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Abstract 
We consider an energy operator of four-electron system in the Impurity Hub-
bard model with a coupling between nearest-neighbors. The spectrum of the 
systems in the second triplet state in a ν-dimensional lattice is investigated. 
For investigation the structure of essential spectra and discrete spectrum of 
the energy operator of four-electron systems in an impurity Hubbard model, 
for which the momentum representation is convenient. In addition, we used 
the tensor products of Hilbert spaces and tensor products of operators in 
Hilbert spaces and described the structure of essential spectrum and discrete 
spectrum of the energy operator of four-electron systems in an impurity Hub-
bard model for the second triplet state of the system. The investigations show 
that the essential spectrum of the system consists of the union of no more 
than sixteen segments, and the discrete spectrum of the system consists of no 
more than eleven eigenvalues. 
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1. Introduction 

The Hubbard model first appeared in 1963 in the works [1] [2] [3]. The model 
proposed in [1] [2] [3] was called the Hubbard model after John Hubbard, who 
made a fundamental contribution to studying the statistical mechanics of that 
system, although the local form of Coulomb interaction was first introduced for 
an impurity model in a metal by Anderson [4]. We also recall that the Hubbard 
model is a particular case of the Shubin-Wonsowsky polaron model [5], which 

How to cite this paper: Tashpulatov, S.M. 
and Parmanova, R.T. (2023) Four-Electron 
Systems in the Impurity Hubbard Model. 
Second Triplet State. Spectra of the System 
in the ν-Dimensional Lattice Zν. Journal of 
Applied Mathematics and Physics, 11, 3393- 
3427. 
https://doi.org/10.4236/jamp.2023.1111217 
 
Received: September 8, 2023 
Accepted: November 7, 2023 
Published: November 10, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2023.1111217
https://www.scirp.org/
https://doi.org/10.4236/jamp.2023.1111217
http://creativecommons.org/licenses/by/4.0/


S. M. Tashpulatov, R. T. Parmanova 
 

 

DOI: 10.4236/jamp.2023.1111217 3394 Journal of Applied Mathematics and Physics 
 

had appeared 30 years before [1] [2] [3]. In the Shubin-Wonsowsky model, along 
with the on-site Coulomb interaction, the interaction of electrons on neighboring 
sites is also taken into account. 

The Hubbard model well describes the behavior of particles in a periodic po-
tential at sufficiently low temperatures such that all particles are in the lower 
Bloch band and long-range interactions can be neglected. If the interaction between 
particles on different sites is taken into account, then the model is often called the 
extended Hubbard model. It was proposed for describing electrons in solids, and it 
remains especially interesting since then for studying high-temperature supercon-
ductivity. Later, the extended Hubbard model also found applications in de-
scribing the behavior of ultracold atoms in optical lattices. In considering elec-
trons in solids, the Hubbard model can be considered a sophisticated version of 
the model of strongly bound electrons, involving only the electron hopping term 
in the Hamiltonian. In the case of strong interactions, these two models can give 
essentially different results. The Hubbard model exactly predicts the existence of 
so-called Mott insulators, where conductance is absent due to strong repulsion 
between particles. The Hubbard model is based on the approximation of strong-
ly coupled electrons. In the strongcoupling approximation, electrons initially 
occupy orbital’s in atoms (lattice sites) and then hop over to other atoms, thus 
conducting the current. Mathematically, this is represented by the so-called 
hopping integral. This process can be considered the physical phenomenon un-
derlying the occurrence of electron bands in crystal materials. But the interac-
tion between electrons is not considered in more general band theories. In addi-
tion to the hopping integral, which explains the conductance of the material, the 
Hubbard model contains the so-called on-site repulsion, corresponding to the 
Coulomb repulsion between electrons. This leads to a competition between the 
hopping integral, which depends on the mutual position of lattice sites, and the 
on-site repulsion, which is independent of the atom positions. As a result, the 
Hubbard model explains the metal-insulator transition in oxides of some transi-
tion metals. When such a material is heated, the distance between nearest-neighbor 
sites increases, the hopping integral decreases, and on-site repulsion becomes 
dominant. 

The Hubbard model is currently one of the most extensively studied multie-
lectron models of metals [6]-[12] and [13], chapter III, PP. 75-191. In the review 
[7], the results obtained on the Hubbard model are summarized. According to 
the Hubbard model, the more progress that is made in obtaining theoretical so-
lutions, the clearer it becomes that this simple model can exhibit a startling array 
of phases and regimes, many of which have clear parallels with observed beha-
viors of a wide variety of complex materials. 

For instance, there is compelling evidence that ferromagnetism, various forms 
of antiferromagnetism, unconventional superconductivity, charge-density waves, 
electronic liquid crystalline phases, and topologically ordered phases (e.g., “spin 
liquids”), among other phases, occur in specific realizations of the Hubbard 
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model. 
It is our purpose here to summarize, to the extent possible in a brief article, 

what is established concerning the quantum phases of the Hubbard model. The 
role of the Hubbard model, which it played in the study of high-temperature su-
perconductivity in cuprates, is discussed. 

It is shown that the positive eigenvalues in the Hubbard model (correspond-
ing to repulsive effectual interactions) weaken, and the negative ones grow. The 
various eigenfunctions correspond to, but are not completely determined by, an 
irreducible representation of a group of crystal points in the Hubbard model. 

Obtaining exact results for the spectrum and wave functions of the crystal de-
scribed by the Hubbard model and impurity Hubbard model is of great interest. 

The spectrum and wave functions of the system of two electrons in a crystal 
described by the Hubbard Hamiltonian were studied in [14]. It is known that 
two-electron systems can be in two states, triplet and singlet [14]. In the work 
[14] is considered the Hamiltonian of the form 

, , , , , , , ,
, , ,

.m m m m m m m m
m m m

H A a a B a a U a a a aγ γ γ τ γ
γ τ γ

+ + + +
+ ↑ ↑ ↓ ↓= + +∑ ∑ ∑        (1) 

Here A is the electron energy at a lattice site, B is the transfer integral between 
neighboring sites, , 1, 2, ,je jτ ν= ± =  , where je  are unit mutually orthogon-
al vectors, which means that summation is taken over the nearest neighbors, U is 
the parameter of the on-site Coulomb interaction of two electrons, γ  is the  

spin index, γ = ↑  or γ = ↓ , ↑  and ↓  denote the spin values 1
2

 and 1
2

− ,  

and ,ma γ
+  and ,ma γ  are the respective electron creation and annihilation oper-

ators at a site m Zν∈ . It was proved in [14] that the spectrum of the system 
Hamiltonian tH  in the triplet state is purely continuous and coincides with a 
segment [ ] [ ], 2 4 ,2 4m M A B A Bν ν= − + , where ν  is the lattice dimensionality, 
and the operator sH  of the system in the singlet state, in addition to the con-
tinuous spectrum [ ],m M , has a unique antibound state for some values of the 
quasimomentum. For the antibound state, correlated motion of the electrons is 
realized under which the contribution of binary states is large. Because the sys-
tem is closed, the energy must remain constant and large. This prevents the 
electrons from being separated by long distances. Next, an essential point is that 
bound states (sometimes called scattering-type states) do not form below the 
continuous spectrum. This can be easily understood because the interaction is 
repulsive. We note that a converse situation is realized for 0U < : below the 
continuous spectrum, there is a bound state (antibound states are absent) be-
cause the electrons are then attracted to one another. 

For the first band, the spectrum is independent of the parameter U of the 
on-site Coulomb interaction of two electrons and corresponds to the energy of 
two noninteracting electrons, being exactly equal to the triplet band. The second 
band is determined by Coulomb interaction to a much greater degree: both the 
amplitudes and the energy of two electrons depend on U, and the band itself 
disappears as 0U →  and increases without bound as U →∞ . The second 
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band largely corresponds to a one-particle state, namely, the motion of the 
doublet, i.e., two-electron bound states. 

The spectrum and wave functions of the system of three electrons in a crystal 
described by the Hubbard Hamiltonian were studied in [15]. In the three-electron 
systems are exists quartet state, and two type doublet states. 

The spectrum of the energy operator of system of four electrons in a crystal 
described by the Hubbard Hamiltonian in the triplet state was studied in [16]. In 
the four-electron systems are exists quintet state, and three type triplet states, 
and two type singlet states. The spectrum of the energy operator of four-electron 
systems in the Hubbard model in the quintet, and singlet states were studied in 
[17]. 

In the work [18] is considered dominant correlation effects in two-electron 
atoms. 

The use of films in various areas of physics and technology arouses great in-
terest in studying a localized impurity state (LIS) of magnet. Therefore, it is im-
portant to study the spectral properties of electron systems in the impurity 
Hubbard model. 

The spectrum and wave functions of the system of two electrons in a crystal 
described by the impurity Hubbard Hamiltonian were studied in [19] and [20]. 

The spectrum of the energy operator of three-electron systems in the impurity 
Hubbard model in the second doublet state was studied [21]. The structure of 
essential spectra and discrete spectrum of three-electron systems in the impurity 
Hubbard model in the Quartet state were studied in [22]. The structure of essen-
tial spectra and discrete spectrum of four-electron systems in the impurity Hub-
bard model in the Quartet state and in the first triplet state were studied in [23] 
and [24] in the one-dimensional lattice. 

In this paper we give a full description of the structure of the essential spectra 
and discrete spectrum of four-electron systems in the impurity Hubbard model 
for second triplet state. In contrast to the works [23] and [24], not only the 
one-dimensional case is considered here, but the cases when 1,2,3ν =  and the 
spectrum of the system for the second triplet state is described for all values of 
the parameters of the Hamiltonian. First, using the standard anticommutation 
relations between the operators of electron creation and annihilation at the lat-
tice sites, we get a coordinate representation of the Hamiltonian action, and then 
moving on to the Fourier transformation we get a quasi-pulse representation of 
the Hamiltonian action. Using the concept of tensor products of Hilbert spaces, 
and tensor products of operators in Hilbert spaces, we bring the problems of 
studying the spectrum of the energy operator of four electron systems in the 
Impurity Hubbard model to the study of the spectrum of the energy operator of 
one electron system in the Impurity Hubbard model. Then, using the results ob-
tained from the study of the spectrum of the energy operator of one-electron 
systems in the impurity Hubbard model, we describe the spectrum of four elec-
tron systems in the Impurity Hubbard model for the second triplet state. The 
results obtained show how the results of this work differ from the results of the 
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works [23] and [24]. The main result of this paper is Theorems 8 and 9, which 
describe the spectrum of considered model for second triplet state. The results of 
sections 2 and 3 and 4 (Theorem 7) there are preliminary facts for the proof of 
Theorems 8 and 9. 

