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Abstract 
The goal of our research was to determine a coupling between information 
theory, geometry and multi-dimensional projections. This was accomplished 
after preliminary mathematics was presented to determine an alternative 
method for the illustration of multi-dimensional spaces. That was developed 
with a unique series that gives structure to integer exponents of power sets. 
The desired coupling is concisely illustrated in a single figure which includes 
three cyclic phases that are isomorphic to the three phases of Euclidian, rec-
tangular cuboids. The series enables projections between n- and m-dimen- 
sional volumes. The associated figure also illustrates how vertical and/or ho-
rizontal symmetry breaking or symmetry emits or absorbs information. 
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1. Introduction 

What would be the value of a simple equation that projects informational struc-
tures from one dimension to any other dimension, enabling dimensional reduc-
tion or expansion? And what if it was determined that all such reductions could 
produce 3-dimensional images of rectangular cuboids [1]? 

If it were determined that all Euclidian-dimensional reductions produced 
3-dimensional images of cuboids, this would provide a useful constraint on the 
equation’s output. It would indicate that any dimensional reduction of an in-
formational structure could result in a three-dimensional cuboid shape, which 
could simplify analysis and visualization of the data. In addition, it provides a 
more viable connection to physics than traditional information theory [2]. 
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However, it is important to note that dimensional reduction and (or) projec-
tion is a complex problem that has been extensively studied in mathematics and 
computer science. There are already many existing techniques for dimensional 
reduction, such as principal component analysis [3] and t-SNE (t-Distributed 
Stochastic Neighbor Embedding) [4] that are widely used in data analysis and 
machine learning. It is unlikely that a simple equation could completely replace 
these methods, but it could potentially offer a novel approach to dimensional 
reduction/projection that has unique advantages or applications. 

In this paper, using a unique factorization theorem, we present an alternative 
way to visualize higher-dimensional space as direct “images” of information. We 
show that a more analytic description of information is a countable space that 
contains cuboid volumes extracted from exponential sets. Our paper also presents 
visual confirmation of John Wheeler’s famous statement: “It from bit” or every 
physical entity, every it, derives from a bit [5]. 

2. Standard Information Theory 

From Shannon’s famous paper on communication [6], information is defined as 
follows. Given n possible outcomes for an observation of a system with n ran-
domly occurring states, the average uncertainty prior to observation is defined as 
the entropy, H [7]. 

For equally probable states, 

1logH
p

 
=  

 
,                         (1) 

where p = 1/n is the probability of observing a particular state. After the state is 
observed, the information gained has the magnitude H: 

H I→ .                           (2) 

The equation for entropy, here from information theory, is essentially the 
same as that used in thermodynamics, hence the name. 

Numerically, information is measured in bits (short for binary digits). One bit 
is equivalent to the choice between two equally likely choices. For example, if we 
know that a coin is to be tossed but is unable to see it as it falls, a message telling 
whether the coin came up heads or tails gives us one bit of information. When 
there are several equally likely choices, the number of bits is equal to the loga-
rithm of the number of choices taken to the base two. For example, if a message 
specifies one of sixteen equally likely choices, it is said to contain four bits of in-
formation. When the various choices are not equally probable, the situation is 
more complex [8] [9]. 

3. Information Based on Symmetry Breaking 

Symmetry in everyday language refers to a sense of harmonious and beautiful 
proportion and balance. In mathematics, “symmetry” has a more precise defini-
tion, and is usually used to refer to an object that is invariant under some trans-
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formations, including translation, reflection, rotation or scaling [10]. We propose 
that information is fundamentally hidden by symmetry and released by sponta-
neous symmetry breaking. This proposal is supported by the following basic geo-
metrical Figures: 

These “volumes” or it-boxes are internally uniform and thus, are internally 
symmetric. We denote these Euclidean or rectangular volumes with the equa-
tion: 

( ) { }, , 1, 2,3,nV x n x n= =                     (3) 

Equation (3) denotes an exponential set, which is uncountably infinite with 
the cardinality of the real numbers,  . In order to extract information from 
within (3), one would need to identify single, nearly infinitesimal points within 
the volumes shown in Figure 1. That would require a tremendous amount of 
resolution or an extremely large amount of energy. 

However, if we were able to partition the volume, V, into a sum of distinct, 
symmetric, countable volumes, then, since these smaller volumes are countable, 
the it-boxes become bit-boxes. We illustrate this point in Figure 2. 

Any asymmetry between the volumes within a bit-box represents 1 bit of in-
formation or the choice between two equally probable states. Note that rather 
than using a single cube, we will hence, use two concatenated cubes, shown in 
Figure 3 to construct our bit-boxes. This interprets a single cube as an it-box 
and two coupled it-boxes as a bit-box. 

