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Abstract 

Let m
nF  be a graph with n vertices and m edges. The sum of absolute value 

of all coefficients of matching polynomial is called Hosoya index. In this pa-
per, we determine 2nd to 4th minimum Hosoya index of a kind of tetracyclic 
graph, with 3m n= + . 
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1. Introduction 

The total number of matchings of agraph is a graphic invariant which is impor-
tant in structural chemistry. In the chemistry literature this graphic invariant is 
called the Hosoya index of a molecular graph. It was applied to correlations with 
boiling points, entropies, calculated bond orders, as well as for coding of chemi-
cal structures [1] [2] [3]. Therefore, the ordering of molecular graphs in terms of 
their Hosoya indices is of interest in chemical thermodynamics. Let  

( ) ( )( ),G V G E G=  be a graph with vertex ( ) { }1 2, , , nV G v v v=   and edge set 
( ) { }1 2, , , nE G e e e=  . 
The matching polynomial of G is defined as 

( ) ( ) ( ) 2

0
, 1 , ,k n k

k
G x m G k xµ −

≥

= −∑  

where ( ),m G k  the number of its k-matchings. It is convenient to denote 
( ),0 1m G =  and ( ), 0m G k =  for [ ]2k n> . Its theory is well elaborated [4] 

[5]. The Hosoya index of G, denoted by ( )Z G , is defined as the sum of all the 
numbers of its matchings, namely 

( ) ( )
0

, .
k

Z G m G k
≥

= ∑
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Let ,n mG  be the collection of connected simple graphs of order n and size m. 
Checking the structure of G in ,n mG , it is easy to see that if  

21, , 1, 2, 3, ,m n n n n n n n= − + + + − , then G contains at least 1m n− +  cycles. 
And these graphs is called unicyclic graphs, bicyclic graphs, tricyclic graphs, te-
tracyclic graphs,  , respectively. Liu et al. [6] determined the tetracyclic graphs 
has at least 4 cycles andat most 15 cycles but has no 9 cycles. 

The first chemical application of ( )Z G  was proposed in 1971 by a chemist 
Hosoya, which was used to describe the thermodynamic properties of saturated 
hydrocarbons. Wanger and Gutman [7] gave a summary of the Hosoya index of 
graphs. Hosoya index conducted important research on the progress of its re-
search. And Wanger [1] proved among all n-vertex, the path Pn has the maxi-
mum Hosoya index and the star Sn has the minimum Hosoya index. Ou [8] and 
[9] studied the unicyclic has the maximum and minimum Hosoya index. Deng 
[10] and [11] studied the bicyclic has the maximum and minimum Hosoya in-
dex. Huang et al. [12] give sharp bounds on the Hosoya index for connected 
graphs of fixed size. Liu et al. [13] determined the maximum Hosoya index of 
unicyclic graphs with n vertices and diameter 3 or 4. Their results somewhat 
answer a question proposed by Wagner and Gutman. In 2010 for unicyclic 
graphs with small diameter. Liu et al. [14] determined the maximum Hosoya 
index of tricyclic graphs and the correspond-ing extremal graphs. Li et al. [15] 
determined the minimum Hosoya index of tricyclic graphs and the correspond-
ing extremal graphs. 

In this paper, we are organized as follows. In Section 1, we present some pre-
liminaries and list of some previously known results about Hosoya indices of 
graphs. In Section 1, we determine the second fourth Hosoya indices of a kind of 
tetracyclic graph. In final section, we give a brief summary of this paper. 

2. Preliminaries 

In this section, we introduced some notations and definitions form traditional 
graph theory, not described here, we refer to [16]. We present some definitions 
and lemmas to prove the main results later. 

