-linear 
terms and retaining only linear terms in the perturbations and separating in to 
the real and imaginary parts lead to the following two coupled linear differential 
equations:  

2
2

0 0 02
2 11

2 2 0,aA P P A QrA a
T XX
θ θν∂ ∂ ∂

− − + + =
∂ ∂∂

 

 
2

0 2
2 11

2 2 0.a aPA P a
T XX

θ ν ρ∂ ∂ ∂
− − − =

∂ ∂∂
               (44) 

The system Equation (44) admits solutions of the form:  

 ( ) ( )1 2
1 2 0, e . ,i KX Ta X T a c c−Ω= +                   (45) 

 ( ) ( )1 2
1 2 0, e . .i KX TX T c cθ θ −Ω= +                   (46) 

Where 0a  and 0θ  are constants and K and Ω are the modulation wave vector 
and frequency, respectively. Substituting Equations (45) and (46) into Equation 
(44) yields the following linear homogeneous system for 0a  and 0θ  which 
can be represented as a 2 × 2 matrix.  

( )
( )

2 2
00 0

2
00

02 2
.

02 2
r aQ A PK iA P K
i P K PA K

ν
θρ ν

 + Ω +    
=     − − Ω +    

 

This system will allow non-trivial solutions if the determinant of the matrix is 
equal to zero. The eigenvalues from the characteristic equation are two distinct 
dispersion relations for the perturbations.  

 ( ) 2 2 4 2 2
02 2 .rK P K i P K PQ A Kν ρ ρΩ = − + ± − + +          (47) 

For the plane waves to be modulationally unstable, the modulation frequency 
( )KΩ  must be a complex function. It follows that the plane waves will be un-

stable if ( ) 0Im K Ω <  .  

 2 2 4 2 2
02 0.ri i P K PQ A Kρ ρ± − + + <              (48) 

For the ideal dusty plasma model, where there is no damping, (i.e. 0ρ = ) with 
very large values of the amplitude, 0A  the condition Equation (48) reduces to:  

 
2

2
0

, 0.
2

r
r

Q K PQ
P A

> >                      (49) 

Which is the Benjamin-Feir instability criterion for the non-linear Schrödinger 
equation or the ideal dusty plasma model [48]. When this condition is fulfilled, 
the amplitude of perturbation grows exponentially with time making the plane 
waves to become unstable in the region. We define the local growth rate of the 
modulational instability or modulation gain as ( )ImG K = Ω   [49]. In Figure 
6, we plot the modulation gain as a function of the modulation wave number, K 
for different values of the charge, Zd. The growth rate initially increases with K  
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Figure 6. (Colour On-line) Gain spectrum for different values of charge residing on the 
dust grains for 100dZ =  (black), 50000dZ =  (red), 100000dZ =  (blue) and the pa-

rameters 0.08k = , 0.05δ = , 0.0125σ = , 0.8ε = , 0.9cK = . 

 
and becomes maximum, then reduces to zero. We observe that changes in Zd af-
fect the modulation gain in the system. In fact, the gain is seen to grow with an 
increase in Zd meaning that the number of charge residing on the dust grains in-
creases the modulational instability in the plasma. As a consequence the plane 
wave solutions of the damped CCGL equation become unstable and will even-
tually break up.  

4.2. Stability of the Periodic Wave Solutions 

To discuss the stability of these solutions, one must superimpose a small pertur-
bation on this solution and analyse the evolution of the perturbation. In this case, 
according to the linear stability analysis, the solution is considered to be of the 
form:  

 ( ) ( )( ) 2
0 1 1 1 e .giv TA A X A Xε= +                    (50) 

where ε  is a small parameter that separates the solution trains and the pertur-
bation ( )1 1A X . After introducing this perturbed solution Equation (50) into the 
CCGL Equation (25), it is found that the solution and the perturbation obey the 
following equations at various orders of ε : At order 0ε ,  

 ( )
2

30
0 0 02

1

0.r i g
AP Q iQ A v A i A

X
ρ

∂
− + + − =

∂
              (51) 

At order 1ε ,  

 ( )
2

21
0 1 1 12

1

3 0.r i g
AP Q iQ A A v A i A

X
ρ

∂
− + + − =

∂
             (52) 

From Equation (51), the solution at zeroth-order ( 0ε ) can be obtained by using 
the Weierstrass elliptic function method [44] as described previously, and it is 
given by:  

 ( ) ( )2
0 1 2 3

2

4 , , .
3

CA X g gη ς
α

= − +                 (53) 

Which is also a solution of Equation (25). 
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In Equation (52), the divergence of the solution 0A  can be prevented by 
finding the exact solution of Equation (32) in 1A . To obtain this solvability 
condition, we use the transformation ( )1 0Y X Xλ= −  in Equation (53) and 
substitute in Equation (52). The solvability condition of Equation (52) can be 
expressed in term of Lamé’s type equation of the second kind as:  

 ( ) ( )
2

21
2 12

2

12 sn 0.rA Qh g Y A
PY α

 ∂
+ − = ∂  

                (54) 

Where ( )
2

2 2 2
2 2

2

8 r r gQ C Q v
h g

P
λ α α

λ α
+ +

=  with 23
2 3

g
λ = . 

Equation (54) has solution 1A  that can propagate in the dusty plasma system 
without influencing its dynamics. Thus, the solution will be stable if we can find 
a function ( )1A Y  such that Equation (54) is satisfied. If such a function does 
not exist, then the solution 0 1A A Aε= +  will no longer be a solution of the 
CCGL Equation (25) and thus, the solution 0A  will be unstable.  

