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Abstract 
This paper presents a study on a new rumor propagation model with nonli-
near propagation rate and secondary propagation rate. We divide the total 
population into three groups, the ignorant, the spreader and the aware. The 
nonlinear incidence rate describes the psychological impact of certain serious 
rumors on social groups when the number of individuals spreading rumors 
becomes larger. The main contributions of this work are the development of a 
new rumor propagation model and some results of deterministic and sto-
chastic analysis of the rumor propagation model. The results show the influ-
ence of nonlinear propagation rate and stochastic fluctuation on the dynamic 
behavior of the rumor propagation model by using Lyapunov function me-
thod and stochastic related knowledge. Numerical examples and simulation 
results are given to illustrate the results obtained. 
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1. Introduction 

Nowadays social networks like Wechat, Twitter, Facebook are used by extremely 
large number of people. With the development of communication technology 
and the wide use of social platforms, the speed of information transmission has 
been significantly improved, and the amount of information is expanding day by 
day. However, in so much information, rumors are mixed in and highly confus-
ing. A rumor is basically a “circulating story of questionable authenticity that is 
superficially plausible but difficult to verify” [1] [2]. The spread of rumors has 
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brought great inconvenience to society and individuals [3]. Nowadays with the 
development of social science, mathematics and computer tools, the application 
of nonlinear dynamics theory has been used to explain the spread of rumors in 
social networks [4]. Kendall and Daly [5] proposed a sociological mathematical 
model that divides the total population into three subgroups: ignorant people 
who have not heard of the rumor, spreaders who spread the rumor, and stiflers 
who have lost interest in the rumor and stopped spreading them. Jain et al. [6] 
used epidemiological modeling techniques to study the mathematical model of 
news communication and proposed rumor detection and verification criteria for 
this model. Moumita Ghosh et al. [7] studied dynamics and control of delayed 
rumor propagation through social networks and discussed the Hopf bifurcation 
with respect to delay and transmission rate. 

However, in the known rumor propagation model, the nonlinear logical 
growth rate and the secondary of rumor propagation have not been considered. 
In this paper, we consider the logical growth of communication groups. As we 
all know, the rumor spread quickly at first. But after a period of time, the spread 
speed will slow down. Therefore, in our rumor propagation model, we consider 
the nonlinear rumor propagation growth rate. By calculating the influence thre-
shold of rumor, the conditions of rumor prevalence and final disappearance are 
given. In this paper, we also give the secondary propagation rate of rumors. A 
controversial topic, even if one has a certain understanding of the facts, is likely 
to be influenced by the surrounding social environment and become a rumor 
spreader again. And there are some social networks to guide trolls. The second-
ary propagation rate is really important to effectively reflect the reality. 

This paper is organized as follows. In Section 2, we give the formulation of the 
model. In Section 3, we show the existence, uniqueness and condition of stability 
of equilibria. And we discuss the global stability and the exponential stability of 
the rumor model. In Section 4, we show the asymptotic behavior around the 
rumor-free equilibria in the stochastic rumor model. In Section 5 we have dis-
cussed the asymptotic behavior around the rumor-existing equilibrium and stu-
died the ergodicity. Numerical simulations are presented in Section 6. Finally 
some conclusions are obtained in Section 7. 

2. Model Formulation 

Combined with the existing rumor propagation model [8]-[14] and epidemic 
model [15] [16] [17] [18] [19], in this paper we established the following model 
by introducing the influence of the logical growth of the spreader group, nonli-
near incidence rate and random fluctuation on rumor propagation. Logistic 
growth happens when the growth rate slows down as the population tends to 
reach a maximum sustainable value C which is called the carrying capacity. 
Moreover the total population is bounded, which is proved later. Therefore after 
a period of time, rumor propagation does not increase and it becomes asymp-
totic to the constant C. 
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We consider the rumor propagation rate is 
( )
( )1 h

ky t
y tα+

, where ( )ky t  

represents the intensity of the rumor, 
( )

1
1 hy tα+

 show that the social rumor  

spread rate changes when the number of spreaders becomes huge. People who 
aware the absurdity of rumors, may become the spreaders of rumors due to the 
influence of the social environment around them. Therefore, we introduce the 
secondary rumor propagation rate. 

We consider some assumptions: 
• The spreader and the aware will never come back to ignorant class. 
• The aware who realizes that the information is controversial may be dis-

turbed by the surrounding environment and become a spreader of rumors. 
Taking into account the above assumptions, we can formulate the model as 

follows: 

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

d ,
d 1

d ,
d 1
d .
d

h

h

kx t y tx b dx t
t y t

kx t y ty d y t rz t
t y t
z y t dz t rz t
t

α

µ
α

µ


= − − +

 = − + +
+


 = − −


             (2.1) 

We use ( ) ( ) ( ) ( )T t x t y t z t= + +  to represent the total number of accounts 
on the social network at time t. All the parameters in Equation (2.1) are consi-
dered as positive constants and their definitions are given in Table 1. 