Let ( ) ( )( ),G V G E G=  be a simple connected graph with vertex set  
( ) { }1 2, , , nV G v v v=   and edge set ( ) { }1 2, , , nE G e e e=  . Let ,n mG  be the col-

lection of connected simple graphs of order n and size m. Checking the structure 
of G in ,n mG , it is easy to see that if 21, , 1, 2, 3, ,m n n n n n n n= − + + + − , then 
G contains at least 1m n− +  cycles. And these graphs is called unicyclic graphs, 
bicyclic graphs, tricyclic graphs, tetracyclic graphs,  . If ( )W V G⊂ , we de-
note by G W−  the subgraph of G obtained by deleting the vertices of W and 
the edges incident with them. Similarly, if ( )E E G⊂ , we denote by G E−  the 
subgraph of G obtained by deleting the edges of E. If { }W v=  and { }E xy= , 
we write G v−  and G xy−  instead of { }G v−  and { }G xy− , respectively. 
Denote the neighborhood of ( )v V G∈  by ( ) ( )GN v N v= ; and let  
[ ] ( ) { }N v N v v= ∪ . ( ) ( )G Gd v N v=  is vertex v of degree in G. Through out 
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the paper we denote by , , , ,n n n n nP C F T S  the n-vertex graph equals to the path, 
cycle, forest, tree, star, let nS +  be the graph obtained by two vertex attaching to 
two pedant vertex in nS , respectively. For two connected graphs 1 2,G G  with 
( ) ( ) { }1 2V G V G v∩ = , let 1 2G G vG=  be a graph defined by  
( ) ( ) ( )1 2V G V G V G= ∪ , ( ) ( ) { }1 2V G V G v∩ = , ( ) ( ) ( )1 2E G E G E G= ∪ . 
In the following we introduce some graph transformation which does not in-

crease the Hosoya index of a graph. 
Lemma 2.1. ([14]) The Hosoya index of a graph satisfies the following identi-

ties: 
(i) If ( )v V G∈ . Then 

( ) ( ) ( ) ( ).
Gu N

Z G Z G v v Z G u v
∈

= − + − −∑
 

(ii) If ( )uv E G∈ . Then 

( ) ( ) ( ).Z G Z G uv Z G u v= − + − −  
(iii) If 1 2, , , kG G G  are the connected components of a graph G. Then 

( ) ( )
1

.
k

i
i

Z G Z G
=

=∏
 

Definition 2.1. Suppose that ( )uv E G∈ , ( ) { }1 2, , , ,G sN u v w w w=  , where 
( ) ( )1 1id w i s= ≤ ≤ . Let { } { }*

1 2 1 2, , , , , ,s sG G uw uw uw vw vw vw= − +   as  
shown in Figure 1. We designate the transformation from G to ( )* 1, 2iG i =  in 
Figure 1 as of type I. 

Lemma 2.2. [10] Let G and *G  be two graphs with n vertices defined in De-
finition 2.1. Then ( ) ( )*Z G Z G> . 

Definition 2.2. Let H, X and Y be three connected graphs. Suppose that u, v 
are two vertices of H, v' is a vertex of X, u' is a vertex of Y. Let G be the graph 
obtained from H, X, Y by identifying v with v' and u with u', respectively. Let 

*
1G  be the graph obtained from H, X and Y by identifying vertices v, v' and u', 

and let *
2G  be the graph obtained from H, X and Y by identifying vertices u, v' 

and u', see Figure 2. We designate the transformation from G to ( )* 1, 2iG i =  
in Figure 2 as of type II. 

Lemma 2.3. [18] Let *
1G  and *

2G  be three graphs with n vertices defined in 
Definition 2.2. Then ( ) ( )*

1Z G Z G>  or ( ) ( )*
2Z G Z G> . 

Definition 2.3. Let G0 be a non-trivial connected graph and ( )0 0u V G∈ . 
Assume that 3H C≅  and ( ),u v V H∈ . Suppose that ( )0 0G G u u H= =  .  

 

 
Figure 1. Graphs *,G G . 
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Suppose that T is a star tree of order n, whose center vertex is w. If  
( )1G G u w T= =  , 2G G v w T= =  , we designate the transformation 

from G1 to G2 in Figure 3 as of type III. 
Lemma 2.4. [17] Let G1 and G2 be three graphs with n vertices defined in De-

finition 2.3. Then ( ) ( )1 2Z G Z G< . 
Definition 2.4. Let G be a graph with k vertices, and let ( )1 2, , , 3k kP x x x k= ≥  

be a path in ( ) ( )2 1,2, , 1
iG xd i k= = − . Let *G  be a graph of order n is ob-

tained from G by deleting 2 3x x  and adding 1 3x x , see Figure 4. We designate 
the transformation from G to *G  in Figure 4 as of type IV. 