At this point, we can redefine a quantity of information as something other 
than “entropy”. While information is traditionally a measure of the “a priori 
uncertainty” in an observed message, information, in this theory, is defined as 
the “a posteriori asymmetries” in an observed image, due to either vertical plan-
er and/or horizontally planer symmetry-breaking. 

 

 
Figure 1. A 1-D line segment, a 2-D square and a 3-D cube. 

 

 
Figure 2. Three bit-boxes in 1-D, 2-D, and 3-D spatial volumes. 
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Figure 3. An illustration of “it from bit”, based on our dimensional projection theory. 

 
This clearly implies that symmetry does not radiate information, while asym-

metry does. 
We will now prove an important theorem, which is the essence of this paper. 

4. Theorem I (Projection Theorem) 

If , 0n k +∈   and m +∈ , 
Then 

1
0

m
k

n kn
m

−

=

+ =   
∑

 
where     is the floor function. 

Proof: 
Let:  

1 2 1n n n n mS
m m m m

+ + + −       = + + + +              


 
Case (1): n m≤ : 
We can rewrite S as: 

1 21 1 1n m n m n m nS
m m m m
− − + − +       = + + + + + + +              



 
If n=m, then S=m. If n = m − 1, then S = m − 1. If m = 1, then S = 1. 
Case (2): n > m: 
Let n = mp + R, R < m. Then S can be written as: 

1 11 1 1mp R m mp R m mp RS
m m m
+ − + − + + −     = + + + + + +          



 
1 11 1 1R m R m RS mp

m m m
− − + −     = + + + + + + +          



 
Which reduces to 

S mp R= +  
1
0

m
k

n kS n
m

−

=

+ = =   
∑    

Corollary: 
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1
0

,
m
k

n k
n mx x x

−
=

+ 
  

∑
= ∈  

Or more specifically, 
1 2 1n n n n m

n m m m m
mx x x x x

+ + + −       
              = ∗ ∗ ∗ ∗ .               (4) 

This series projects an n-dimensional “volume” into an m-dimensional “volume”. 
Consider the case for m = 3: 

1 3 1
3 3 3

3

n n n
nx x x x

+ + −     
          = ∗ ∗ .                    (5) 

This equation specifically generates the 3 cuboid states: a cube, a long cuboid, 
and a wide cuboid. In this case, there is no difference between the input dimen-
sions and the output dimensions. We can produce graphic images by treating 
each factor in Equation (5) as elements of an n-dimensional volume within 
3-dimensional space (i.e., length, width, and height). The unit cubes that comprise 
our images are called “voxels”. Voxels are essentially 3-D pixels, but instead of be-
ing squares, they are perfect cubes of unit volume. In theory, voxels are the ideal 
modeling technique for replicating reality. After-all, our world is made of some-
thing akin to voxels (but they are much smaller, and we call them “sub-atomic par-
ticles”). If we have a high enough density (or “resolution”) and the proper ren-
dering techniques, we can use voxels to replicate real-world objects that would 
be impossible to differentiate from the real thing. Note that the unit cubic cells 
(i.e., boxes or voxels) shown in Figure 4 are contiguous, while the individual 
cuboids are spatially separated. nx  is an exponential set that is uncountably in-
finite, with the same cardinality as the real numbers,  . This precludes distinct, 
real-valued measurements, required to acquire, or store countable packets of in-
formation. However, geometry enables precise images of cuboids, as one way 
around this impediment, because the images consist of countable bit-boxes with-
in separate cuboids that can undergo continuous, invariant translation. 

5. Cuboid Phase Evolution Using Geometry and Information 
Theory 

Figure 4 shows exact models of cuboids that occur, commonly, in certain natu-
ral minerals, such as diamonds [11]. The pictures are also isomorphic to solid 
(cube), liquid (long cuboid), and gas (wide cuboid) phases of matter [12]. Cu-
boid phases are also cyclic with distinctive phase transitions, based on geometry 
and shown in Figure 5. 

6. Compatibility with Standard Information Theory 

Our initial goal was to make multi-dimensional projections of spatial volumes. 
That goal is clearly illustrated in Figure 5. By using geometry and abstract algebra, 
we find that we are able to construct “images” of information, while maintaining 
compatibility with standard information theory. Thus, we define information as 
a countable property of space in which the magnitude of information is the 
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Figure 4. Some examples of cuboids (cubes, long cuboids, and wide cuboids) produced 
by the finite series given in (4). The phases evolve vertically, from top to bottom. 