2. Preliminaries 

We consider the energy operator of four-electron systems in the Impurity Hub-
bard model and describe the structure of the essential spectra and discrete spec-
trum of the system for second triplet state in the lattice. The Hamiltonian of the 
chosen model has the form 

( ) ( ) ( )
( )

, , , , , , , ,
, , ,

0 0, 0, 0 0, , , 0,
,

0 0, 0, 0, 0, .

m m m m m m m m
m m m

H A a a B a a U a a a a

A A a a B B a a a a

U U a a a a

γ γ γ τ γ
γ τ γ

γ γ γ τ γ τ γ γ
γ τ γ

+ + + +
+ ↑ ↑ ↓ ↓

+ + +

+ +
↑ ↑ ↓ ↓

= + +

+ − + − +

+ −

∑ ∑ ∑

∑ ∑         (2) 

Here A (A0) is the electron energy at a regular (impurity) lattice site; 0B >  
( 0 0B > ) is the transfer integral between electrons (between electron and impur-
ity) in a neighboring sites, , 1, 2, ,je jτ ν= ± =  , where je  are unit mutually 
orthogonal vectors, which means that summation is taken over the nearest 
neighbors, U (U0) is the parameter of the on-site Coulomb interaction of two 
electrons, correspondingly in the regular (impurity) lattice site; γ  is the spin  

index, γ = ↑  or γ = ↓ , ↑  and ↓  denote the spin values 
1
2  and 1

2
− , and  

,ma γ
+  and ,ma γ  are the respective electron creation and annihilation operators 

at a site m Zν∈ . The second triplet state corresponds four-electron bound 
states (or antibound states) to the basis functions: 2 1

0, , , ,, , , p q r kp q r k Z
t a a a aν ϕ+ + + +

↑ ↑ ↓ ↑∈
= . 

The subspace 2 1
t
 , corresponding to the second triplet state is the set of all vec-

tors of the form ( )2 1 2 1
, , , , , ,

, , ,t p q r k Z p q r k Z
f p q r k tν νψ

∈ ∈
= ∑ , 2

asf l∈ , where 2
asl  is 

the subspace of antisymmetric functions in ( )( )4

2l Zν . In this case, the Hamil-

tonian H acts in the antisymmetric Fock space 2 1
t
 . Let 0ϕ  be the vacuum  

vector in the antisymmetrical Fock space 2 1
t
 . Let 2 1

tH  be the restriction H to 
the subspace 2 1

t
 . The second triplet state corresponds the free motions of 

four-electrons in the lattice and their interactions. Let 1 0A Aε = − , 2 0B Bε = − , 

3 0U Uε = − . 
The energy of the system depends on its total spin S. Along with the Hamilto-

nian, the eN  electron system is characterized by the total spin S,  

max max min, 1, ,S S S S= −  , max 2
eN

S = , min
10,
2

S = . 

Hamiltonian (2) commutes with all components of the total spin operator 

( ), , zS S S S+ −= , and the structure of eigenfunctions and eigenvalues of the sys-
tem therefore depends on S. The Hamiltonian H acts in the antisymmetric Fo’ck 
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space as . 
Below we give the constructions of the Fo’ck space ( )  . 
Let   be a Hilbert space and denote by n  the n- fold tensor product 
n = ⊗ ⊗ ⊗    . We set 0 C=  and ( ) 0

n
n
∞
==⊕   . The ( )   

is called the Fo’ck space over  ; it will be separably, if   is. For example, if 
( )2L R= , then an element ( )ψ ∈   is a sequence of functions  

( ) ( ) ( ){ }0 1 1 2 1 2 3 1 2 3, , , , , , ,x x x x x xψ ψ ψ ψ ψ=  , so that  

( ) 22
0 1 2 1 21 , , , d d dn n n nn R

x x x x x xψ ψ∞

=
+ < ∞∑ ∫   . Actually, it is not ( )  , 

itself, but two of its subspaces which are used most frequently in quantum field 
theory. These two subspaces are constructed as follows: Let n  be the permuta-
tion group on n elements, and let { }nψ  be a basis for space  . For each 

nσ ∈ , we define an operator (which we also denote by σ ) on basis elements 
n , by ( ) ( ) ( ) ( )1 2 1 2n nk k k k k kσ σ σ

σ ϕ ϕ ϕ ϕ ϕ ϕ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗  . The operator σ  

extends by linearity to a bounded operator (of norm one) on space n , so we 

can define 1
! nnS

n σ σ
∈

= ∑ 
. That the operator nS  is the operator of orthogon-

al projection: 2
n nS S= , and n nS S∗ = . The range of nS  is called n- fold symme-

tric tensor product of  . In the case, where ( )2L R=  and  

( ) ( ) ( ) ( )2 2 2 2
n nL R L R L R L R= ⊗ ⊗ ⊗ = , n

nS   is just the subspace of  

( )2
nL R , of all functions, left invariant under any permutation of the variables. 

We now define ( ) 0
n

s nn S∞
==⊕   . The space ( )s   is called the symme-

trical Fo’ck space over  , or Boson Fo’ck space over  . 
Let ( ).ε  is function from n  to { }1, 1− , which is one on even permuta-

tions and minus one on odd permutations. Define ( )1
! nnA

n σ ε σ σ
∈

= ∑ 
; then 

nA  is an orthogonal projector on n . n
nA   is called the n- fold antisymme-

trical tensor product of  . In the case where ( )2L R= , n
nA   is just the 

subspace of ( )2
nL R , consisting of those functions odd under interchange of 

two coordinates. The subspace ( ) 0
n

a nn A∞
==⊕    is called the antisymme-

trical Fo’ck space over  , or the Fermion Fo’ck space over  . 
Let 0ϕ  be the vacuum vector in the antisymmetrical Fock space 2 1

t
 . Let 

2 1
tH  be the restriction H to the subspace 2 1

t
 .  

Theorem 1. The subspace 2 1
t  is invariant under the operator H, and the 

restriction 2 1
tH  of operator H to the subspace 2 1

t  is a bounded self-adjoint 
operator. It generates a bounded self-adjoint operator 2 1

tH  acting in the space 

2
asl  as 

( ) ( ) ( )

( ) ( ) ( )

2 1 2 1

, , ,

4 , , , , , , , , ,

, , , , , , , , ,

t t

p r q r r k

H Af p q r k B f p q r k f p q r k

f p q r k f p q r k U f p q r k
τ

ψ τ τ

τ τ δ δ δ

= + + + +

 + + + + + + +  

∑
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( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

0 ,0 ,0 ,0 ,0 0 ,0

,0 ,0 ,0 ,

, , ,

0 , ,0 , ,0 , ,0

, , , , , ,

, , , , , , , , , 0, , ,

,0, , , ,0, , , ,0

, , , .

p q r k p

q r k p

q r k

p r p q r q r k r

A A f p q r k B B f q r k

f p r k f p q k f p q r f q r k

f p r k f p q k f p q r

U U f p q r k

τ

τ

τ τ τ

δ δ δ δ δ τ

δ τ δ τ δ τ δ

δ δ δ

δ δ δ δ δ δ

+ − + + + + − 

+ + + +

+ + + 
 + − + + 

∑

 (3) 

The operator 2 1
tH  acts on a vector 2 1 2 1

t tψ ∈   as 

( )( )22 1 2 1 2 1 1
, , ,

, , ,

, , , .t t t p q r k Z
p q r k Z

H H f p q r k t ν
ν

ψ
∈

∈

= ∑            (4) 

Proof. We act with the Hamiltonian H on vectors 2 1 2 1
t tψ ∈   using the stan-

dard anticommutation relations between electron creation and annihilation op-
erators at lattice sites, { }, , , ,,m n m na aγ β γ βδ δ+ = , { } { }, , , ,, ,m n m na a a aγ β γ β θ+ += = , and 
also take into account that , 0ma γϕ θ= , where θ  is the zero element of 2 1

t . 
This yields the statement of the theorem. 

Lemma 1. The spectra of the operators 2 1
tH  and 2 1

tH  coincide. 
Proof. Because the operators 2 1

tH  and 2 1
tH  are bounded self-adjoint oper-

ators, it follows that if ( )2 1
tHλ σ∈ , then the Weyl criterion (see [25], chapter 

VII, paragraph 3, pp. 262-263) implies that there is a sequence { } 1i i
ψ ∞

=
 such 

that 1iψ =  and ( )2 1lim 0i t iH λ ψ→∞ − = . We set  
( ) 0, , , ,, , , , , ,i i p q r kp q r k f p q r k a a a aψ ϕ+ + + +

↑ ↑ ↓ ↑= ∑ . Then 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

22 1 2 1 2 1

22 1
0 0, , , , , , , ,

, , ,

22 1
0 0, , , , , , , ,

, , ,

22 1
0 0

, , ,

, , ,

,

, , , ,

, , , ,

, , , ,

t i t i t i

t i p q r k p q r k
p q r k

t i k r q p p q r k
p q r k

t i
p q r k

p q r

H H H

H f p q r k a a a a a a a a

H F p q r k a a a a a a a a

H F p q r k

λ ψ λ ψ λ ψ

λ ϕ ϕ

λ ϕ ϕ

λ ϕ ϕ

+ + + + + + + +
↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑

+ + + +
↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑

− = − −

= −

= −

= −

=

∑

∑

∑

( ) ( )
22 1 , , , 0t i

k
H F p q r kλ− →∑

 

as i →∞ , where ( ), , , , , ,i ip q r kF f p q r k= ∑ . It follows that ( )2 1
tHλ σ∈ . Con-

sequently, ( ) ( )2 1 2 1
t tH Hσ σ⊂ . 

Conversely, let ( )2 1
tHλ σ∈ . Then, by the Weyl criterion, there is a sequence 

{ } 1i i
F ∞

=
 such that 1iF =  and ( )2 1lim 0i t iH λ ψ→∞ − = . Setting  

( ), , , , , ,i ip q r kF f p q r k= ∑ , ( )( )
1

2 2
, , , , , ,i ip q r kF f p q r k= ∑ , we conclude that 

1i iFψ = =  and ( ) ( )2 1 1 1 0t i t iH F Hλ λ ψ− = − →  as i →∞ . This means 

that ( )2 1
tHλ σ∈  and hence ( ) ( )2 1 2 1

t tH Hσ σ⊂ . These two relations imply 

( ) ( )2 1 2 1
t tH Hσ σ= .


 

We call the operator 2 1
tH  the four-electron second triplet state operator in 

the impurity Hubbard model. 
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Let ( )( ) ( )( )4 4 2 1
2 2: tl Z L Tν ν→ ≡    be the Fourier transform, where Tν  

is the ν-dimensional torus endowed with the normalized Lebesgue measure dλ , 

i.e. ( ) 1Tνλ = . 

We set 2 1 2 1 1
t tH H −=   . In the quasimomentum representation, the operator 

2 1
tH  acts in the Hilbert space ( )( )4

2
asL Tν , where 2

asL  is the subspace of anti-

symmetric functions in ( )( )4

2L Tν . 