Lemma 2.5. [18] Let G and *G  be two graphs with n vertices defined in De-
finition 2.4. Then ( ) ( )*Z G Z G> . 

Lemma 2.6. [19] Let G be a graph, and let ( ),u v V G∈ . Suppose that ,s tG  be 
a graph obtained from G by attaching ,s t  pendant vertices to v and u, respec-
tively. Then 

( ) ( ) ( ) ( ), , , ,,1 ; ,1 .s i t i s t s i t i s tZ G Z G i t Z G Z G i s+ − − +< ≤ ≤ < ≤ ≤
 

3. The Minimum Hosoya Index of a Kind of Tetracyclic Graph 

Pan [20] determined the minimum Hosoya index among all graphs of n vertices  
 

 
Figure 2. Graphs * *

1 2, ,G G G . 
 

 
Figure 3. Graphs 1 2,G G . 

 

 
Figure 4. Graphs *,G G . 
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and m edges, where 3 2 3n m n+ ≤ ≤ − . In the paper, we characterize the 2nd to 
4th minimum Hosoya index of a kind of tetracyclic Graph, with 3m n= + . 

The following a kind of tetracyclic graphs and extremal graph defined as fol-
lows: 

- , , , 1, 0p q m l r≥ ≥ , let ( )3 , , , ,n
nF p q r m l+  be the graph consisting of two giv-

en vertices joined by five disjoint paths whose order are , , , ,p q r m l , respective-
ly, where , , , , 0p q r m l ≥  and most one of them is 0. The resulting graph can be 
seen in Figure 5. 

- 7n ≥ , Let ( )*
3 1,1,0,1,1, 6nF n+ −  be the graph obtained by adding 6n −  

pendent vertices to one of two vertices of degree 4 in Figure 5. 
Theorem 3.1. [20] Let 3n

nG +∈F  be a tetracyclic graph with ( )7n n ≥  ver-
tices. ( ) ( )( )*

3 1,1,0,1,1, 6 5 8nZ G Z F n n+≥ − = − . 

We Determine 2nd to 4th Minimum Hosoya Index of a Kind of  
Tetracyclic Graph 

By Theorem 3.1 and Lemmas 2.2, 2.3, 2.4 and 2.5, we can obtain a fact as follows. 
Let ( ){ }3 *

3 1,1,0,1,1, 6n
n nG F n+

+∈ − −F  with n vertices. By repeated applica-
tions of transformations I, II, III and IV presented in Definitions 2.1, 2.2, 2.3 and 
2.4, respectively. We can transform G into ( )*

3 1,1,0,1,1, 6nF n+ − . That is, there 
exist graphs ( )iG  for 0 i l≤ ≤  such that 

0G G=  ↪ 1G  ↪ 2G  ↪   ↪ 1lG −  ↪ ( )*
3 1,1,0,1,1, 6 ,l

nG F n+= −   (1) 

where ( ) ( )1 *
3 1,1,0,1,1, 6l

nG F n−
+≠ − . This implies that ( )1lG −  has six possible 

structures, see Figure 6. 
Lemma 3.1. Let ( )1 ,A s t  be a graph with 6n s t= + +  vertices. If  

8, 1, 1n s t≥ ≥ ≥ , in ( )1 ,A s t . Then ( )( )1 , 6 15Z A s t n≥ − , where the equality 
holds if and only if ( ) ( )1 1, 1, 7A s t A n≅ − . 

Proof. By lemma 2.1 and 2.6, we have,  
( )( ) ( )( ) ( )( )1 1 1, 1, 7 7,1 6 15Z A s t Z A n Z A n n≥ − = − = − ,  
( )( ) ( )( ) ( )( )1 1 1, 2, 8 8,2 7 24Z A s t Z A n Z A n n≥ − = − = − . So  
( )( ) ( )( ) ( )( )1 1 1, 1, 7 7,1 6 15Z A s t Z A n Z A n n≥ − = − = − . 