Stochastic fluctuations in the social environment have many effects on people’s 
psychology and affecting the spread of rumors. In this paper, we assume that 
both the nonlinear propagation rate and the secondary propagation rate are af-
fected by environmental fluctuations. We propose the corresponding stochastic 
model as follows: 

( ) ( ) ( )
( )

( ) ( )
( )

( )

( ) ( )
( )

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
1

1
1 2 2

2 2

d d d ,
1 1

d d
1

d d ,
1

d d d .

h h

h

h

kx t y t x t y t
x b dx t t B t

y t y t

kx t y t
y d y t rz t t

y t

x t y t
B t z t y t B t

y t

z y t dz t rz t t z t y t B t

σ
α α

µ
α

σ
σ

α

µ σ

  
= − − −  

+ +   


  = − + +  +   

 + + +

 = − − −  

       (2.2) 

In Equation (2.2), ( )iB t , 1,2i =  are independent Brownian movement de-
fined on the complete probability space ( ), ,Ω  . 3R+  is the set of 3-dimen- 
sional real column vector with non-negative elements. 

3. Some Results of the Extinction and Persistence 

In this section, we will discuss the persistence and extinction of the rumor model.  
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Table 1. Parameter description. 

Parameter Parameter definition 

b The total number of social network users at the beginning. 

d The rate of the social network users becomes inactive to the rumor. 

k Proportionality constant. 

μ The rate of the spreader become the aware. 

r The rate of the aware become the spreader due to the social  
environment around them. 

α The saturated rates. 

 
Considering the characteristic of Equation (2.1) and Equation (2.2), we have the 
following conclusions. 

Lemma 3.1. For the solution ( ) ( ) ( )( ), ,x t y t z t  of Equation (2.1) and Equa-

tion (2.2) with initial value ( ) ( ) ( )( ) 3
0 0 0, ,x t y t z t +∈ , we can obtain that 

( ) ( ) ( ){ }max limsup ,limsup ,limsup .
t t t

bx t y t z t
d→∞ →∞ →∞

≤
 

Proof. Summing up the three equations in Equation (2.1) and Equation (2.2), 
we have 

( ) ( )
d

.
d

T t
b dN t

t
= −

 
Obviously, it can be obtained by calculation 

( ) ( )( ) ( ) ( )0 0
01 e e ,d t t d t tbT t T t

d
− −= − +                (3.1) 

and take the limit of both sides of Equation (3.1), we achieve 

( )lim .
t

bT t
d→∞

=
 

The proof is complete. 
The boundness and non-negative of the solution of Equation (2.1) and Equa-

tion (2.2) indicate that the models have realistic meaning. We denote 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ), , : , 0, 0, 0bI x t y t z t x t y t z t x t y t z t
d

 = + + ≡ ≥ ≥ ≥ 
   

is a invariant region for Equation (2.1) and Equation (2.2). 
From the invariant region I, we can get the following equivalent model of Eq-

uation (2.1) 

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

d
d 1
d .
d

h

ky ty b y t z t d y t rz t
t dy t
z y t d r z t
t

µ
α

µ

  = − − − + +   +  

 = − +

       (3.2) 

We would mainly study the existence, uniqueness, and the stability of equili-
bria of Equation (3.2) in order to obtain the dynamical properties of Equation 
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(2.1). 
Lemma 3.2.  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ), , : , 0, 0, 0bI x t y t z t x t y t z t x t y t z t
d

 = + + ≡ ≥ ≥ ≥ 
 

 is an 

absorbing set of model 2.1 in the first quadrant. 

Proof. From model 3.2, we can see that on the line ( ) 0y t = , d 0
d
y
t
> , and on 

the line 0R = , d 0
d
z
t
> . Hence, no orbit of model 3.2 can exit from the first 

quadrant, with the boundary 0z =  and 0y = . From the proposition of the 
region I and Lemma 3.1, we can get 

( ) ( ) ( ) ( )lim lim , lim lim .
t t t t

b by t T t z t T t
d d→∞ →∞ →∞ →∞

≤ = ≤ =
 

Thus 

( )

( )
( )

( ) ( ) ( )

d d d
d d d

1

0.

bb y zy z dd

h
by z
d

y z y z
t t t

ky t b y t z t d y z
dy t

b

α

+ =+ =

+ =

+
= +

 = − − − + +  

= − <

     (3.3) 

Equation (3.3) shows that the orbit of model 3.2 getting at the boundary 

( ) ( ) by t z t
d

+ =  must go into the interior of I. Thus, the region I is an absorbing 

set of model 3.2, in the first quadrant. The proof is complete. 
Next we show that the threshold value of the rumor model 2. is 

( )( )0 .kbr kbd rdR
d d r d

µ
µ
+ +

=
+ +  

Lemma 3.3. (1) If 0 1R ≤ , the model 3.2 has a unique equilibrium ( )0 0,0E =  
in the first quadrant. 