Theorem 2. The Fourier transform of operator 2 1
tH  is an operator  

2 1 2 1 1
t tH H −=    acting in the space 2 1

t
  be the formula 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 1 2 1

0

0

1 1

, , , , , , , , ,

, , , , , , d , , , d

, , , d , , , d , , , d

2 cos cos , , , d 2 cos co

t t T

T

T T T

j j jT T
j j

H h f U f s s

f s s f s s s A A f s s

f l l f f n n B B

s f s s

ν

ν

ν ν ν

ν ν

ν ν

ψ λ µ γ θ λ µ γ θ µ λ γ θ

λ µ γ θ λ µ γ θ µ γ θ

λ γ θ λ µ ξ θ ξ λ µ γ

λ µ γ θ µ
= =

= + + −

+ + − + + − + − 
+ + + + −


 × + + +  



∫
∫

∫ ∫ ∫

∑ ∑∫ ∫



s jl  

 

( ) ( )

( ) ( ) ( )

( ) ( )

1

0
1

, , , d 2 cos cos , , , d

2 cos cos , , , d , , , d d

, , , d d , , , d d ,

j jT
j

j jT T T
j

T T T T

f l l f

n f n n U U f s s

f l l f n n

ν

ν ν ν

ν ν ν ν

ν

ν

λ γ θ γ ξ λ µ ξ θ ξ

θ λ µ γ µ ξ θ ξ

λ ξ θ ξ λ µ ξ ξ

=

=

 × + + 

  + + + −  
+ + 

∑∫

∑∫ ∫ ∫

∫ ∫ ∫ ∫

(5) 

where ( ) 1, , , 4 2 cos cos cos cosj j j jjh A B νλ µ γ θ λ µ γ θ
=
 = + + + + ∑ . 

The proof Theorem 2, is straightforward of (3) using the Fourier transforma-
tion. 

The spectral properties of four-electron systems in the impurity Hubbard 
model in the second triplet state are closely related to those of its one-electron 
subsystems in the impurity Hubbard model. Therefore we first study the spec-
trum and localized impurity states of one-electron impurity systems. 

3. One-Electron Impurity Systems 

The Hamiltonian of one-electron impurity system has the form: 

( )

( ) ( )
, , , , 0 0, 0,

, , ,

0 0, , , 0,
,

,

m m m m
m m

H A a a B a a A A a a

B B a a a a

γ γ γ τ γ γ γ
γ τ γ γ

γ τ γ τ γ γ
τ γ

+ + +
+

+ +

= + + −

+ − +

∑ ∑ ∑

∑
        (6) 

here A (A0) is the electron energy at a regular (impurity) lattice site; 0B >  
( 0 0B > ) is the transfer integral between electrons (between electron and impur-
ity)in a neighboring sites, , 1, 2, ,je jτ ν= ± =  , where je  are unit mutually 
orthogonal vectors, which means that summation is taken over the nearest 
neighbors; γ  is the spin index, γ = ↑  or γ = ↓ , ↑  and ↓  denote the spin  

values 1
2

 and 1
2

− , and ,ma γ
+  and ,ma γ  are the respective electron creation 
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and annihilation operators at a site m Zν∈ . 
We let 1  denote the Hilbert space spanned by the vectors in the form 

0,pp aψ ϕ+
↑= ∑ . It is called the space of one-electron states of the operator H. 

The space 1  is invariant with respect to action of the operator H. Denote by 
H1 the restriction of H to the subspace 1 . 

As in the proof of Theorem 1, using the standard anticommutation relations 
between electron creation and annihilation operators at lattice sites, we get the 
following 

Theorem 3. The subspace 1  is invariant with respect to the action of the 
operator H, and the operator H1 is a linear bounded self-adjoint operator, acting 
in 1  as 

( )( )1 1 0 1, , ,p
p

H H f p aψ ϕ ψ+
↑= ∈∑                  (7) 

where 1H  is a linear bounded self-adjoint operator acting in the space 2l  as 

( )( ) ( ) ( ) ( ) ( ) ( )( )1 1 ,0 2 , ,00 .p p pH f p Af p B f p f p f fτ
τ τ

τ ε δ ε δ δ τ= + + + + +∑ ∑ (8) 

Lemma 2. The spectra of the operators 1H  and H1 coincide. 
The proof of Lemma 2 is the same as the proof of the Lemma 1. 
As in section 2 denote by ( ) ( )2 2 1: l Z L Tν ν→ ≡    the Fourier transform. 

Setting 1
1 1H H −=    we get that the operator 1H  acts in the Hilbert space 

( )2L Tν . 
Using the equality (8) and properties of the Fourier transform we have the 

following 
Theorem 4. The operator 1H  acting in the space 1

  as 

( )( ) ( ) ( )

[ ] ( ) ( ) ( )

1 1
1

2 1 1
1

2 cos d

2 cos cos d , , , , , , .

i T
i

i i n nT
i

H f A B f f s s

s f s s s s s T

ν

ν

ν

ν
ν

µ µ µ ε

ε µ µ µ µ

=

=

 = + +  

+ + = = ∈

∑ ∫

∑∫



 

  (9) 

Let A be an operator acting in Banach space E over C. The number λ is called 
regular for the operator A if the operator ( ) ( ) 1R A Iλ λ −= − , called the resol-
vent of the operator A, is defined throughout E and is continuous. The set of 
regular values of operator A is called the resolvent set of this operator, and the 
complement of the resolvent set is the spectrum of this operator ( )Aσ . The 
spectrum of a bounded operator is compact in C or is empty. The spectrum of a 
linear bounded operator is not empty. A discrete spectrum ( )pp Aσ  is a set of 
such λ, in which the operator A Iλ−  is not injective. 

The number λ is called the eigenvalue of the operator A, if there exists such a 
nonzero vector x that the equality ( )A x xλ=  is valid. Any nonzero vector 

0x ≠ , satisfying this equation is called the eigenvector of the operator A, cor-
responding to the eigenvalue of λ. 

The discrete spectrum is all the eigenvalues of the operator A. 
A continuous spectrum ( )cont Aσ  is a set of values λ, for which the resolvent 

( ) 1A Iλ −−  is not defined everywhere in a dense set in E, but is not continuous 
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(that is, the operator A Iλ−  is injective, but not surjective, and its image is 
dense everywhere). 

The set of all isolated, finite-fold eigenvalues of operator A is called the dis-
crete spectrum of this operator and is denoted by ( )disc Aσ . 

The entire spectrum of A without the discrete spectrum of this operator is 
called the essential spectrum of this operator A, and is denoted by ( )ess Aσ . 

It is clear that the continuous spectrum of operator 1H  is independent of the 
numbers 1ε  and 2ε , and is equal to segment [ ] [ ], 2 , 2m M A B A Bν ν ν ν= − + , 

where ( )min
x T

m h x
νν

∈
= , ( )max

x T
M h x

νν
∈

=  (here ( ) 12 cos iih x A B xν
=

= + ∑ ). 

To find the eigenvalues and eigenfunctions of operator 1H  we rewrite (9) in 
following form: 

( ) ( ) [ ] ( )1 2
1 1

2 cos d 2 cos cos d 0,i i iT T
i i

A B z f f s s s f s sν ν

ν ν

µ µ ε ε µ
= =

 + − + + + = 
 

∑ ∑∫ ∫
(10) 

where z R∈ . 
Suppose first that 1ν =  and denote ( )d

T
a f s s= ∫ , ( )cos d

T
b f s s s= ∫ ,  

( ) 2 cosh A Bµ = + . From (10) it follows that 

( ) ( )
( )

1 2 22 cos 2
.

a b
f

h z
ε ε µ ε

µ
µ

+ +
= −

−
                (11) 

Now substitute (10) in expressing of a and b we get the following system of 
two linear homogeneous algebraic equations: 

( ) ( )
1 2

2
2 cos d1 d 2 0;

T T

s ss a b
h s z h s z

ε ε
ε

 +
+ + =  − − 
∫ ∫

 

( )
( ) ( )
1 2

2

cos 2 cos cos dd 1 2 0.
T T

s s s ssa b
h s z h s z
ε ε

ε
 +

+ + =  − − 
∫ ∫

 
This system has a nontrivial solution if and only if the determinant ( )1 z∆  of 

this system is equal to zero, where 

( ) ( )
( ) ( )

( )
( )
( )

1 2
1 2

1 2
2

2 cos d cos d1 1 2

cos 2 cosd2 d .

T T

T T

s s s sz
h s z h s z

s ss s
h s z h s z

ε ε
ε

ε ε
ε

   +
∆ = + ⋅ +      − −   

+
−

− −

∫ ∫

∫ ∫
 

Therefore, it is true the following 
Lemma 3. If a real number [ ]1 1,z m M∉  then z is an eigenvalue of the oper-

ator 1H  if and only if ( )1 0z∆ = . 
The following Theorem describe of the exchange of the spectrum of operator 

1H  in the case 1ν = . We consider every possible cases. 
Theorem 5. Let 1ν = . Then 
A).1). If 2 Bε = −  and 1 2Bε < − , then the operator 1H  has a unique eigen-

value 1z A ε= + , lying the below of the continuous spectrum of the operator 
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1H . 
2). If 2 Bε = −  and 1 2Bε > , then the operator 1H  has a unique eigenvalue 

1z A ε= + , lying the above of the continuous spectrum of the operator 1H . 
B). 1). If 1 0ε <  and 2 2Bε = −  or 2 0ε = , then the operator 1H  has a 

unique eigenvalue 2 2
14z A B ε= − + , lying the below of the continuous spec-

trum of the operator 1H . 
2). If 1 0ε >  and 2 2Bε = −  or 2 0ε = , then the operator 1H  has a unique 

eigenvalue 2 2
14z A B ε= + + , lying the above of the continuous spectrum of 

the operator 1H . 
C). If 1 0ε =  and 2 0ε >  or 1 0ε =  and 2 2Bε < − , then the operator 1H  

has a two eigenvalues 1 2

2

1

BEz A
E

= −
−

, and 2 2

2

1

BEz A
E

= +
−

, where 
 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, lying the below and above of the continuous spectrum of the 

operator 1H . 

D). 1). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= , then the operator 1H  has a unique eigenvalue 

( )2

2

2 1

1

B E
z A

E

+
= +

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, lying the above of the continuous 

spectrum of the operator 1H . 

2). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= − , then the operator 1H  has a unique eigenvalue 

( )2

2

2 1

1

B E
z A

E

+
= −

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, lying the below of the continuous 

spectrum of the operator 1H . 

E). 1). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
> , then the operator 1H  has a unique 

eigenvalue 
( )2 2

2

2 1

1

B E E
z A

E

α α+ − +
= +

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real 

number 1α > , lying the above of the continuous spectrum of the operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
> ), then the operator 1H  has a 

unique eigenvalue 
( )2 2

2

2 1

1

B E E
z A

E

α α+ − +
= +

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and 

the real number 1α > , lying the above of the continuous spectrum of the oper-
ator 1H . 

F). 1). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< − , then the operator 1H  has a 

unique eigenvalue 
( )2 2

12

2 1

1

B E E
z A m

E

α α+ − +
= − <

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, 
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and the real number 1α > , lying the below of the continuous spectrum of the 
operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< − , then the operator 1H  has a 

unique eigenvalue 
( )2 2

12

2 1

1

B E E
z A m

E

α α+ − +
= − <

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, 

and the real number 1α > , lying the below of the continuous spectrum of the 
operator 1H . 