Lemma 3.2. Let ( )2 ,A s t  be a graph with 6n s t= + +  vertices. If  
8, 1, 1n s t≥ ≥ ≥ , in ( )2 ,A s t . Then ( )( )2 , 9 27Z A s t n≥ − , where the equality  

 

 
Figure 5. Graphs ( ) ( )3 *

3, , , , , 1,1,0,1,1, 6n
n nF p q r m l F n+

+ − . 
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Figure 6. Graphs ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6, , , , 6 , 7 , 7 , ,A s t A s t A n A n A n A s t− − − . 

 
holds if and only if ( ) ( )2 2, 7,1A s t A n≅ − . 

Proof. By lemma 2.1 and 2.6, we have, ( )( ) ( )( )2 2, 7,1 9 27Z A s t Z A n n≥ − = −  
or ( )( ) ( )( )2 2, 1, 7 17 92Z A s t Z A n n≥ − = − . So  

( )( ) ( )( ) ( )( )2 1 2, 1, 7 7,1Z A s t Z A n Z A n≥ − > − . 
Lemma 3.3. Let ( )6 ,A s t  be a graph with 7n s t= + +  vertices. If  

9, 0, 1n s t≥ ≥ ≥ , in ( )6 ,A s t . Then ( )( )6 , 17 33Z A s t n≥ − , where the equality 
holds if and only if ( ) ( )6 6, 8,1A s t A n≅ − . 

Proof. By lemma 2.1 and 2.6, we have,  
( )( ) ( )( )6 6, 8,1 17 33Z A s t Z A n n≥ − = −  or  
( )( ) ( )( )6 6, 0, 7 18 99Z A s t Z A n n≥ − = − . So  
( )( ) ( )( ) ( )( )6 6 6, 0, 7 8,1Z A s t Z A n Z A n≥ − > − . 

Theorem 3.2. Let 3n
nG +∈F  with 7n ≥  vertices. Then  

( ) 6 10 6 11 6 15Z G n n n≥ − > − > − , where the equality holds if and only if  
( )1 1, 7G A n≅ − . 

Proof. By lemma 2.1 and 2.6, we have, ( )( )3 6 12 61Z A n n− = − ,  
( )( )4 7 6 11Z A n n− = −  and ( )( )5 7 6 10Z A n n− = − . Combing Theorem 3.1,  

Lemmas 3.1, 3.2 and 3.3, (1) and arguments as above, we get that  
( ) 6 10 6 11 6 15Z G n n n≥ − > − > − . 
Now we characterize the extremal graphs with the third minimal Hosoya in-

dex in 3n
n

+F  By (1), we know that the extremal graphs with the third minimal 
Hosoya index will be yielded in ( )1lG −  or ( )2lG − . By the reverse operations of I, 
II, III and IV, we determine the structures of graphs ( ) ( )1 4, , 7A s t A n −  and 

( )5 7A n −  in ( )2lG − . And we also determine the lower bounds of Hosoya indic-
es of these graphs. 

By the reverse operations of I, II, III and IV, we can obtain that the structures 
of graphs ( )1 ,A s t  in ( )2lG −  is isomorphic to one of graphs ( )1

1 , ,A s t u ,  
( )2

1 ,A s t  ( )3
1 ,A s t , ( )4

1 ,A s t  and ( )5
1 , ,A s t u , see Figure 7. 

Lemma 3.4. Let ( )1
1 , ,A s t u  be a graph with 6n s t u= + + +  vertices. If 

9, 1, 1n s t≥ ≥ ≥  and 1u ≥ . Then ( )( )1
1 , , 11 40Z A s t u n≥ − , where the equality  
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Figure 7. Graphs ( )1

1 , ,A s t u , ( )2
1 ,A s t  ( )3

1 ,A s t , ( )4
1 ,A s t , ( )5

1 , ,A s t u . 
 

holds if and only if ( ) ( )1 1
1 1, , 1, 8,1A s t u A n≅ −  or ( )1

1 8,1,1A n − . 
Proof. Assume that two of s,t and u are equal to 1 in ( )1

1 , ,A s t u . By Lemma 
2.6, ( )( )1

1 1, 8,1 11 40Z A n n− = − , ( )( )1
1 8,1,1 11 40Z A n n− = − ,  

( )( )1
1 1,1, 8 22 143Z A n n− = − . 