5. Conclusions 

In this study a completely integrable, modulated, non-linear evolution equa-
tion has been derived for the ion-acoustic wave propagating in un-magnetized, 
self-gravitating dusty plasma system. Dusty plasma contains charged grains 
whose motion is influenced not only by gravity and radiation pressure but also 
by plasma drag and electromagnetic forces. Even though the electromagnetic 
forces are usually small, they cause several interesting effects such as resonant 
orbit perturbations, modification of density wave dispersion characteristics in 
planetary rings and angular momentum transport in planetary rings. The charge 
to mass ratio is a complicated function of plasma parameters and the number 
density of dust particles. Only a relatively small number of cases have been in-
vestigated in detail. 

To describe the non-linear propagation of ion-acoustic waves through un-mag- 
netized, self-gravitating dusty plasma, we have derived an uncoupled complex cu-
bic Ginzburg-Landau (CCGL) Equation (25) from the modified Burgers Korte-
weg-de Vries (MBKdV) equation which includes the effects of gravity, dust 
charge fluctuation as well as that of non-isothermal electrons. The spatial and 
time directions are scaled symmetrically allowing weak perturbation. Using the 
reductive perturbation scheme in the semi-discrete limit or approximation and 
the Weierstrass elliptic function, the exact algebraic periodic wave solutions are 
calculated. 

Our results show that in such a dusty plasma, solitary and periodic waves can 
exist and the effects of the non-isothermal electrons and dust charge fluctuations 
modify the structure of the IA waves. Such plasmas may exist in both space en-
vironments and laboratory. We can draw the following conclusions from the in-
vestigation: 1) The dust charging effect is of crucial importance in the sense that 
the dust charge number drastically changes due to the parameters such as the 
floating potential of dust particles, electrostatic potential of the plasma, ion to 
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electron density ratio dust to ion mass ratio, trapped electron temperature, ion 
temperature, and Mach number. The region for existence of non-linear waves 
varies due to the ion to electron density ratio and floating potential of dust grain 
particles. An increase of the Mach number increases the dust charge number. 
Also, as the electrons evolve toward their thermodynamic equilibrium, the am-
plitude of the wave increases. 2) The dependence of the charge variation of dust 
particles on the trapped electron temperature, ion density and temperature is 
observed in the dusty plasmas. The effect of the ion temperature decreases the 
dust charge number. Since the effect of the ion temperature affects the characte-
ristics of the collective motion of the plasma, this effect is important in under-
standing non-linear waves propagating in dusty plasmas. 3) The phase velocity 
and frequency of unstable modes increase with relative to the negatively charged 
dust grains. 

The stability or instability of the periodic solution is found to depend on the 
sign of the coefficients P and Qr in the complex cubic Ginzburg-Landau (CCGL) 
equation. The non-isothermal parameter and gravitational effects all enter into 
the factors P and Qr in a complicated way. Thus the non-isothermal parameter 
and the gravitational effects involved in P and Qr will significantly influence the 
properties of the periodic solution including amplitude, speed, width as well as 
its stability. It is to be noted that the non-isothermality of the electrons has no 
effect on the linear properties of the wave but has a significant effect on the 
non-linear properties of the wave. The model considered in this paper can be 
easily applied to study the effects of different types of electron distributions on 
the non-linear propagation of ion-acoustic waves in self-gravitating dusty plas-
ma. 

To crown it all, the most important achievement in this paper is that instead 
of coupled non-linear equations as obtained by earlier authors an uncoupled 
non-linear equation has been obtained which is advantageous. Also, the model 
considered here can be easily extended to study the effects of different types of 
electron distributions on the non-linear propagation of ion-acoustic waves in 
both magnetized and un-magnetized dusty plasmas. In this situation, our results 
are important in understanding the charging mechanism of the streaming of 
dust grain particles and confirming the existence of arbitrary amplitude elec-
trostatic ion acoustic waves in dusty plasmas. 

Finally, it should be pointed out that, being a very complex system, a dusty 
plasma includes numerous effects that cannot be investigated in general in every 
analysis. Rather, for the sake of clarity and simplicity, these effects are studied 
separately, yet one should always keep in mind that the real physical picture is 
usually not so clear. To mention just a few, like the size distribution of dust par-
ticles, dust temperature variation as a result of permanent bombing by electrons 
and ions, shadow force effects again resulting from the attachment of electrons 
and ions, coagulation of dust particles and the redistribution of mass and size of 
grains image charge effects, etc. However, discussions on these fine and tiny, yet 
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important effects are out of the scope of the present paper, and should be the 
subject of some independent studies.  
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Appendix 

We neglect the mass of the electrons, 0em =  to have:  
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And:  
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We proceed to obtain the periodic wave solutions of Equations (32)-(35). 
For Equation (32), we let 2Sϕ =  to obtain a differential equation which can 

be reduced to a Weierstrass’s form equation by setting ( ) 2
2 3
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For Equation (33), we let 2Sϕ =  and by setting ( ) 2
2 3

2

4 , ,
3

CS g gη ς
α

= −  

with invariant 
22

2 2

42
2

g rv KQBg
P PP

 
= + −  
 

, 2
2 rQ
P

α = , 
2

2
2

2
g

r r

vBC
Q PQ

 
= − +  

 
 

[50]. 

For Equation (34), we set ( ) 2
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For Equation (35), we apply the homogeneous balance method (HBM). We 
suppose that Equation (35) takes the following ansatz solution [45]  

 ( ) ( )0 1 2 3 2 2 3, , , , .A A g g A g gςϕ η ς η ς= + +              (59) 

Where  
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