K). 1). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< < , then the operator 1H  has a 

exactly two eigenvalues 
( )2 2

1 12

2 1

1

B E E
z A m

E

α α− − +
= + <

−
, and  

( )2 2

2 12

2 1

1

B E E
z A M

E

α α+ − +
= + >

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real num-

ber 0 1α< < , lying correspondingly, the below and above of the continuous spec-
trum of the operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< < , then the operator 1H  has a ex-

actly two eigenvalues 
( )2 2

1 12

2 1

1

B E E
z A m

E

α α− − +
= + <

−
, and  

( )2 2

2 12

2 1

1

B E E
z A M

E

α α+ − +
= + >

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real num-

ber 0 1α< < , lying correspondingly, the below and above of the continuous spec-
trum of the operator 1H . 

M). 1). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < < , then the operator 1H  has a 

exactly two eigenvalues 
( )2 2

1 12

2 1

1

B E E
z A m

E

α α+ − +
= − <

−
, and  

( )2 2

2 12

2 1

1

B E E
z A M

E

α α− − +
= − >

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real 

number 0 1α< < , lying, correspondingly the below and above of the conti-
nuous spectrum of the operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < < , then the operator 1H  has a 

exactly two eigenvalues 
( )2 2

1 12

2 1

1

B E E
z A m

E

α α+ − +
= − <

−
, and  

( )2 2

2 12

2 1

1

B E E
z A M

E

α α− − +
= − >

−
, where 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real  
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number 0 1α< < , lying, correspondingly the below and above of the conti-
nuous spectrum of the operator 1H . 

N). If 22 0B ε− < < , then the operator 1H  has no eigenvalues lying the out-
side of the continuous spectrum of the operator 1H . 

Here we will not give a proof of Theorem 5. For the proof of this theorem, see 
the proof of Theorem 8 from [19], pp. 2750-2757. 

Now we consider the two-dimensional case. In two-dimensional case, we 
have, what the equation ( )2 0z∆ = , is equivalent to the equation of the form 

( ) ( )( ){ } ( )2 2 2
2 1 2 22 0B B B z A J zε ε ε ε+ + + + − = , where  

( ) ( )2
1 2

1 2

d d
2 cos cosT

s sJ z
A B s s z

=
+ + −∫ . In this case, also ( ) 0J z → + , as z → −∞ , 

and ( )J z → +∞ , as 2 0z m→ − , and ( )J z → −∞ , as 2 0z M→ + , and 

( ) 0J z → − , as z → +∞ . In one- and two-dimensional case the behavior of 

function ( )J z  be similarly. Therefore, we have the analogously results, what is 
find the one-dimensional case. 

We consider the three-dimensional case. We denote by W Watson integral 
[26] 

3
1 3d d d 1,516.

3 cos cos cos
x y zW

x y z
π π π

π π π− − −
=

− − −π ∫ ∫ ∫ 

 
In the three-dimensional case, the integral  

3 3
1 2 3 1 2 3

1 2 2 1 2 2

d d d d d d
3 cos cos cos 3 cos cos cosT T

s s s s s s
s s s s s s

=
+ + + − − −∫ ∫  have the finite value. 

Expressing these integral via Watson integral W, and taking into account, what 

the measure is normalized, we have, that ( )
6
WJ z
B

= . 

The following Theorem describe of the exchange of the spectrum of operator 

1H  in the case 3ν = . 
Theorem 6. Let 3ν = . Then 
A). 1). If 2 Bε = −  and 1 6Bε < − , then the operator 1H  has a unique ei-

genvalue 1z A ε= + , lying the below of the continuous spectrum of the operator 

1H . 
2). If 2 Bε = −  and 1 6Bε > , then the operator 1H  has a unique eigenvalue 

1z A ε= + , lying the above of the continuous spectrum of the operator 1H . 
3). If 2 Bε = −  and 16 2B Bε− ≤ < − , then the operator 1H  has no eigenva-

lue, lying the below of the continuous spectrum of the operator 1H . 
4). If 2 Bε = −  and 12 6B Bε< ≤  then the operator 1H  has no eigenvalue, 

lying the above of the continuous spectrum of the operator 1H . 

B). 1). If 2 2Bε = −  or 2 0ε =  and 1 0ε < , 1
6B
W

ε ≤ − , then the operator 1H  

has a unique eigenvalue z1, lying the below of the continuous spectrum of the oper-

ator 1H . If 2 0ε =  and 1 0ε < , and 1
6 0B
W

ε− ≤ < , then the operator 1H  has 

no eigenvalue the outside of the continuous spectrum of operator 1H . 
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2). If 2 2Bε = −  or 2 0ε =  and 1 0ε > , 1
6B
W

ε ≥ , then the operator 1H  has 

a unique eigenvalue z2, lying the above of the continuous spectrum of the opera-

tor 1H . If 2 0ε =  and 1 0ε > , and 1
60 B
W

ε< ≤ , then the operator 1H  has no 

eigenvalue the outside of the continuous spectrum of operator 1H . 

C). 1). If 1 0ε =  and 2 0ε > , E W< , then the operator 1H  has a unique 

eigenvalue z, where 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

, lying the below of the continuous spectrum 

of the operator 1H . If 1 0ε =  and 2 0ε > , E W> , then the operator 1H  has 

no eigenvalues the outside the continuous spectrum of the operator 1H . 

2). If 1 0ε =  and 2 2Bε < − , E W< , then the operator 1H  has a unique ei-

genvalue z , where 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

, lying the above of the continuous spectrum 

of the operator 1H . If 1 0ε =  and 2 2Bε < − , E W> , then the operator 1H  

has no eigenvalues the outside the continuous spectrum of the operator 1H . 

D). 1). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
=  and 4

3
E W< , then the operator 1H  has a 

unique eigenvalue z, lying the above of the continuous spectrum of the operator 

1H . 

2). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= −  and 4

3
E W< , then the operator 1H  has a 

unique eigenvalue z , lying the below of the continuous spectrum of the opera-
tor 1H . 

E). 1). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
>  and 1

3
E Wα < + 

 
, and the real 

number 1α > , then the operator 1H  has a unique eigenvalue z, lying the 

above of the continuous spectrum of the operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
>  and 1

3
E Wα < + 

 
, and the real 

number 1α > , then the operator 1H  has a unique eigenvalue z, lying the above 

of the continuous spectrum of the operator 1H . 

F). 1). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< −  and 1

3
E Wα < + 

 
, and the real 

number 1α > , then the operator 1H  has a unique eigenvalue z1, lying the be-

low of the continuous spectrum of the operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< −  and 1

3
E Wα < + 

 
, and the real 

number 1α > , then the operator 1H  has a unique eigenvalue z1, lying the be-

low of the continuous spectrum of the operator 1H . 
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K). 1). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< <  and  

1 1
3 3

W E Wα α   − < < +   
   

, and the real number 0 1α< < , then the operator 

1H  has a exactly two eigenvalues z1 and z2, lying the above and below of the 

continuous spectrum of the operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< <  and 1 1

3 3
W E Wα α   − < < +   

   
, 

and the real number 0 1α< < , then the operator 1H  has a exactly two eigen-
values z1 and z2, lying the above and below of the continuous spectrum of the 
operator 1H . 

M). 1). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < <  and  

1 1
3 3

W E Wα α   − < < +   
   

, and the real number 0 1α< < , then the operator 

1H  has a exactly two eigenvalues z1 and z2, lying the above and below of the 

continuous spectrum of the operator 1H . 

2). If 2 2Bε < −  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < <  and  

1 1
3 3

W E Wα α   − < < +   
   

, and the real number 0 1α< < , then the operator 

1H  has a exactly two eigenvalues z1 and z2, lying the above and below of the 

continuous spectrum of the operator 1H . 

N). If 22 0B ε− < < , then the operator 1H  has no eigenvalues lying the out-
side of the continuous spectrum of the operator 1H . 

Proof. In the case 3ν = , the continuous spectrum of the operator 1H  coin-
cide with segment [ ] [ ]3 3, 6 , 6m M A B A B= − + . Expressing all integrals in the 
equation 

( )
( )

( )

3 3

3 3

3
1 2 1 2 3 1 2 3

3 23 3
1

1 1

3
1 2 1 1 2 31 2 3

2 3
1

1 1
3

2 cos d d d cos d d d1 1 6
2 cos 2 cos

2 cos cos d d dd d d6
2 cos 2 cos

0

i i
T T

i i

i

T T
i i

i

i i

i

i i

s s s s s s s sz
A B s z A B s z

s s s s ss s s
A B s z A B s z

ε ε
ε

ε ε
ε

=

= =

=

= =

 +    ∆ = + +  + − + −   

+
−

+ − + −

=

∑
∫ ∫∑ ∑

∑
∫ ∫∑ ∑

 

through the integral ( ) 3
1 2 3

3
1

d d d
2 cosT

ii

s s s
J z

A B s z
=

=
+ −

∫ ∑
, we find that the equation 

( )3 0z∆ =  is equivalent to the equation 

( )( ) ( ) ( )22 2
1 2 2 22 0.B B z A J z Bε ε ε ε + + − + + =            (12) 

Moreover, the function ( ) 3
1 2 3

3
1

d d d
2 cosT

ii

s s s
J z

A B s z
=

=
+ −

∫ ∑
 is a differentiable 

https://doi.org/10.4236/jamp.2023.1111217


S. M. Tashpulatov, R. T. Parmanova 
 

 

DOI: 10.4236/jamp.2023.1111217 3408 Journal of Applied Mathematics and Physics 
 

function on the set [ ]3 3\ ,m M , in addition,  

( ) 3
1 2 3

23
1

d d d
0

2 cos
T

ii

s s s
J z

A B s z
=

′ = >
 + − 

∫
∑

, [ ]3 3,z m M∉ . 

Thus the function ( )J z  is an monotone increasing function on ( )3,m−∞  

and on ( )3 ,M +∞ . Furthermore, in the three-dimensional case ( ) 0J z → +  at 

z → −∞ , and ( )
6
WJ z
B

=  as 6z A B= − , and ( ) 0J z → −  as z → +∞ , and 

( )
6
WJ z
B

= −  as 6z A B= + . 

If ( )( )2 2
1 2 22 0B B z Aε ε ε+ + − ≠  then from (12) follows that 

( ) ( )
( )( )

2
2

2 2
1 2 2

.
2

B
J z

B B z A
ε

ε ε ε

+
= −

+ + −
 

The function ( ) ( )
( )( )

2
2

2 2
1 2 22

B
z

B B z A
ε

ψ
ε ε ε

+
= −

+ + −
 has a point of asymptotic 

discontinuity 
2

1
0 2

2 22
Bz A

B
ε

ε ε
= −

+
. Since ( )

( ) ( )
( )( )

2 2
2 2 2

22 2
1 2 2

2

2

B B
z

B B z A

ε ε ε
ψ

ε ε ε

+ +
′ =

 + + − 

 

for all 0z z≠  it follows that the function ( )zψ  is an monotone increasing 

(decreasing) function on ( )0, z−∞  and on ( )0 ,z +∞  in the case 2
2 22 0Bε ε+ >  

(respectively, 2
2 22 0Bε ε+ < ), in addition, and if 2 0ε > , or 2 2Bε < − , then 

( ) 0zψ → +  as z → −∞ , ( )zψ → +∞  as 0 0z z→ − , ( )zψ → −∞  as  

0 0z z→ + , ( ) 0zψ → −  as z → +∞  (respectively, if 22 0B ε− < < , then  

( ) 0zψ → −  as z → −∞ , ( )zψ → −∞  as 0 0z z→ − , ( )zψ → +∞  as  

0 0z z→ + , ( ) 0zψ → +  as z → +∞ ). 