Assume that at most one of s,t and u are equal to 1 in ( )1
1 , ,A s t u . By Lemma 

2.6, we get that 
( )( )

( ) ( ) ( )

1
1 , , 5 10 4 3 30

3 6 4 6 4 30

Z A s t u n u st tu su stu

s u u t st u st

= + + + + + −

= − + − + + + −
. Suppose that  

( )
( ) ( ) ( )
, , 5 10 4 3 30 11 40

3 6 4 6 4 28

f s t u n u st tu su stu n

s u u t st u st

= + + + + + − − +

= − + − + + + +
. If 1, 2s u= ≥  and  

2t ≥ , then ( ) ( ), , 5 5 7 28 0f s t u t u u= − + + > . If 1, 2u t= ≥  and 2s ≥ , then 

( ) ( ), , 2 3 2 32 0f s t u s t t= − + + > . If 1, 2t s= ≥  and 2u ≥ , then  

( ) ( ), , 4 5 8 22 0f s t u s u u= − + + > . By arguments as above, we have  

( )( )1
1 , , 11 40Z A s t u n≥ − . where the equality holds if and only if  

( ) ( )1 1
1 1, , 1, 8,1A s t u A n≅ −  or ( )1

1 8,1,1A n − . 

Lemma 3.5. Let ( )3
1 ,A s t  be a graph with 7n s t= + +  vertices. If  

8, 1, 1n s t≥ ≥ ≥ , in ( )3
1 ,A s t . Then ( )( )3

1 , 10 40Z A s t n≥ − , where the equality 
holds if and only if ( ) ( )3 3

1 1, 1, 8A s t A n≅ −  or ( )3
1 8,1A n − . 

Proof. By lemma 2.1 and 2.6, we have,  
( )( ) ( )( )3 3

1 1, 8,1 10 40Z A s t Z A n n≥ − = −  or  
( )( ) ( )( )3 3

1 1, 1, 8 10 40Z A s t Z A n n≥ − = − . So ( )( )3
1 , 10 40Z A s t n≥ − , where the 

equality holds if and only if ( ) ( )3 3
1 1, 1, 8A s t A n≅ −  or ( )3

1 8,1A n − . 
Lemma 3.6. Let ( )4

1 ,A s t  be a graph with 7n s t= + +  vertices. If  
8, 1, 1n s t≥ ≥ ≥ , in ( )4

1 ,A s t . Then ( )( )4
1 , 7 19Z A s t n≥ − , where the equality 

holds if and only if ( ) ( )4 4
1 1, 1, 8A s t A n≅ −  or ( )4

1 8,1A n − . 
Proof. By lemma 2.1 and 2.6, we have, ( )( ) ( )( )4 4

1 1, 8,1 7 19Z A s t Z A n n≥ − = −  
or ( )( ) ( )( )4 4

1 1, 1, 8 7 19Z A s t Z A n n≥ − = − . So ( )( )4
1 , 7 19Z A s t n≥ − , where the 

equality holds if and only if ( ) ( )4 4
1 1, 1, 8A s t A n≅ −  or ( )4

1 8,1A n − . 
Lemma 3.7. Let ( )5

1 , ,A s t u  be a graph with 7n s t u= + + +  vertices. If  
10, 0, 0n s t≥ ≥ ≥  and 0u ≥ . then ( )( )5

1 , , 9 27Z A s t u n≥ − , where the equality 
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holds if and only if ( ) ( )5 5
1 1, , 1, 7,0A s t u A n≅ − . 

Proof. By lemma 2.1 and 2.6, firstly, 0, 0, 0s t u≥ ≥ ≥ , we need to discuss the 
following two cases: assume that at most one of s,t and u are equal to 1 in  

( )5
1 , ,A s t u , has three subcases: 
(I) If 0, 1s t= =  or 1u = , 
(i) ( )( ) ( )( )5 5

1 1, , 0,1, 8 22 179Z A s t u Z A n n≥ − = − , 
(ii) ( )( ) ( )( )5 5

1 1, , 0, 8,1 19 117Z A s t u Z A n n≥ − = − . 
(II) If 0, 1u t= =  or 1s = , has two subcases: 
(i) ( )( ) ( )( )5 5

1 1, , 0,1, 7 6 15Z A s t u Z A n n≥ − = − , 
(ii) ( )( ) ( )( )5 5

1 1, , 8,0,1 6 15Z A s t u Z A n n≥ − = − . 
(III) If 0, 1t s= =  or 1u = , has two subcases: 
(i) ( )( ) ( )( )5 5