(2) If 0 1R > , the model 3.2 has two equilibria in the first quadrant, which are 

0E  and ( )* * *,E y z= , where * *, 0y z > . 
Proof. Apparently, model 3.2 has an equilibrium ( )0 0,0E = . And it has a 

positive equilibrium ( )* * *,E y z= , if and only if ( )* * *,E y z=  satisfies the fol-
lowing equation 

( )

( )

0,
1

0.

h

ky b y z d y rz
dy

y d r z

µ
α

µ

  − − − + + =  +  
 − + =

             (3.4) 

By calculation, the above Equation (3.4) is equivalent to 

( ) ( )( )01 .hr kd y k y d R
r d r d
µ µµ α µ   − + − + = + −   + +   

       (3.5) 

Obviously, we can get that ( ) 0r d
r d
µ µ− + <
+

. Then if 0 1R ≤ , Equation (3.5) 
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has no positive solution. So the conclusion in case (1) holds. Case (2) is demon-

strated as follows. Set ( ) ( ) hr kH y d y k y
r d r d
µ µµ α   = − + − +   + +   

. We have 

that 

( ) 1d .
d

hH r kd hy k
y r d r d

µ µµ α −   = − + − +   + +     

We could easily get that d 0
d
H
y
< , and ( )H y  is strictly monotone decreas-

ing for 0y ≥ . 

Thus, we can obtain that 

( )( ) ( )01 0 0.bH d R H
d

µ  < + − < = 
   

Therefore, case (2) can be obtained. 
Theorem 3.1. There exists a unique solution ( ) ( ) ( )( ), ,x t y t z t  of model 2.2 

for 0t ≥  with any initial value ( ) ( ) ( )( ) 30 , 0 , 0x y z R+∈  and the solution will 
remain in 3R+  with probability one. 

Proof. According to the local Lipschitz continuity of the coefficient of model 
2.2, it can be achieved that there exists a unique local solution solution 

( ) ( ) ( )( ), ,x t y t z t  on [ )0, eω  with an initial value ( ) ( ) ( )( ) 3, ,x t y t z t R+∈ , 
where eω  represents the explosion time. To prove the globality of the solution, we 
have to show that eω = ∞  a.s.. We suppose that there exist 0 1M ≥  is sufficiently  

large such that ( ) ( ) ( )0 , 0 , 0x y z  all in the interval 0
0

1 , M
M
 
 
 

. For each integ-

er 0k M≥ , we define the stopping time 

[ ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }1inf 0, : min , , or max , , .k et x t y t z t x t y t z t k
k

ω ω = ∈ ≤ ≥ 
   

Then kω  increases as k →∞ . Denote lim kk
ω ω∞ →∞

= . Obviously, eω ω∞ ≤ . 
Next, we prove that ω∞ = ∞  a.s. If it is not true, then there is constant ( )0,1ε ∈ , 
such that { }P ω ε∞ < ∞ > . Thus there are two constants, integer 1 0k M>  and 

0T >  satisfying 

{ } ,kP Tω ε≤ ≥  
for all 1k k> . Define a C2-function 3:V R R+ +→  by 

( ) ( ) ( ), , ln 1 ln 1 ln ,xV x y z x a a y y z z
a

 = − − + − − + − − 
 

      (3.6) 

where a is a constant that will be given later. The nonnegativity of this function 
(3.6) can be seen from 1 ln 0y y− − ≥ , for all 0y > . By Itô’s formula, we achieve 

( )

( ) ( )

2 2 2 2 2 2
1 1

2 2 2 2

1 1d , , 1 d 1 d 1 d

1 1 1d d
2 21 1h h

aV x y z x y z
x y z

x y x ya t t
x yy y

σ σ

α α

    = − + − + −    
    

+ ⋅ + ⋅
+ +
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( ) ( ) ( ) ( )

2 2 2 2 2 2
2 22 2

1 1
1 2 2

1 1 1 1d d
2 2

, , d d d .
1 h

y z t y z t
y z

a y xV x y z t B t y z B t
y

σ σ

σ σ
σ

α

+ ⋅ + ⋅

−
= + + −

+


 

Here, 3:V R R+ +→  and choose a sufficiently small, then we achieve 

( ) ( )

( ) ( )
( )

( )

2 2 22 2 2 2
21 1

2 2

2 2 2 2 2 2
1 1 2

2 2 2

2
1

21 2 1 2 1

2 .
2 2

h

h h h

ab kx rz yV b ad d r d x y z
x y zy

z ya y xaky
y y y

a b b bakbb ad d r
d d d d

µµ
α

σσ σ
α α α

σ σ σ
µ

 
= + + + + − + + − + + + + 

+
+ + + +

+ + +

≤ + + + + + + + +



 
Since a is sufficiently small, we could get that 

( )
2 2
1
2

2
2 ,

bV b d r
d
σ

µ≤ + + + + ≤                 (3.7) 

where   is a constant in Equation (3.7). Thus, 

( )( ) ( ) ( ) ( )1 1
1 2 2d , , d d d .