A). If 2 Bε = −  and 1 6Bε < −  (respectively, 2 Bε = −  and 1 6Bε > ), then 
the equation for eigenvalues and eigenfunctions (12) has the form: 

( ){ } ( )2 2
1 0.B B z A J zε − − =                   (13) 

It is clear, that ( ) 0J z ≠  for the values ( )1contz Hσ∉  . Therefore,  

1 0z Aε − + = , i.e., 1z A ε= + . If 1 6Bε < − , then this eigenvalue lying the below 
of the continuous spectrum of operator 1H , if 1 6Bε > , then this eigenvalue 
lying the above of the continuous spectrum of operator 1H . If 16 2B Bε− ≤ < −  
(respectively, 12 6B Bε< ≤ ), then this eigenvalue not lying in the outside of the 
continuous spectrum of operator 1H . 

B). If 2 2Bε = −  or 2 0ε =  and 1 0ε <  (respectively, 2 2Bε = −  or 2 0ε =  
and 1 0ε > ), then the equation for the eigenvalues and eigenfunctions has the 

form ( )2 2
1 0B J z Bε + = , that is, ( )

1

1J z
ε

= − . In the three-dimensional case 

( ) 0J z → +  as z → −∞ , and ( )
6
WJ z
B

=  as 6z A B= − , and ( ) 0J z → −  as 
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z → +∞ , and ( )
6
WJ z
B

= −  as 6z A B= + . Therefore, in order to the equation 

( )
1

1J z
ε

= −  in the below (respectively, above) of continuous spectrum of oper-

ator 1H  have the solution, one should implements the inequality 
1

1
6
W
Bε

− <  

(respectively, 
1

1
6
W
Bε

− > − ), i.e., 1
6B
W

ε < − , 1 0ε <  (respectively, 1
6B
W

ε > , 

1 0ε > ). If 1
6 0B
W

ε− < <  (respectively, 1
60 B
W

ε< < ), then the operator 1H  

has no eigenvalues the outside the continuous spectrum of operator 1H . 

C). If 1 0ε =  and 2 0ε >  (respectively, 1 0ε =  and 2 2Bε < − ), then the 
equation for the eigenvalues and eigenfunctions take in the form 

( )( ) ( ) ( )22
2 2 22 ,B z A J z Bε ε ε+ − = − +

 
or 

( ) ( )
( )( )

2
2

2
2 2

.
2
B

J z
B z A
ε

ε ε

+
= −

+ −
 

Denote 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. Then ( ) EJ z
z A

= −
−

, or ( ) EJ z
A z

=
−

. In the  

three-dimensional case ( ) 0J z → +  as z → −∞ , and ( )
6
WJ z
B

=  as  

6z A B= − , and ( ) 0J z → −  as z → +∞ , and ( )
6
WJ z
B

= −  as 6z A B= + . 

Therefore, in order to the equation ( ) EJ z
z A

= −
−

 in the below (respectively, 

above) of continuous spectrum of operator 1H  have the solution, one should im-

plements the inequality 
6 6
E W
B B
<  (respectively, 

6 6
E W
B B

− > − ), i.e., E W< . If 

1 0ε =  and 2 0ε > , E W>  (respectively, 1 0ε =  and 2 2Bε < − , E W> ), 

then the operator 1H  has no eigenvalues the outside the continuous spectrum 

of operator 1H . 

D). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= , then the equation for eigenvalues and eigenfunc-

tions has the form 

( )( ) ( ) ( )22
2 2 22 2 ,B z A B J z Bε ε ε+ − + = − +

 
from this we have equation in the form: 

( ) ( )
( )( )

2
2

2
2 2

.
2 2

B
J z

B z A B
ε

ε ε

+
= −

+ − +
               (14) 

We denote 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. In the first we consider the Equation (14) in the 
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below of continuous spectrum of operator 1H . In the below of continuous 

spectrum of operator 1H , the function 0
2

E
A z B

→ +
− −

, as z → −∞ ,  

2 4
E E

A z B B
=

− −
, as 6z A B= − , and in the three-dimensional case ( ) 0J z → +  

as z → −∞ , and ( )
6
WJ z
B

=  as 6z A B= − , and ( ) 0J z → −  as z → +∞ , 

and ( )
6
WJ z
B

= −  as 6z A B= + . Therefore, the below of continuous spectrum 

of operator 1H , the equation ( )
2

EJ z
A z B

=
− −

 has a unique solution, if 

4 6
E W
B B
> , i.e., 2

3
WE > . This inequality incorrectly. Therefore, the below of 

continuous spectrum of operator 1H , this equation has no solution. 
We now consider the equation for eigenvalues and eigenfunctions  

( )
2

EJ z
z A B

= −
− +

, in the above of continuous spectrum of operator 1H . In 

the above of continuous spectrum of operator 1H , the function  

0
2

E
A z B

→ −
− −

, as z → +∞ , 
2 8

E E
A z B B

= −
− −

, as 6z A B= + , and in the 

three-dimensional case ( ) 0J z → −  as z → +∞ , and ( )
6
WJ z
B

= −  as  

6z A B= + . Therefore, the above of continuous spectrum of operator 1H , the 

equation ( )
2

EJ z
A z B

=
− −

 has a unique solution, if 
8 6
E W
B B

− > − , i.e.,  

4
3
WE < . This inequality correctly. Therefore, the above of continuous spectrum 

of operator 1H , this equation has a unique solution z. 

If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= − , then the equation for eigenvalues and eigenfunctions 

has the form 

( )( ) ( ) ( )22
2 2 22 2 ,B z A B J z Bε ε ε+ − − = − +

 
from this we have the equation in the form (14). 

We denote 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. In the first we consider the equation (14) in the 

below of continuous spectrum of operator 1H . In the below of continuous 

spectrum of operator 1H , the function 0
2

E
A z B

→ +
− +

, as z → −∞ ,  

2 8
E E

A z B B
=

− +
, as 6z A B= − , and in the three-dimensional case ( ) 0J z → +  

as z → −∞ , and ( )
6
WJ z
B

=  as 6z A B= − , and ( ) 0J z → −  as z → +∞ , and 

( )
6
WJ z
B

= −  as 6z A B= + . Therefore, the below of continuous spectrum of 
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operator 1H , the equation ( )
2

EJ z
A z B

=
− +

 has a unique solution, if 
 

8 6
E W
B B
< , i.e., 4

3
WE < . This inequality correctly. Therefore, the below of con-

tinuous spectrum of operator 1H , this equation has a unique solution. 
We now consider the equation for eigenvalues and eigenfunctions  

( )
2

EJ z
z A B

= −
− −

, in the above of continuous spectrum of operator 1H . In 

the above of continuous spectrum of operator 1H , the function  

0
2

E
A z B

→ −
− +

, as z → +∞ , 
2 4

E E
A z B B

= −
− +

, as 6z A B= + , and in the 

three-dimensional case ( ) 0J z → −  as z → +∞ , and ( )
6
WJ z
B

= −  as  

6z A B= + . Therefore, the above of continuous spectrum of operator 1H , the 

equation ( )
2

EJ z
A z B

=
− +

 has a unique solution, if 
4 6
E W
B B

− > − , i.e.,  

2
3
WE < . This inequality incorrectly. Therefore, the above of continuous spec-

trum of operator 1H , this equation has no solution. 

E). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
> , (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
> ), then consider necessary, that 

( )2
2 2

1

2 2B

B

ε ε
ε α

+
= × , where 

1α > −  real number. Then the equation for eigenvalues and eigenfunctions has 

the form 
( ) ( )( ) ( ) ( )

2
2 2 22 2

2 2 2

2 2
2 0

B
B B z A J z B

B

ε ε
α ε ε ε
 + × × + + − + + = 
  

, or 

( )( ) ( ) ( )22
2 2 22 2 0B z A B J z Bε ε α ε+ − + + + = . From this  

( ) ( )
( )( )

2
2

2
2 22 2

B
J z

B z A B
ε

ε ε α

+
= −

+ − +
. We denote 

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, then  

( )
2

EJ z
z A Bα

= −
− +

. In the first we consider this equation in the below of the 

continuous spectrum of operator 1H . Then ( ) 0J z → + , as z → −∞ ,  

( )
6
WJ z
B

= , as 6z A B= − , 0
2

E
z A Bα

− → +
− +

, as z → −∞ , and  

( )2 6 2
E E

z A B Bα α
− =

− + −
, as 6z A B= − . The equation ( )

2
EJ z

z A Bα
= −

− +
 

have a unique solution, if 
( )6 2 6

E W
B Bα
<

−
. From here 

( )3
3

W
E

α−
< . This 

inequality is incorrect. Therefore, the below of continuous spectrum of operator 

1H , the operator 1H  has no eigenvalues. 

The above of continuous spectrum of operator 1H , we have the ( ) 0J z → − , 

if z → +∞ , ( )
6
WJ z
B

= − , if 6z A B= − . Besides, 0
2

E
z A Bα

− → −
− +

, as 
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z → +∞ , 
2 6 2

E E
z A B B Bα α

− = −
− + +

, if 6z A B= + . 

The equation ( )
2

EJ z
z A Bα

= −
− +

 have a unique solution, if  

( )6 2 6
E W

B Bα
− > −

+
. From here 

( )3
3

W
E

α+
< . This inequality is correctly. 

Therefore, the above of continuous spectrum of operator 1H , the operator 1H  

has a unique eigenvalues 1.z  

F). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< −  (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
< − ), then we assume that 

( )2
2 2

1

2 2B

B

ε ε
ε α

+
= − × , where 

1α > −  real number. The equation for eigenvalues and eigenfunctions take in 
the form 

( )( ) ( ) ( )22
2 2 22 2 .B z A B J z Bε ε α ε+ − − = − +

 
From here 

( ) ( )
( )( )

2
2

2
2 2

.
2 2

B
J z

B z A B
ε

ε ε α

+
= −

+ − −
 

The introduce notation 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. Then we have the equation in the 

form: 

( ) .
2

EJ z
z A Bα

= −
− −

                     (15) 

In the below of the continuous spectrum of operator 1H , we have the equa-

tion ( )
2

EJ z
A z Bα

=
− +

. In the below of continuous spectrum of operator 1H , 

0
2

E
z A Bα

− → +
− −

, as z → −∞ , 
2 6 2

E E
z A B B Bα α

− =
− − +

, as 6z A B= − . 

The equation ( )
2

EJ z
z A Bα

= −
− +

 have a unique solution, if  

( )6 2 6
E W

B Bα
<

+
. From here 

( )3
3

W
E

α+
< . This inequality is correctly. 

Therefore, the below of continuous spectrum of operator 1H , the operator 1H  
has a unique eigenvalues. 