1 1, , 1,0, 8 18 56Z A s t u Z A n n≥ − = − , 
(ii) ( )( ) ( )( )5 5

1 1, , 8,0,1 17 33Z A s t u Z A n n≥ − = − . 
Assume that two of s,t and u are equal to 1 in ( )5

1 , ,A s t u , has three subcases: 
(i) ( )( ) ( )( )5 5

1 1, , 1,1, 9 26 186Z A s t u Z A n n≥ − = − , 
(ii) ( )( ) ( )( )5 5

1 1, , 1, 9,1 27 159Z A s t u Z A n n≥ − = − . 

(iii) ( )( ) ( )( )5 5
1 1, , 9,1,1 21 156Z A s t u Z A n n≥ − = − . 

Theorem 3.3. Let 3n
nG +∈F  with 7n ≥  vertices. Then  

( ) 7 19 6 10 6 11 6 15Z G n n n n≥ − > − > − > − . 
Proof. By lemma 2.1 and 2.6, we have,  

( )( ) ( )( ) ( )( )2
1 2 2, , 1, 7 9 27Z A s t Z A s t Z A n n= ≥ − = − , Combing Theorem 3.1, 3.2, 

Lemmas 3.4, 3.5, 3.6, 3.7, (1) and arguments as above, we get that  
( ) 7 19 6 10 6 11 6 15Z G n n n n≥ − > − > − > − . 
Similary, by repeated applications of transformations I, II, III and IV, we are 

considering ( )3 7A n − . This implies that ( )2lG −  has six possible structures, see 
Figure 8. 

Lemma 3.8. Let ( )2
3 ,A s t  be a graph with 7n s t= + +  vertices. If  

9, 1, 1n s t≥ ≥ ≥ , in ( )2
3 ,A s t . Then ( )( )2

3 , 11 45Z A s t n≥ − , where the equality  
 

 
Figure 8. Graphs ( )1

3 ,A s t , ( )2
3 ,A s t  ( )3

3 7A n − , ( )4
3 8A n − , ( )5

3 8A n − , ( )6
3 ,A s t . 
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holds if and only if ( ) ( )2 2
3 3, 8,1A s t A n≅ − . 

Proof. By lemma 2.1 and 2.6, we have,  

( )( ) ( )( )2 2
3 3, 8,1 11 45Z A s t Z A n n≥ − = −  or  

( )( ) ( )( )2 2
3 3, 1, 8 14 75Z A s t Z A n n≥ − = − . So  

( )( ) ( )( ) ( )( )2 2 2
3 3 3, 1, 8 8,1Z A s t Z A n Z A n≥ − > − . 

Lemma 3.9. Let ( )6
3 ,A s t  be a graph with 8n s t= + +  vertices. If  

10, 0, 1n s t≥ ≥ ≥ , in ( )6
3 ,A s t . Then ( )6

3 , 9 30A s t n≥ − , where the equality holds 
if and only if ( ) ( )6 6

3 3, 9,1A s t A n≅ − . 
Proof. By lemma 2.1 and 2.6, we have, ( )( ) ( )( )6 6

3 3, 9,1 9 30Z A s t Z A n n≥ − = −  
or ( )( ) ( )( )6 6

3 3, 0, 8 31 236Z A s t Z A n n≥ − = − . So  
( )( ) ( )( ) ( )( )6 6 6

3 3 3, 0, 8 9,1Z A s t Z A n Z A n≥ − > − . 
Theorem 3.4. Let 3n

nG +∈F  with 11n ≥  vertices. Then  
( ) 9 30 7 19 6 10 6 11 6 15Z G n n n n n≥ − > − > − > − > − . 
Proof. By lemma 2.1 and 2.6, we have, ( )( ) ( )( )1 3

3 1, , 10 40Z A s t Z A s t n= ≥ − , 
( )( )3

3 7 12 45Z A n n− = − , ( )( )4
3 8 14 53Z A n n− = − , ( )( )5

3 8 11 35Z A n n− = − , 
Combing Theorem 3.1, 3.2, 3.3, Lemmas 3.8, 3.9, (1) and arguments as above, we 
get that ( ) 9 30 7 19 6 10 6 11 6 15Z G n n n n n≥ − > − > − > − > − . 