 

 
Figure 5. An illustration of the coupling between vertical and horizontal symmetry 
breaking, multidimensional cuboids and information theory, in which n indicates the 
dimension of the associated volume and its measure in bits, while 2n is the volume. 
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volume of a cuboid expressed as a physical image. 
Another way to obtain information from nx  is by applying a logarithm (the 

inverse of an exponential set) to both sides of (4): 

( )
1 2 1

log log log log log
n n n n m

n m m m m
m m m m m mx x x x x

+ + + −       
              

       
       
       
     

+


+ + +


=  . (6) 

Which reduces to: 

( ) ( ) ( ) ( )1 1log log log logn
m m m m m

n n n mx x x x
m m m

+ + −     = + + +          
    (7) 

And, for m=x, becomes: 
1 2 1n n n n mn

m m m m
+ + + −       = + + + +              

 .            (8) 

This result is just Theorem I. 
Based on our premise that information is countable volume, then Equation (4) is 

an exact measure of information within a countable subspace of a given volume: 

( ), nV x n x= : 

Entropy, H, based on Information Theory, measures the average information 
within a message. It relies on statistics that critically depends upon individual 
probabilities, ip : 

21 log i
n

iiH p p
=

= −∑                       (9) 

In contrast, the information ( ,n mI ), released or stored due to vertical and/or 
horizontal symmetry-breaking or symmetry increases shown in (4) and (5), is 
not stochastic and is defined as: 

( ), log n
n m m mI x≡ .                       (10) 

( ) ( ) ( ) ( ),
1 1log log logn m m m m

n n n mI x x x x
m m m

+ + −     = + + +          
    (11) 

Nonetheless, we can still derive the same results for the scalar measure of in-
formation in terms of bits for both methods. The difference is that information 
theory does not include physical images for information. 

Here are some examples, considering binary information or letting x = 2, so 
that ( )2log 1x = . Observe that because, x = 2, the information is measured in 
bits, exactly in accordance with Shannon’s information measure. Here are some 
examples: 

( )

( )

( )

( )

1,2

2,2

3,2

4,2

1 2 1 bit
2 2
2 3 2 bits
2 2
3 4 3 bits
2 2
4 5 4 bits
2 2

I x

I x

I x

I x

   = + =      
   = + =      
   = + =      
   = + =      

                  (12) 
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The computer coding that is needed for dimensional projection has minimal 
complexity. We illustrate this with a basic software code that inputs x, n and m 
and outputs length, width, and height of the associated cuboid. Looking at the 
images shown in Figure 4 and Figure 5, we can confirm that by counting the 
number of voxels in each cuboid image, we recover the expected volume equal to 
(length) × (width) × (height). 

7. The Basic Algorithm for Dimensional Projection 

40 g = 1 
100 print ‘for the volume: x^n, the projection into the volume: x^m’ 
150 print ‘input x,n,m’; 
200 input x,n,m 
205 print ; 
255 for k = 0 to m 
258 if k = m then goto 600 
350 f = floor((k+n)/m) 
355 print; 
370 g = (x^f)*g 
387 print 
390 print ‘     ‘,g 
400 print ; 
450 g = 1 
500 next k 
600 end 

 
Sample Runs: 
input x,n,m? 3,5,3 

3 
9 
9 

>run 
for the volume: x^n, the projection into the volume: x^m 
input x,n,m? 3,52,3 

129140163 
129140163 
387420489 

>run 
for the volume: x^n, the projection into the volume: x^m 
input x,n,m? 3.14159,4,3 

3.14159 
3.14159 
9.869588 

 
>run 
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for the volume: x^n, the projection into the volume: x^m 
input x,n,m? 3,3,3 

3 
3 
3 

Observe that each of these runs produced results that are easily normalized, 
consistent with scale invariance. 

8. Conclusions 

We started with a theorem that proves the representation of any positive integer 
as a non-linear, finite series. The series was used to create exponential sets and to 
visualize them as 3-D cuboids; necessary ingredients for the storage or extraction 
of information based on symmetry, in particular, vertical and/or horizontal sym-
metry. The geometric images produced, made the exponential sets countable in 
the form of Euclidean structures that model rectangular cuboids. The equation 
or finite series that produces n-dimensional to m-dimensional transformations 
is given in (4): 

1 2 1n n n n m
n m m m m
mx x x x x

+ + + −       
              = ∗ ∗ ∗ ∗ . 

This section of the work was followed by deriving a countable subspace of the 
exponential set model with a simple application of a logarithm (base 2) to the 
exponential sets and demonstrating its equivalent results to those of standard 
information theory. 

There are many promising aspects of this work that can be explored. It im-
pacts nearly all areas of physics and mathematics and proves that information is 
physical and occurs specifically, in units of bits. 

The Euclidian cuboid space of information as a countable volume may con-
nect it to a 3-manifold [13], as a possible shape of the universe. Future research 
will review this topological connection. In addition, there is some allowable va-
riance in the projection theorem that needs to be explored. 

Nonetheless, the main goal of this paper was met and concisely illustrated in 
Figure 5. That is, there is a tangible coupling between information theory, geo-
metry and multi-dimensional projection. This all relies on a unique visualization 
of higher-dimensional space. 
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