In the above of continuous spectrum of operator 1H , 0
2

E
z A Bα

− → −
− −

, 

as z → −∞ , 
2 6 2

E E
z A B B Bα α

− = −
− − −

, as 6z A B= + . Therefore, the above 

of continuous spectrum of operator 1H , the operator 1H  has a unique eigen-

values, if 
6 2 6

E W
B B Bα

− > −
−

. From here 
( )3

3
W

E
α−

< , what is incorrectly. 
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Therefore, the above of continuous spectrum of operator 1H , the operator 1H  
has no eigenvalues. 

K). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< <  (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2
0

B

B

ε ε
ε

+
< < ), the we take 

( )2
2 2

1

2 2B

B

ε ε
ε α

+
= × , where 0 1α< < −  

positive real number. Then the equation for eigenvalues and eigenfunctions has 
the form: 

( )( ) ( ) ( )22
2 2 22 2 ,0 1.B z A B J z Bε ε α ε α+ − + = − + < <        (16) 

We denote 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. Then the Equation (16) receive the form 

( ) .
2

EJ z
z A Bα

= −
− +  

In the below of continuous spectrum of operator 1H , we have  

0
2

E
z A Bα

− → +
− +

, as z → −∞ , and 
( )2 2 3

E E
z A B Bα α

− =
− + −

, as  

6z A B= − . The equation ( )
2

EJ z
z A Bα

= −
− +

 have a unique solution the  

below of continuous spectrum of operator 1H , if 
( )6 2 6

E W
B Bα
>

−
. From here 

( )3
3

W
E

α−
> . This inequality is correctly. Therefore, the below of continuous 

spectrum of operator 1H , the operator 1H  has a unique eigenvalues z1. 

The above of continuous spectrum of operator 1H , we have  

0
2

E
z A Bα

− → −
− +

, as z → +∞ , and 
( )2 2 3

E E
z A B Bα α

− = −
− + +

, as  

6z A B= + . The equation ( )
2

EJ z
z A Bα

= −
− +

 have a unique solution the  

above of operator 1H , if 
( )2 3 6
E W

B Bα
− > −

+
, i.e., 

( )3
3

W
E

α+
< . This in-

equality is correctly. 
Consequently, in this case the operator 1H  have two eigenvalues z1 and z2, 

lying the below and above of continuous spectrum of operator 1H . 

M). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < <  (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2
0

B

B

ε ε
ε

+
− < < ), the we take 

( )2
2 2

1

2 2B

B

ε ε
ε α

+
= − × , where  

0 1α< < −  positive real number. Then the equation for eigenvalues and eigen-
functions has the form: 

( )( ) ( ) ( )22
2 2 22 2 ,0 1.B z A B J z Bε ε α ε α+ − − = − + < <       (17) 

We denote 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. Then the Equation (17) receive the form 

https://doi.org/10.4236/jamp.2023.1111217


S. M. Tashpulatov, R. T. Parmanova 
 

 

DOI: 10.4236/jamp.2023.1111217 3414 Journal of Applied Mathematics and Physics 
 

( ) .
2

EJ z
z A Bα

= −
− −  

In the below of continuous spectrum of operator 1H , we have  

0
2

E
z A Bα

− → +
− −

, as z → −∞ , and 
( )2 2 3

E E
z A B Bα α

− =
− − +

, as  

6z A B= − . The equation ( )
2

EJ z
z A Bα

= −
− −

 have a unique solution the  

below of continuous spectrum of operator 1H , if 
( )6 2 6

E W
B Bα
<

+
. From here 

( )3
3

W
E

α+
< . This inequality is correctly. Therefore, the below of continuous 

spectrum of operator 1H , the operator 1H  has a unique eigenvalues z1. 

The above of continuous spectrum of operator 1H , we have  

0
2

E
z A Bα

− → −
− −

, as z → +∞ , and 
( )2 2 3

E E
z A B Bα α

− = −
− − −

, as  

6z A B= + . The equation ( )
2

EJ z
z A Bα

= −
− −

 have a unique solution the  

above of continuous spectrum of operator 1H , if 
( )2 3 6
E W

B Bα
− < −

−
, i.e., 

( )3
3

W
E

α−
> . This inequality is correctly. 

Consequently, in this case the operator 1H  have two eigenvalues z1 and z2, 
lying the below and above of 1H . 

N). If 22 0B ε− < < , then 2
2 22 0Bε ε+ < , and the function  

( ) ( )
( )( )

2
2

2
1 2 22

B
z

B B z A
ε

ψ
ε ε ε

+
= −

+ + −
 is a decreasing function in the intervals 

( )0, z−∞  and ( )0 ,z +∞ ; By, z → −∞  the function ( ) 0zψ → − , and by  

0 0z z→ − , the function ( )zψ → −∞ , and by z → +∞ , ( ) 0zψ → + , and by  

0 0z z→ + , ( )zψ → +∞ . The function ( ) 0J z → + , by z → −∞ , and by  

6z A B= − , the function ( )
6
WJ z
B

= , and by 6z A B= + , the function 
 

( )
6
WJ z
B

= , by z → +∞ , the function ( ) 0J z → − . Therefore, the equation 

( ) ( )z J zψ = , that’s impossible the solutions in the outside the continuous spec-

trum of operator 1H . Therefore, in this case, the operator 1H  has no eigenva-

lues lying the outside of the continuous spectrum of the operator 1H .


 

From obtaining results is obviously, that the spectrum of operator 1H  is 
consists from continuous spectrum and no more than two eigenvalues. 

Taking into account that the function ( ), , ,f λ µ γ θ  is antisymmetric, and 
using tensor products of Hilbert spaces and tensor products of operators in Hil-

bert spaces [27], we can verify that the operator 
12
tH  can be represented in the 

form 
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( ){ } { }2 1 2 1
1 1 1 1,t tH H I I H K I I I I H I I Hψ λ µ= ⊗ + ⊗ + ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗      (18) 

where 

( )( ) ( ) ( ) ( )

[ ] ( )

1 0
1

1

2 cos d

2 cos cos d ,

i T
i

i iT
i

H f A B f A A f s s

B s f s s

ν

ν

ν

ν

λ λ λ

λ

=

=

 = + + − 
 

+ +

∑ ∫

∑∫



 
and ( ) ( ) ( ) ( )0, , d , d d

T T T
K U f s s s U U f s k s kν ν νλ µ λ µ= + − + −∫ ∫ ∫ , and I is the 

unit operator in the space 1
 . 

The spectrum of the operator A I I B⊗ + ⊗ , where A and B are densely de-
fined bounded linear operators, was studied in [28] [29] [30]. Explicit formulas 
were given there that express the essential spectrum ( )ess A I I Bσ ⊗ + ⊗  and 
discrete spectrum ( )disc A I I Bσ ⊗ + ⊗  of operator A I I B⊗ + ⊗  in terms of 
the spectrum ( )Aσ  and the discrete spectrum ( )disc Aσ  of A and in terms of 
the spectrum ( )Bσ  and the discrete spectrum ( )disc Bσ  of B: 

( )
( ) ( ) ( ) ( ){ } ( ) ( )( ) ( ) ( )( ){ }\ \ \ ,

disc

ess ess ess ess

A I I B

A A B B A B A B

σ

σ σ σ σ σ σ σ σ

⊗ + ⊗

= + + ∪ +
(19) 

( ) ( ) ( )( ) ( ) ( )( ).ess ess essA I I B A B A Bσ σ σ σ σ⊗ + ⊗ = + ∪ +      (20) 

It is clear that ( ) ( ) ( ){ }: ,A I I B A Bσ λ µ λ σ µ σ⊗ + ⊗ = + ∈ ∈ . 
Consequently, we must investigate in first the spectrum of the operators 1H . 

4. Structure of the Essential Spectrum and Discrete  
Spectrum of Operator tH2 1  

Consequently, the operator represented of the form 

( ){ }2 1
2 2, ,t t

tH H K I I I I Hλ µ= + ⊗ ⊗ + ⊗ ⊗               (21) 

where 2 1 1
tH H I I H= ⊗ + ⊗    are the energy operator of two-electron systems in 

the impurity Hubbard model in triplet state. 
We now, using the obtained results and representation (18) and (21), we first 

describe the structure of essential spectrum and discrete spectrum of the opera-
tor ( )2 2 ,s tH H K λ µ= +  . 

From the beginning, we consider the operator ( ) 2 1
tH U H K= +  . 

Since, the family of the operators ( )H U  is the family of bounded operators, 
that the ( )H U  is the family of bounded operator valued analytical functions. 

Therefore, in these family, one can the apply the Kato-Rellix theorem. 
Theorem 7. (Kato-Rellix theorem)) [27]. 
Let ( )T β  is the analytical family in the terms of Kato. Let 0E  is a nonde-

generate eigenvalue of ( )0T β . Then as β , near to 0β , the exist exactly one 
point ( ) ( )( )E Tβ σ β∈  the near 0E  and this point is isolated and nondege-
nerated. ( )E β  is an analytical function of β  as β , the near to 0β , and exist 
the analytical eigenvector ( )βΩ  as β  the near to 0β . If the as real 0β β−  
the operator ( )T β  is a self-adjoint operator, then ( )βΩ  can selected thus, 
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that it will be normalized of real 0β β− . 
Since, the operator 2

tH  has a nondegenerate eigenvalue, such as, the near of 

eigenvalue 12z  of the operator 2
tH , the operator ( )H U  as U, near 0 0U = , 

has a exactly one eigenvalue ( ) ( )( )E U H Uσ∈   the near 12z  and this point is 

isolated and nondegenerated. The ( )E U  is a analytical function of U as U, the 
near to 0 0U = . 

As the large values the existence no more one additional eigenvalue of the op-
erator ( )H U  is following from the same, what the perturbation  

( )( ) ( )1 , , d
T

K f U f s s sνλ µ λ µ= + −∫  is the one-dimensional operator. 

A new we consider the family of operators ( ) ( )3 2H H U Kε = +  . 
As, the operator ( )H U  has a nondegenerate eigenvalue, consequently, the 

near of eigenvalue ( )E U  the operator ( )H U , operator ( )3H ε  as 3ε , the 

near of 3 0ε = , has a exactly one eigenvalue ( ) ( )( )3 3E Hε σ ε∈   the near ( )E U  

and this point is the isolated and nondegenerated. The ( )3E ε  is a analytical 
function of 3ε , as 3ε , the near to 3 0ε = . 

Later on via z3, and z4 we denote the additional eigenvalues of operator 2
sH . 

Thus, we prove the next theorems, the described the spectra of operator 2
sH . 

Now, using the obtained results (Theorem 5 and 6) and representation (18), 
and (21), we describe the structure of the essential spectrum and discrete spec-
trum of the operator 2 1

tH . 
Theorem 8. Let 1ν = . Then 
A). If 2 Bε = −  and 1 2Bε < − , or if 2 Bε = −  and 1 2Bε > , then the essen-

tial spectrum of the operator 2 1
tH  is consists of the union of eight segments: 

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 , 2

2 4 ,2 4 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and the dis-

crete spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 1z A ε= + , and 3z  and 4z  are the 

additional eigenvalues of the operator 2
sH . 