1 h

a y xV x y z t B t y z B t
y

σ σ
σ

α
−

≤ + + −
+

      (3.8) 

Taking integral on the above inequality (3.8) from 0 to k Tω ∧ , we obtain 

( ) ( ) ( )1 1
1 2 20 0 0

d d d ,
1

k k kT T T

h

a y xt B t y z B t
y

ω ω ωσ σ
σ

α
∧ ∧ ∧+

+ + −
+∫ ∫ ∫

 

where { }min ,k kT Tω ω∧ = . Then, we can have that 

( ) ( ) ( )( )( ) ( ) ( ) ( )( ), , 0 , 0 , 0 .k k kE V x T y T z T V x y z Tω ω ω∧ ∧ ∧ ≤ +
 

Let { }k k TωΩ = ≤ , then we have ( )kP εΩ ≥ . For each kω∈Ω , ( ),kx ω ω , 

( ),ky ω ω , or ( ),kz ω ω  equals either k or 1
k

, and the nonnegativity properties 

of the terms in function ( ) ( ) ( )( ), ,V x t y t z t , we can conclude that 

( ) ( ) ( )( ) 1, , , , , min 1 ln , 1 ln .k k kV x y z k k k
k

ω ω ω ω ω ω  ≥ − − − + 
   

Thus 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

0 , 0 , 0

1 , , , , ,

1min 1 ln , 1 ln ,

k k k k

V x y z T

E V x y z

k k k
k

ω ω ω ω ω ω ω

ε

Ω

+

 ≥  
 ≥ − − − + 
 



 
where ( )1

k
ωΩ  is the indicator function of kΩ . Letting k →∞ , we can obtain 

the contraction 

( ) ( ) ( )( )0 , 0 , 0 .V x y z T∞ > + ≥ ∞
 

The proof is complete. 
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By constructing appropriate Lyapunov functions, we can study the extinction 
and persistence conditions of the rumor propagation model. Above all, we will 
discuss the globally asymptotically stable in probability and exponentially stable  

a.s. of solution to the equilibrium 0 ,0,0bE
d

 =  
 

 . 

Theorem 3.2. Suppose ( ) ( ) ( )( ), ,x t y t z t  be the solution of model 2.2 with 

the initial value ( ) ( ) ( )( ) 30 , 0 , 0x y z R+∈ . If 
( ) ( )( )

( )
2 2 2

1 2

2 2
b

d
d

σ σ
µ

+
> +  hold, 

then the trivial solution of model 2.2 is globally asymptotically stable with prob-
ability one. 

Proof. Define 

( )
2

2 2
1 , , .bV x y z m x ny z

d
 = − + + 
 

               (3.9) 

Here, , 0m n >  will be chosen later. Then applying Itô’s formula, we get 

( )

( )

( )
( ) ( )

1

2

2 2 2 2 2 2
2 2 2 2 2 21 1
2 22 2

1

d , ,

2 d 2 d 2 d

22 2 d
11

2 d
1 1

2

hh

h h

V x y z

bm x x ny y z z
d

mb kxy kxymx b dx ny dy y rz t
d yy

m x y n x yz y dz rz n z y z y t
y y

xybm x
d

µ
αα

σ σ
µ σ σ

α α

σ

 = − − + + 
 

       + − − − + − − +     +    +   

 
 + − − + + + +
 + +  

 − − 
 

( ) ( )

( ) ( )

2
1

1 1

2 2
2 2 2 2

2
d d

1 1

2 d 2 d .

h h

n xyB t B t
y y

n zy B t yz B t

σ
α α

σ σ

+
+ +

+ −

 

Thus 

( )

( )

( ) ( ) ( )

( )

1

2 2
2 2 2 2 2 2

2

2 2 2 2 2 2
2 2

2 2 2 2 2 22
1 1

2 22

2 2
2 2 2 2

2 1

, ,

2 22 2 2 2 2 2
1

4 2 2

2 2
11 1 1

2 22 2 2 2
1

2

h

hh h

h

V x y z

mkx y mbmdx n d y dz rz dz rz
y d

mbx nryz yz n z y z y

m x y n x ymbkxy nkxy
yd y y y

mkx y mbmdx dz rz n d y
dy

n

µ
α

µ σ σ

σ σ
αα α α

µ
α

σ

= − − − − + − − − −
+

+ + + + +

+ + + +
++ + +

≤ − − − − − − +
+

+ +



( )
2 4 2 4 2 42 6 2 4 2

22 2
4 4 6 4 2 4

22 .
b b bk b r b bd y n

d d d d d d
σ σµµ

   
+ − + + + + +  

   