Similary, by repeated applications of transformations I, II, III and IV, we are 
considering ( )4 7A n − . This implies that ( )2lG −  has six possible structures, see 
Figure 9. 

Lemma 3.10. Let ( )2
4 ,A s t  be a graph with 7n s t= + +  vertices. If  

9, 1, 1n s t≥ ≥ ≥ , in ( )2
4 ,A s t . Then ( )( )2

4 , 8 14Z A s t n≥ − , where the equality 
holds if and only if ( ) ( )2 2

4 4, 8,1A s t A n≅ − . 
Proof. By lemma 2.1 and 2.6, we have, ( )( ) ( )( )2 2

4 4, 8,1 8 14Z A s t Z A n n≥ − = −  

or ( )( ) ( )( )2 2
4 4, 1, 8 11 52Z A s t Z A n n≥ − = − . So  

( )( ) ( )( ) ( )( )2 2 2
4 4 4, 1, 8 8,1Z A s t Z A n Z A n≥ − > − . 

Lemma 3.11. Let ( )6
4 ,A s t  be a graph with 8n s t= + +  vertices. If  

 

 
Figure 9. Graphs ( )1

4 ,A s t , ( )2
4 ,A s t  ( )3

4 7A n − , ( )4
4 8A n − , ( )5

4 8A n − , ( )6
4 ,A s t . 
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10, 0, 1n s t≥ ≥ ≥ , in ( )6
4 ,A s t . Then ( )6

4 , 11 37A s t n≥ − , where the equality 
holds if and only if ( ) ( )6 6

4 4, 9,1A s t A n≅ − . 
Proof. By lemma 2.1 and 2.6, we have,  

( )( ) ( )( )6 6
4 4, 9,1 11 37Z A s t Z A n n≥ − = −  or  

( )( ) ( )( )6 6
4 4, 0, 8 24 154Z A s t Z A n n≥ − = − . So  

( )( ) ( )( ) ( )( )6 6 6
4 4 4, 0, 8 9,1Z A s t Z A n Z A n≥ − > − . 

Theorem 3.5. Let 3n
nG +∈F  with 7n ≥  vertices. Then  

( ) 9 30 7 19 6 10 6 11 6 15Z G n n n n n≥ − > − > − > − > − . 
Proof. By lemma 2.1 and 2.6, we have, ( )( ) ( )( )1 4

4 1, , 7 19Z A s t Z A s t n= ≥ − , 
( )( )3

4 7 16 73Z A n n− = − , ( )( )4
4 8 10 31Z A n n− = − , ( )( )6

4 8 11 35Z A n n− = − , 
Combing Theorem 3.1, 3.2, 3.3, 3.4, Lemmas 3.10, 3.11, (1) and arguments as 
above, we get that  
( ) 9 30 8 14 7 19 6 10 6 11 6 15Z G n n n n n n≥ − > − > − > − > − > − . 
Theorem 3.6. Let 3n

nG +∈F  with 7n ≥  vertices. Then  

( ) ( )( ) ( )( )
( )( ) ( )( )

4 5

*
1 3

6 10 7 6 11 7 6 15

1, 7 5 8 1,1,0,1,1, 6n

Z G n Z A n n Z A n n

Z A n n Z F n+

≥ − = − > − = − > −

= − > − = −
. 

4. Conclusions 

Combing Theorem 3.1, 3.2, 3.3, 3.4, 3.5 we obtain. 
Let 3n

nG +∈F  with 7n ≥  vertices. Then  
( ) ( )( ) ( )( )

( )( ) ( )( )
4 5

*
1 3

6 10 7 6 11 7 6 15

1, 7 5 8 1,1,0,1,1, 6n

Z G n Z A n n Z A n n

Z A n n Z F n+

≥ − = − > − = − > −

= − > − = −
. In this paper,  

we determine the second to fourth minimal Hosoya indices in a kind of tetracyc-
lica graph. This method has not been cited yet, and it is innovative in terms of 
method. Using this method can solve other graphics and knowledge in the field 
of graph theory, so promoting the development of graph theory research, re-
spectively. Some new topological indicators in graph theory are closely related to 
hosoya indicators, laying the foundation for these studies. 
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