B). 1). If 2 2Bε = −  or 2 0ε =  and 1 0ε < , then the essential spectrum of the 
operator 2 1

tH  is consists of the union of eight segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 , 2

2 4 ,2 4 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete  

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 2 2

14z A B ε= − + . 
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2). If 2 2Bε = −  or 2 0ε =  and 1 0ε > , then the essential spectrum of the 

operator 2 1
tH  is consists of the union of eight segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 , 2

2 4 ,2 4 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete  

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 2 2

14z A B ε= + + . 

C). If 1 0ε =  and 2 0ε >  or 1 0ε =  and 2 2Bε < − , then the essential spec-

trum of the operator 2 1
tH  is consists of the union of sixteen segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]

2 1
1 1

2 2 1 1

2 2 1 2 1 2

1 1 2 2

1 2 1 2 1 2 1

4 8 , 4 8 3 6 ,3 6

3 6 ,3 6 2 4 2 ,2 4

2 4 2 ,2 4 2 4 ,2 4

2 3 , 2 3 2 3 , 2 3

2 2 , 2 2 2 2 , 2 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z A B z

A B z z A B z z A B z z A B z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + + +



[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2

3 3 4 4

1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4

2 4 ,2 4 2 4 ,2 4

2 ,2 4 2 ,2 4

2 ,2 4 2 ,2 4

z

A B z A B z A B z A B z

A B z z A B z z A B z z A B z z

A B z z A B z z A B z z A B z z

+

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + + + +

∪ − + + + + + ∪ − + + + + +

,  

and discrete spectrum of the operator 2 1
tH  is consists of eleven eigenvalues: 

( ) {
}

2 1
1 1 2 2 1 2 1 2 1 3 1 2 3

2 3 1 4 1 2 4 2 4

4 ,3 , 4 , 2 2 , 3 ,2 , ,

2 , 2 , , 2
disc tH z z z z z z z z z z z z z

z z z z z z z z z

σ = + + + + + +

+ + + + +



, where  

1 2

2

1

BEz A
E

= −
−

, and 2 2

2

1

BEz A
E

= +
−

, and 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. 

D). 1). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= , then the essential spectrum of the operator 2 1

tH  

is consists of the union of eight segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 , 2

2 4 ,2 4 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete  

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 

( )2

2

2 1

1

B E
z A

E

+
= +

−
, and  

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

. 

2). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= − , then the essential spectrum of the operator 2 1

tH  

is consists of the union of eight segments:  
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( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 , 2

2 4 ,2 4 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 

( )2

2

2 1

1

B E
z A

E

+
= −

−
, and  

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

. 

E). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
> , or if 2 2Bε < −  and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
> , then the essential spectrum of the operator 2 1

tH  is consists 

of the union of eight segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 , 2

2 4 ,2 4 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete  

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 

( )2 2

2

2 1

1

B E E
z A

E

α α+ − +
= +

−
 and  

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real number 1α > . 

F). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< − , or if 2 2Bε < −  and  

( )2
2 2

1

2 2B

B

ε ε
ε

+
< − , then the essential spectrum of the operator 2 1

tH  is con-

sists of the union of eight segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 8 ,4 8 3 6 ,3 6

2 4 2 ,2 4 2 2 3 , 2 3

2 4 ,2 4 2 , 2

2 4 ,2 4 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete  

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 

( )2 2

2

2 1

1

B E E
z A

E

α α+ − +
= −

−
 and  

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real number 1α > . 

K). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< < , or if 2 2Bε < −  and  
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( )2
2 2

1

2 2
0

B

B

ε ε
ε

+
< < , then the essential spectrum of the operator 2 1

tH  is con-

sists of the union of sixteen segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]

2 1
1 1

2 2 1 1

2 2 1 2 1 2

1 1 2 2

1 2 1 2 1 2

4 8 , 4 8 3 6 ,3 6

3 6 ,3 6 2 4 2 ,2 4 2

2 4 2 ,2 4 2 2 4 ,2 4

2 3 , 2 3 2 3 , 2 3

2 2 , 2 2 2 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z A B z

A B z z A B z z A B z z A B z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + + +



[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

1 2

3 3 4 4

1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4

2

2 4 ,2 4 2 4 ,2 4

2 , 2 2 , 2

2 , 2 2 , 2

z

A B z A B z A B z A B z

A B z z A B z z A B z z A B z z

A B z z A B z z A B z z A B z z

+

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + + + +

∪ − + + + + + ∪ − + + + + +

,  

and discrete spectrum of the operator 2 1
tH  is consists of eleven eigenvalues: 

( ) {
}

2 1
1 1 2 1 2 1 2 2 1 3 1 2 3

2 3 1 4 2 4 1 2 4

4 ,3 , 2 2 , 3 ,4 ,2 , ,

2 , 2 , 2 ,
disc tH z z z z z z z z z z z z z

z z z z z z z z z

σ = + + + + + +

+ + + + +



, where  

( )2 2

1 2

2 1

1

B E E
z A

E

α α+ − +
= +

−
 and 

( )2 2

2 2

2 1

1

B E E
z A

E

α α− − +
= +

−
, and  

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real number 0 1α< < . 

M). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < < , or if 2 2Bε < −  and  

( )2
2 2

1

2 2
0

B

B

ε ε
ε

+
− < < , then the essential spectrum of the operator 2 1

tH  is  

consists of the union of sixteen segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]

2 1
1 1

2 2 1 1

2 2 1 2 1 2

1 1 2 2

1 2 1 2 1 2

4 8 , 4 8 3 6 ,3 6

3 6 ,3 6 2 4 2 ,2 4 2

2 4 2 ,2 4 2 2 4 ,2 4

2 3 , 2 3 2 3 , 2 3

2 2 , 2 2 2 2 , 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z A B z

A B z z A B z z A B z z A B z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + + +



[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

1 2

3 3 4 4

1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4

2

2 4 ,2 4 2 4 ,2 4

2 , 2 2 , 2

2 , 2 2 , 2

z

A B z A B z A B z A B z

A B z z A B z z A B z z A B z z

A B z z A B z z A B z z A B z z

+

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + + + +

∪ − + + + + + ∪ − + + + + +

,  

and discrete spectrum of the operator 2 1
tH  is consists of eleven eigenvalues: 

( ) {
}

2 1
1 1 2 1 2 1 2 2 1 3 1 2 3

2 3 1 4 2 4 1 2 4

4 ,3 , 2 2 , 3 ,4 ,2 , ,

2 , 2 , 2 ,
disc tH z z z z z z z z z z z z z

z z z z z z z z z

σ = + + + + + +

+ + + + +



, where  

( )2 2

1 2

2 1

1

B E E
z A

E

α α+ − +
= +

−
 and 

( )2 2

2 2

2 1

1

B E E
z A

E

α α− − +
= +

−
, and  

( )2
2

2
2 22
B

E
B
ε

ε ε
+

=
+

, and the real number 0 1α< < . 
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N). If 22 0B ε− < < , then the essential spectrum of the operator 2 1
tH  is con-

sists of the union of three segments:  

( ) [ ] [ ]
[ ]

2 1
3 3

4 4

4 8 ,4 8 2 4 ,2 4

2 4 ,2 4
ess tH A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



, and discrete spec-

trum of the operator 2 1
tH  is consists of empty set: ( )2 1

disc tHσ = ∅ . 

Proof. A). From the representation (18), (21) and the formulas (19) and (20), 
and the Theorem 5, follow the in one-dimensional case, the continuous spec-

trum of the operator 1H  is consists ( ) [ ]1 2 , 2cont H A B A Bσ = − + , and the dis-

crete spectrum of the operator 1H  is consists of unique eigenvalue 1z A ε= + . 
The operator K is a two-dimensional operator. Therefore, the essential spectrum 
of the operators 1 1H I I H⊗ + ⊗   and 2

sH  coincide (see. chapter XIII, para-
graph 4, in [22]) and is consists from segments [ ]2 4 ,2 4A B A B− + , and  

[ ]2 , 2A B z A B z− + + + . Of extension the two-dimensional operator K to the 

operator 1 1H I I H⊗ + ⊗   can appear no more then two additional eigenvalues 
z3 and z4. These give the statement A) of the Theorem 8. 

B). In this case the operator 1H  has a one eigenvalue z1, lying the outside of 
the continuous spectrum of operator 1H . Therefore, the essential spectrum of 
the operators 1 1H I I H⊗ + ⊗   is consists of the union of two segments and dis-
crete spectrum of the operator 1 1H I I H⊗ + ⊗   is consists of single point. These 
give the statement B) of the Theorem 8. The other statements of the Theorem 8 
the analogously is proved. 


 

The next theorems is described the structure of essential spectrum of the op-
erator 2 1

tH  in the three-dimensional case. 
Theorem 9. Let 3ν = . Then 
A).1). If 2 Bε = −  and 1 6Bε < − , or if 2 Bε = −  and 1 6Bε > , then the es-

sential spectrum of the operator 2 1
tH  is consists of the union of eight segments: 

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where 1z A ε= + , z3 and z4 are the additional 

eigenvalues of the operator 2
sH . 

2). If 2 Bε = −  and 16 2B Bε− ≤ < − , or if 2 Bε = −  and 12 6B Bε< ≤ , then 

the essential spectrum of the operator 2 1
tH  is consists of the union of three 

segments: 
( ) [ ] [ ]

[ ]

2 1
3 3

4 4

4 24 ,4 24 2 12 ,2 12

2 12 ,2 12
ess tH A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



,  

and discrete spectrum of the operator 2 1
tH  is consists of empty set:  

( )2 1
disc tHσ = ∅ . 
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B). 1). If 2 2Bε = −  or 2 0ε =  and 1 0ε < , 1
6B
W

ε ≤ − , then the essential 

spectrum of the operator 2 1
tH  is consists of the union of eighth segments: 

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1
1 1

1 1 1 1

3 3 1 3 1 3

4 4 1 4 1 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



 and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
1 1 3 1 44 , 2 , 2disc tH z z z z zσ = + + , where z1 are the eigenvalue of operator 

1H . 

If 1
6 0B
W

ε− ≤ < , then the essential spectrum of the operator 2 1
tH  is consists 

of the union of three segments:  

( ) [ ] [ ]
[ ]

2 1
3 3

4 4

4 24 ,4 24 2 12 ,2 12

2 12 ,2 12
ess tH A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of empty set: ( )2 1

disc tHσ = ∅ . 

2). If 2 2Bε = −  or 2 0ε =  and 1 0ε > , 1
6B
W

ε ≥ , then the essential spec-

trum of the operator 2 1
tH  is consists of the union of eighth segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1
2 2

2 2 2 2

3 3 2 3 2 3

4 4 2 4 2 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and dis-

crete spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
2 2 3 2 44 , 2 , 2disc tH z z z z zσ = + + , where 2z  are the eigenvalue of operator 

1H . 