 

Let 
2 42 6 2 4 2
2

6 4 2 4

2 bk b r b bN
d d d d

σµ 
= + + + 
 

, then we can get 
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( ) ( )
2 4 2 4

2 21 2
4 42 2 .
b bH n n d y n N

d d
σ σ

µ
 

= + + − + + 
 

        (3.10) 

The discriminant of ( )H n  in (3.10) is 

( )
22 4 2 4

21 2
4 4 2 8 0.b b d y N

d d
σ σ

µ
 

∆ = + − + − > 
   

Thus, 

( )
22 4 2 4

21 2
4 4 2 8 .b b d y N

d d
σ σ

µ
 

+ − + > 
   

The following conclusion can be obtained from calculation: 

( )
( )

2 2 2
1 2

2 1.
2

b

d d

σ σ

µ

+
>

+
                     (3.11) 

Therefore, when Equation (3.11) is satisfied, we can get that ( ) 0H n <  for 

every [ ]1 2,n n n∈ , where 1n  and 2n  are distinct positive roots for ( )H n . 

Then 1V  is negative definite function if 
( )

( )

2 2 2
1 2

2 1
2

b

d d

σ σ

µ

+
>

+
. The proof is com-

plete. 

Remark 3.1. For any ( ) ( ) ( )( )0 , 0 , 0x y z I∈ , if Equation (3.11) is satisfied, 

then the solution of model 2.2 satisfies: ( )lim
t

bx t
d→∞

= , ( )lim 0
t

y t
→∞

= , ( )lim 0
t

z t
→∞

=  

a.s.. 
Theorem 3.3. [20] (Strong law of large numbers) Suppose { } 0t t

X X
≥

=  is a 
local continuous martingale which satisfies ( )0 0X = . Then 

lim , . . lim 0 . .,
,

t
tt t

t

XX X a s a s
X X→∞ →∞

= ∞ ⇒ =
 

and 

,
limsup . . lim 0 . ..t t

tt

X X Xa s a s
t t→∞→∞

< ∞ ⇒ =
 

Remark 3.2. The Brownian motion ( )B t  is a square integrable martingale, 
and its second variations is ( ), 0tX X t t= ≥ . Combined with Strong law of 
large numbers, it can be known that 

lim 0 . ..t

t

B a s
t→∞
=

 

Theorem 3.4. Suppose ( ) ( ) ( )( ), ,x t y t z t  is the solution of model 2.2 with 

any initial value ( ) ( ) ( )( ) 30 , 0 , 0x y z R+∈ . Then the solution of model 2.2 obeys: 

1 2limsup ln .
t

b kbx y z d
t d d→∞

    − + + ≤ − +          

Proof. Define a Lyapunov function 
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( ) ( ) ( )( )2 , , ln .bV x t y t z t x y z
d

  = − + +      
Then we have that 

( )

( )

2

2
2

2

1 1d , , d d

1 d d .

V x y z x yb bx y z x y z
d d

zy
z tb bx y z x y zd d

σ

−
= +

− + + − + +

+ −
 − + + − + + 
   

Thus, we could get that 

( )
( )

2

2
2

2

, ,

1 2 d
1

2
2 2 .

h

V x y z

zykxyb dx dy dz tb y bx y z x y zd d
bkx x z

kxy kbdd d db b dx y z x y z
d d

σ
α

 
= − + − − + − +   − + + − + + 

 
 − − 
 ≤ − + ≤ − + ≤ − +

− + + − + +



 
Therefore, 

( )
( )

( )1
2 1

22d , , d d .
1 h

xykbV x y z d t B t
bd x y z y
d

σ

α

 ≤ − + +     − + + + 
 

   (3.12) 

Taking integral on both sides of above Equation (3.12) and divided by t. We 
have that 

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )
( )

1
1

1
1

ln

ln 0 0 0
22 d

1

ln 0 0 0
22 d .

h

b x t y t z t
d

t
b x y z

xykbd d B t
bt d x y z y
d

b x y z
bkbd d B t

t d d

σ

α

σ

 − + +  

 − + +    ≤ + − + +     − + + + 
 

 − + +    ≤ + − + + 
 

(3.13) 

( ) ( )1
10

2
d

t bW t B t
d
σ

= ∫  is a continuous local martingale, then by the strong 

law of large number for local martingales and above Equation (3.13). We have 

1 2limsup ln .
t

b kbx y z d
t d d→∞

  − + + ≤ − +      
The proof is complete. 
Remark 3.3. The trivial solution for stochastic model 2.2 is exponentially sta-

ble a.s. in I, if the following condition hold: 
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2 0.kb d
d

− <
 

4. Asymptotic behavior around E0  

We know that 0 ,0,0bE
d

 =  
 

  is the rumor free equilibrium (RFE) of the deter-

ministic model 2.1. However it may be not an equilibrium of the stochastic 
model 2.2. In this section, we show the average oscillation around  

0 ,0,0bE
d

 =  
 

  under environmental random perturbation. 

Theorem 4.1. Let ( ) ( ) ( )( ), ,x t y t z t  be the solution of model 2.2 with any 
initial value ( ) ( ) ( )( ) 30 , 0 , 0x y z R+∈ . If 0 1R ≤ , then 

( ) ( ) ( )
2

2 2
1 2 3 10

1limsup d ,
t

t

bE m x r m y r m z r t
t d

ρ
→∞

 − + + ≤ 
 ∫

 
where 

( )

( )

2 2
2

1 1

2 2
2

2 1

2
1

3

2 2
4 2 24 1 2

1 1 1 2
4

2
,

2 4 4

2
,

2 4 4

,
2 2

.
2

dd rm d

dd rm d

dm

b
d

µ
σ

µ
σ µ

σ

σ σ
ρ σ σ σ

 +
 = − − + +
 
 
 +
 = − − − + +
 
 

= −

 
= + + + 

   

Proof. Let 1
bs x
d

= − , 2s y= , 3s z= . Then, we can change model 2.2 into 

( )

( ) ( ) ( )

[ ] ( )

1 2 1 1 2

1 1 1
2 2

1 2 1 1 2

2 2 3 1 2 2 3 2
2 2

3 2 3 3 2 2 3 2

d d d ,
1 1

d d d d ,
1 1

d d .

h h

h h

b bk s s s s
b d ds b d s t B t
d s s

b bk s s s s
d ds d s rs t B t s s B t
s s

s s ds rs s s B t

σ

α α

σ
µ σ

α α

µ σ

     + +            = − + − −  + +   
   

     + +        = − + + + +
+ + 

  
= − − −








  

Define a C2-function ( ) ( )2
1 1 2W V s V sσ= + . Where ( )1 2 3, ,s s s s= , 

( ) ( )

( ) ( )

2
1 2 3

1

2
1 2

2

2

and .
2

s s s
V s

s s
V s

+ +
=

+
=

 

By Itô’s formular, we can get that 
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( )( )
( )

( )

2
2 2
1 1 2

2 2 2
1 1 2 3 1 2 3 2 2 32

2

4
2 2 2 2 2
1 2 3 1 2 4

d d d d d d
1

d
2 2 2

h

bs s
dV s s s s s s t s s t
s

d d d bs s s t
d

σ
σ

α

σ σ

 + 
 = + + + + + +
+

 
≤ − − − + + 
   

and 

( )( )
( )

( ) ( )

( ) ( ) ( )

( ) ( )

2
2 2
1 1 2

2 1 2 1 2 2

2

2 2 2
2 2 3

1 2 3 1 2 2

2 22 2
2 2
1 2

2
2 42
12 2

3
1 2 3 1 2 24

d d d d
1

d d
2

2 2
d d

4 4 4 4

2
d d d .

2

h

bs s
dV s s s s t
s

s s t s s s s B t

d dr rd s t d s t

b
r s t t s s s s B t

d

σ

α

σ
σ

µ µ
µ

σσ
σ

 + 
 = + + +
+

+ + +

   + +
   ≤ − + + + − + + +
      

 
+ 

 + + + +
 

Therefore 

( )

( )

( ) ( )

2
1 1 2

2 2
2 2
1 1

2 2
2 2
1 2

2 2 2 24
2 4 2 21 1 2
3 1 1 24

2
1 1 2

22

d d d

2
d

2 4 4

2
d

2 4 4

d d
2 2 2

d .

W V V

dd rd s t

dd rd s t

rd bs t t
d

b s s
B t

d

σ

µ
σ

µ
σ µ

σ σ σ
σ σ σ

σ

= +

  +
  ≤ − + − + +

    
  +
  + − + − − + +

    
    

+ − + + + + +   
     

+
+

      (4.1) 

Integrating both sides of (4.1) from 0 to t and taking the expectation, we can 
have that 

( )( ) ( )( ) ( ) ( ) ( )2 2 2
1 1 2 2 3 3 10

0 d .
t

EW s t W s E m x r m x r m x r tρ− ≤ − + + −∫   (4.2) 

From the boundedness of the solution of model 2.2 giveen in Lemma 3.1, we 
could see that the left side of the above Equation (4.2) is bounded. Thus, 

( ) ( ) ( )
2

2 2
1 2 3 10

1limsup d .
t

t

bE m x r m y r m z r t
t d

ρ
→∞

 − + + ≤ 
 ∫

 
The proof is complete. 
Remark 4.1. From the above Theorem 4.1, when 0 1R ≤  and the intensity of 

environmental random disturbance is small enough such that 0, 1,2,3im i> = , 
i.e., 
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( )

( ) ( )

2 2
2
1

2 2
2
1

2 2
1

2
,

4 4 2

2
,

4 4 2

.

d r dd

d r dd

r d

µ
σ

µ
σ µ

σ

 +
 − + + <
  
 +
 − + + + <
  
<  

Then the solution of model (2.2) will oscillate around 0E  and the oscillation 
amplitude can be estimated by 

( ) ( ) ( )
2

2 2
1 2 3 10

1limsup d .
t

t

bE m x r m y r m z r t
t d

ρ
→∞

 − + + ≤ 
 ∫

 

From a sociological point of view, the rumor will trend to die out when the 
intensity of stochastic environmental perturbations is small enough. 