If 1
60 B
W

ε< ≤ , then the essential spectrum of the operator 2 1
tH  is consists of 

the union of three segments:  

( ) [ ] [ ]
[ ]

2 1
3 3

4 4

4 24 ,4 24 2 12 ,2 12

2 12 ,2 12
ess tH A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of empty set: ( )2 1

disc tHσ = ∅ . 

C). 1). If 1 0ε =  and 2 0ε > , E W< , then the essential spectrum of the op-

erator 2 1
tH  is consists of the union of eighth segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  
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( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + +  where z z  is the eigenvalue of operator 1H , 

and 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. If 1 0ε =  and 2 0ε > , E W> , then the essential spec-

trum of the operator 2 1
tH  is consists of a union of three segment:  

( ) [ ] [ ]
[ ]

2 1
3 3

4 4

4 24 ,4 24 2 12 ,2 12

2 12 ,2 12
ess tH A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



 and discrete 

spectrum of the operator 2 1
tH  is consists of empty set: ( )2 1

disc tHσ = ∅ . 

2). If 1 0ε =  and 2 2Bε < − , E W< , then the essential spectrum of the op-

erator 2 1
tH  is consists of the union of eighth segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



 

   

 

 

, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + +

   , where z  is the eigenvalue of operator 1H , 

and 
( )2

2
2
2 22
B

E
B
ε

ε ε
+

=
+

. If 1 0ε =  and 2 2Bε < − , E W> , then the essential spec-

trum of the operator 2 1
tH  is consists of a union of three segment:  

( ) [ ] [ ]
[ ]

2 1
3 3

4 4

4 24 ,4 24 2 12 ,2 12

2 12 ,2 12
ess tH A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



 and discrete 

spectrum of the operator 2 1
tH  is consists of empty set: ( )2 1

disc tHσ = ∅ . 

D). 1). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= , then the essential spectrum of the operator 2 1

tH  

is consists of the union of eighth segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + + , where z is the eigenvalue of operator 1H . 

2). If 
( )2

2 2
1

2 2B

B

ε ε
ε

+
= − , then the essential spectrum of the operator 2 1

tH  

is consists of the union of eighth segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1

3 3 3 3

4 4 4 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



 

   

 

 

, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  
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( ) { }2 1
3 44 , 2 , 2disc tH z z z z zσ = + +

   , where z  is the eigenvalue of operator 1H . 

E). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
>  and 1

3
E Wα < + 

 
, or if 2 2Bε < −  

and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
>  and 1

3
E Wα < + 

 
, then the essential spectrum of the 

operator 2 1
tH  is consists of the union of eighth segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1
1 1

1 1 1 1

3 3 1 3 1 3

4 4 1 4 1 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
1 1 3 1 44 , 2 , 2disc tH z z z z zσ = + + , where 1z  is the eigenvalue of operator 

1H . 

F). If 2 0ε >  and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< −  and 1

3
E Wα < + 

 
, or if 2 2Bε < −  

and 
( )2

2 2
1

2 2B

B

ε ε
ε

+
< −  and 1

3
E Wα < + 

 
, then the essential spectrum of 

the operator 2 1
tH  is consists of the union of eighth segments:  

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1
1 1

1 1 1 1

3 3 1 3 1 3

4 4 1 4 1 4

4 24 ,4 24 3 18 ,3 18

2 12 2 ,2 12 2 6 3 , 6 3

2 12 ,2 12 6 , 6

2 12 ,2 12 6 , 6

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z A B z A B z z A B z z

A B z A B z A B z z A B z z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − + + + + +

∪ − + + + ∪ − + + + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of three eigenvalues:  

( ) { }2 1
1 1 3 1 44 , 2 , 2disc tH z z z z zσ = + + , where 1z  is the eigenvalue of operator 

1H . 

K). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< <  and 1

3
E Wα < − 

 
, or if  

2 2Bε < −  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
< <  and 1

3
E Wα < − 

 
, then the essential 

spectrum of the operator 2 1
tH  is consists of the union of sixteen segments: 

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]

2 1
1 1

2 2 1 1

1 2 1 2 2 2

3 3 4 4

1 1 1

4 24 ,4 24 3 18 ,3 18

3 18 ,3 18 2 12 2 ,2 12 2

2 12 ,2 12 2 12 2 ,2 12 2

2 12 ,2 12 2 12 ,2 12

6 3 , 6 3 6 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z z A B z z A B z A B z

A B z A B z A B z A B z

A B z A B z A B z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − +



[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1 2

1 2 1 2 2 2

1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4

, 6 2

6 2 , 6 2 6 3 , 6 3

6 , 6 6 , 6

6 , 6 6 , 6

z A B z z

A B z z A B z z A B z A B z

A B z z A B z z A B z z A B z z

A B z z A B z z A B z z A B z z

+ + + +

∪ − + + + + + ∪ − + + +

∪ − + + + + + ∪ − + + + + +

∪ − + + + + + ∪ − + + + + +

, and  
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discrete spectrum of the operator 2 1
tH  is consists of eleven eigenvalues:  

( ) {
}

2 1
1 1 2 1 2 1 3 1 4 1 2

1 2 3 1 2 4 2 2 3 2 4

4 ,3 , 2 2 ,2 ,2 , 3 ,

, , 4 , 2 , 2
disc tH z z z z z z z z z z z

z z z z z z z z z z z

σ = + + + + +

+ + + + + +



, where 1z  and  

2z  are the eigenvalues of operator 1H . 

M). If 2 0ε >  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < <  and 1

3
E Wα < + 

 
, or if  

2 2Bε < −  and 
( )2

2 2
1

2 2
0

B

B

ε ε
ε

+
− < <  and 1

3
E Wα < + 

 
, then the essential 

spectrum of the operator 2 1
tH  is consists of the union of sixteen segments: 

( ) [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ]

2 1
1 1

2 2 1 1

1 2 1 2 2 2

3 3 4 4

1 1 1

4 24 ,4 24 3 18 ,3 18

3 18 ,3 18 2 12 2 ,2 12 2

2 12 ,2 12 2 12 2 ,2 12 2

2 12 ,2 12 2 12 ,2 12

6 3 , 6 3 6 2

ess tH A B A B A B z A B z

A B z A B z A B z A B z

A B z z A B z z A B z A B z

A B z A B z A B z A B z

A B z A B z A B z

σ = − + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + + + ∪ − + + +

∪ − + + + ∪ − + + +

∪ − + + + ∪ − +



[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

2 1 2

1 2 1 2 2 2

1 3 1 3 1 4 1 4

2 3 2 3 2 4 2 4

, 6 2

6 2 , 6 2 6 3 , 6 3

6 , 6 6 , 6

6 , 6 6 , 6

z A B z z

A B z z A B z z A B z A B z

A B z z A B z z A B z z A B z z

A B z z A B z z A B z z A B z z

+ + + +

∪ − + + + + + ∪ − + + +

∪ − + + + + + ∪ − + + + + +

∪ − + + + + + ∪ − + + + + +

, and 

discrete spectrum of the operator 2 1
tH  is consists of eleven eigenvalues:  

( ) {
}

2 1
1 1 2 1 2 1 3 1 4 1 2

1 2 3 1 2 4 2 2 3 2 4

4 ,3 , 2 2 ,2 ,2 , 3 ,

, , 4 , 2 , 2
disc tH z z z z z z z z z z z

z z z z z z z z z z z

σ = + + + + +

+ + + + + +



, where 1z  and  

2z  are the eigenvalues of operator 1H . 

N). If 22 0B ε− < < , then the essential spectrum of the operator 2 1
tH  is con-

sists of a union of three segments:  

( ) [ ] [ ]
[ ]

2 1
3 3

4 4

4 24 ,4 24 3 18 ,3 18

3 18 ,3 18
ess tH A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



, and discrete 

spectrum of the operator 2 1
tH  is consists of empty set: ( )2 1

disc tHσ = ∅ . 

Proof. A). 1). From the Theorem 6 is follows, that, if 3ν =  and 2 Bε = −  

and 1 6Bε < −  (respectively, 2 Bε = −  and 1 6Bε > ), the operator 1H  has a 
unique eigenvalue 1z A ε= + , the outside the continuous spectrum of the oper-

ator 1H . Furthermore, the continuous spectrum of the operator 1H  is consists 
of the segment [ ]6 , 6A B A B− + , therefore, the essential spectrum of the opera-

tor 2
sH  is consists of a union of two segments:  

( ) [ ] [ ]2 2 12 ,2 12 6 , 6s
ess H A B A B A B z A B zσ = − + ∪ − + + + . The number 2z is the 

eigenvalue for the operator 2
sH . In the representation (18) and (21) the opera-

tor K is a two-dimensional operator. Therefore, the operator 2
sH  can have two 

additional eigenvalues 3z  and 4z . Consequently, the operator 2
sH  can have 

no more than three eigenvalues 32 ,z z  and 4z . 

2). From the Theorem 6 is follows, that, if 3ν =  and 2 Bε = −  and  
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16 2B Bε− ≤ < −  (respectively, 2 Bε = −  and 12 6B Bε< ≤ ), then the operator 
1H  has no eigenvalues, the outside the continuous spectrum of the operator 
1H . Furthermore, the continuous spectrum of the operator 1H  is consists of 

the segment [ ]6 , 6A B A B− + , therefore, the essential spectrum of the operator 

2
sH  is consists of a single segment: ( ) [ ]2 2 12 ,2 12s

ess H A B A Bσ = − +

. In the re-
presentation (18) and (21) the operator K is a two-dimensional operator. There-
fore, the operator 2

sH  can have two additional eigenvalues 3z  and 4z . Con-
sequently, the operator 2

sH  can have no more than two eigenvalues 3z  and 

4z . 
M). From the Theorem 6 is follows, that, if 3ν =  and 2 0ε >  and  

( )2
2 2

1

2 2
0

B

B

ε ε
ε

+
− < <  and 1

3
E Wα < + 

 
 (respectively, 2 2Bε < −  and  

( )2
2 2

1

2 2
0

B

B

ε ε
ε

+
− < <  and 1

3
E Wα < + 

 
), the operator 1H  has a exactly 

two eigenvalues 1z  and 2z , lying the below and above of the continuous spec-

trum of the operator 1H . Furthermore, the continuous spectrum of the opera-

tor 1H  is consists of the segment [ ]6 , 6A B A B− + , therefore, then the essen-

tial spectrum of the operator 2
sH  is consists of the union of three segments: 

( ) [ ] [ ]
[ ]

2 1 1

2 2

2 12 ,2 12 6 , 6

6 , 6

s
ess H A B A B A B z A B z

A B z A B z

σ = − + ∪ − + + +

∪ − + + +



, and point 1 22 , 2z z  

and 1 2z z+ , are the eigenvalues of the operator 1 1H I I H⊗ + ⊗  , and in the re-
presentation (18) and (21) the operator K is a two-dimensional operator. There-
fore, the operator 2

sH  can have two additional eigenvalues 3z  and 4z . Con-

sequently, the operator 2
sH  can have no more than five eigenvalues  

1 1 2 2 32 , , 2 ,z z z z z+  and 4z . 

The other statements of the Theorem 9 the analogously is proved.   
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