Particularly, when 1 20, 0σ σ= = , the model 2.2 has one rumor-free equili-
brium 0E , which is globally asymptotically, as proved above. 

5. Asymptotic Behavior around E∗  and Ergodicity 

When 0 1R > , ( )* * *
* , ,E x y z=  is the globally asymptotically stable rumor ex-

isting or prevailing Equilibrium (REE), with * 0y > . However it may not be an 
equilibrium of stochastic model 2.2. In this section, we will study the asymp-
totic behavior around *E  of the model 2.2 under environmental stochastic 
perturbation. 

Before giving the theorem, let’s introduce the lemma which is needed in the 
proof process. 

Lemma 5.1. [21] Suppose that there exists a bounded domain nW R⊂ , with 
regular boundary Γ  satisfying the following properties. 

(B1) In the domain W and some neighborhood thereof, the smallest eigenva-
lue of the diffusion matrix ( )D x  is bounded away from zero. 

(B2) If \nx R W∈ , the mean time τ  at which a path issuing from x reaches 
the set W is finite and sup x

x K E τ∈ < ∞  for every compact subset nK R∈ . Then 
the Markov process ( )X t  has a stationary distribution ( )µ ⋅  with density in 

nR  such that 

( ) ( ) ( )( ) ( ) ( ){ }0
lim , , , lim d d 1,

n

t
x Rt t

P t x A A P f X t t f x xµ µ
→∞ →∞

= = =∫ ∫
 

for any Borel set nA R⊂  and ( )f ⋅  is an integrable function with respect to 
the measure µ . 

Theorem 5.1. Let ( ) ( ) ( )( ), ,x t y t z t  be the solution of model 2.2, with any 

initial value ( ) ( ) ( )( ) 30 , 0 , 0x y z R+∈ . If 0 1R > , then 

( )( ) ( )( ) ( )( )2 2 2* * *
1 2 3 20

1limsup d ,
t

t
E n x r x n y r y n z r z r

t
ρ

→∞
− + − + − ≤∫

 

where 
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( )2 2 4
1 2

1 2 3 2 4, , , .
2 2 2

bd d dn n n
d

σ σ
ρ

+
= = = =

 
Moreover, there exists a stationary distribution ( )π ⋅  and the solution is er-

godic for model 2.2. 
Proof. If 0 1R > , there is one unique REE, ( ) ( )* * *

* 1 1 1, , , ,E x y z x y z= = , of 
model 2.2, which satisfies 

( )

1 1
1

1 1
1 1

1 1 1

0,
1

0,
1

0.

h

h

kx yb dx
y

kx y d y rz
y

y dz rz

α

µ
α

µ

 − − = +
 − + + = +

− − =

                 (5.2) 

Define a C2-function ( ) ( )2
1 1 1

2
x x y y z z

Q s
− + − + −

= , where ( ), ,s x y z= . By 

Itô’s formula and Eq. (5.1), we compute 

( ) ( )

( ) ( ) ( )

( )( ) ( )( ) ( )( )

( ) ( ) ( )
( )

2 2 2
2 2 2 21

1 1 1 2

2 2 2
1 1 1

1 1 1 1 1 1

2 2 2
2 2 21
2

2 2 4
1 22 2 2

1 1 1 4

d d d d
1

d

2 2 2 d

d d
1

.
2 2 2

h

h

x yQ s d x x y y z z t t y z t
y

d x x y y z z t

d x x y y x x z z y y z z t

x y t y z t
y

bd d dx x y y z z
d

σ
σ

α

σ
σ

α

σ σ

= − − + − + − + +
+

 ≤ − − + − + − 
− − − + − − + − −  

+ +
+

+
≤ − − − − − − +

 (5.2) 

Integrating both sides of above Equation (5.2) from 0 to t and taking the ex-
pectation, we have that 

( )( ) ( )( )
( )( ) ( )( ) ( )( )2 2 2

1 1 2 1 3 3 20

0

d .
t

EQ s t Q s

E n x r x n y r y n z r z rρ

−

≤ − − − − − − +∫
    (5.3) 

Note that the boundedness of solution of model 2.2 we can easily obtain that 

( )( ) ( )( ) ( )( )2 2 2* * *
1 2 3 20

1limsup d .
t

t
E n x r x n y r y n z r z r

t
ρ

→∞
− + − + − ≤∫   (5.4) 

Moreover, if Equation (5.4) hold, we can get that 

( )( ) ( )( ) ( )( )2 2 2* * *
1 2 3 2 .n x r x n y r y n z r z ρ− + − + − ≤         (5.5) 

And (5.5) also denotes the ellipsoid domain, which lies entirely in 3R+ . Let U 
be any open neighborhood of the ellipsoid domain such that its closure 3U R+⊂ . 
We can conclude that ( ) 0Q s < , for any 3 \s R U+∈ . This implies the second 
condition in Lemma 5.1. Then we prove that the first condition of Lemma 5.1 is 
satisfied. 

The corresponding diffussion matrix is 
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( )

( )

2 2 2
1

2

2 2 2
2 2 21
22

2 2 2
2

0 0
1

.
0 0

1

0 0

h

h

x y

y

D x y y z
y

y z

σ

α

σ
σ

α

σ

 
 

+ 
 

=  
+ 

+ 
 
 

         (5.6) 

There is a 
( ) ( )

2 2 2 2 2 2
2 2 2 2 2 21 1
2 22 2min , ,

1 1h h

x y x yR y z y z
y y

σ σ
σ σ

α α

 
 = + 

+ +  

 so that for any 

( ) ( ) ( )( )0 , 0 , 0x y z U∈  and ( ) 3
1 2 3, , Rλ λ λ λ += ∈ , then 

( ) ( )

( ) ( )

2 2 2 2 2 23
2 2 2 2 2 2 2 2 21 1

1 2 2 2 32 2
, 1

2 2 2 2 2 2
22 2 2 2 2 21 1

2 22 2

1 1

min , , .
1 1

ij i j h hi j

h h

x y x yd y z y z
y y

x y x y y z y z
y y

σ σ
λ λ λ σ λ σ λ

α α

σ σ
σ σ λ

α α

=

 
 = + + +
 + +  

 
 ≥ + 

+ +  

∑

 

According to Rayleigh’s principle in [22] and Gard’ principle in [23], the first 
condtion in Lemma 5.1 is satisfied. We can draw a conclusion that the model 2.2 
has a stationary distribution ( )π ⋅  and the solution is ergodic. The proof is 
complete. 

6. Example 

In this section, we will present some numerical results to validate our theoretical 
findings. 

0R  is one of the most important parameter expressions, that indicates when a 
rumor will be completely eliminated or persist for deterministic and random 
rumor models. In Figure 1, we describe the trajectories of stochastic rumor 
model with different initial values, when 0 1R < . We can get that when other 
parameters are the same, only the initial values are different, the rumor-free 
equilibrium is the same. And the asymptotic behavior around the rumor-free 
equilibrium. We can achieve the extinction of the rumor. 

Picture (a) of Figure 2 shows that when the conditions in Theorem 5.1 are sa-
tisfied and the values of 1σ  and 2σ  are small enough, the asymptotic behavior 
around *E . Image (b) indicates that when the values of 1σ  and 2σ  are large, 
the dynamical behavior around *E . 

From Figure 1 and Figure 2, we can achieve that when 0 1R <  the rumors 
eventually died out with the small enough 1σ  and 2σ . As we know the rumors 
stop at the wise. When 0 1R >  and the 1 2,σ σ  are small enough, the rumor 
model has asymptotic behavior around the rumor existing equilibrium. 

7. Conclusion 

In this paper, we discuss the rumor model with nonlinear propagation rate and  
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Figure 1. In the above pictures we choose 0.5b = , 0.3d = , 0.3k = , 0.2µ = , 0.5r = , 1 2 0.1σ σ= =  and 0 0.8R = . Pictures 
show the trajectories of stochastic rumor model with different initial values. 
 

 
Figure 2. In picture (a) and picture (b), we choose 0.5b = , 0.3d = , 0.3k = , 0.2µ = , 0.5r = . In picture (a) 1 0.01σ = , 

2 0.01σ = . In picture (b) 1 0.3σ = , 2 0.1σ = . These pictures show that when 0 1.33 1R = > , the asymptotic behavior around *E  
under different parameter values of 1σ  and 2σ . 
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secondary propagation rate. The advantage of it is first introducing the nonli-

near propagation rate 
1 h

ky
yα+

 in the rumor propagation model. And the  

secondary propagation rate indicates that people in a social networks are easily 
confused by rumors, even though they have a certain understanding of the facts 
at first. We obtained the existence and boundness of the global solution for 
model 2.2 and studied the deterministic and stochastic dynamics of the rumor 
model. The asymptotic behavior around 0E  and *E  are derived. Moreover, by 
constructing Lyapunov functions, we get the existence of an ergodic stationary 
distribution. 
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