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Abstract 
In the present paper, the establishment of a systematic multi-barycenter me-
chanics is based on the multi-particle mechanics. The new theory perfects the 
basic theoretical system of classical mechanics, which finds the law of mutual 
interaction between particle groups, reveals the limitations of Newton’s third 
law, discovers the principle of the intrinsic relationship between gravity and 
tidal force, reasonably interprets the origin and change laws for the rotation 
angular momentum of galaxies and stars and so on. By applying new theory, 
the multi-body problem can be transformed into a special two-body problem 
and for which an approximate solution method is proposed, the motion law 
of each particle can be roughly obtained. 
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1. Introduction 

In the basic theory of mechanics, there are some branches, such as the particle 
mechanics, the multi-particle mechanics, mechanics of rigid bodies, analytical 
mechanics and so on. It seems that there are no basic principles and laws that 
need to be supplemented. But classical mechanics has only studied the interac-
tions between particles, and has made almost no theoretical study of the interac-
tions between groups of particles. As a result, classical mechanics is ambiguous, 
one-sided and even contradictory when analyzing the phenomenon of interac-
tion between groups of particles, which restricts the development of astrophysics, 
solar physics, geophysics and other disciplines. 
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For instance, the origin of the angular momentum of galactic rotation is 
thought to be caused by the tidal force of the galaxies and surrounding celestial 
bodies [1] [2], whereas the origin of the angular momentum of the rotation of 
the stars in the solar system is a sensitive issue that has been evaded by various 
related professional books and literature [3] [4] [5] [6] [7], since tidal forces are 
thought to be responsible for slowing down the Earth’s rotation [8] [9] [10]. The 
force of interaction between celestial bodies is gravitational and obeys Newton’s 
third law; gravitation is always considered to pass through the center of mass of 
an object, so how can a force that passes through the center of mass of an object 
cause a change in the object’s rotation? Is it complete to analyze the interactions 
between celestial bodies by tidal forces, which are merely a component force of 
gravitation? 

Newtonian mechanics effectively solves the two-body problem, but is helpless 
in the multi-body problem, can an effective approximate solution method be 
proposed? Why are galaxies universally disk-shaped? Why are the orbits of a 
large number of stars within galaxies generally conical? Why do the stars within a 
galaxy all rotate in the same direction? Why are the directions of rotational angu-
lar momentum and angular velocities of the stars within a galaxy so different? 
These important questions cannot be effectively addressed within the framework 
of existing classical mechanics. 

In order to satisfactorily solve all the issues raised above, this paper will 
comprehensively and in-depth study the laws of mechanics for n particle groups in a 
system ( 2 n≤ < ∞ ), that is to establish a new branching system: multi-barycenter 
mechanics. 

In this paper we use bolded italicized letters to denote vectors, e.g., r  for a 
position vector, M  for a force moment or a force moment of couple, and J  
for an angular momentum or a momentum moment of couple. If not otherwise 
stated, all mechanics systems we study are in an inertial frame. 

2. Multi-Barycenter Mechanics (1) 

Before studying the multi-barycenter mechanics, we need to research the 
translation principle for a vector system. 

If position vectors of vectors P  and Q  about a fixed point O are Pr  and 

Qr  respectively, and 

,PQ Q P QPPQ QP= = − = − = −r r r r
 

 

then the vector moments of P  and Q  about O are P ×r P  and Q ×r Q  
severally. If P  and Q  are equal in magnitude and opposite in direction, then 
they are a vector moment of couple QP ×r P  which has nothing to do with the 
reference point. 

Vector is a quantity which has magnitude and direction. By its definition, a 
vector does not change its size and direction when it is translated arbitrarily in a 
coordinate system, that is, the vector does not change. Due to the existence of 
the vector moment, the translational displacements of the vector will make a 
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change to its vector moment about a reference point. So, in general, a vector can 
not be arbitrarily translated in a coordinate system. While a vector moment of 
couple has nothing to do with a reference point, it can be arbitrarily translated in 
a coordinate system. 

In the study of mechanics, sometimes we need to move vectors parallelly. 
Such as in Figure 1, at a certain moment, we shift P  from the point B to the 
point A parallelly, relative to a fixed point O, B A AB= +r r r , so 

B A AB× = × + ×r P r P r P                          (1) 

The meaning of Equation (1) is that at any moment, the vector P  at the 
point B is translated to the point A parallelly, its vector moment about O is 
changed from B ×r P  to A ×r P , that is to say, a vector moment of couple 

AB ×r P  no relation with O is reduced. In order not to change the translation 
effect of P , it is needed to add AB ×r P . 

Some vectors are related to the movement of the reference point, such as the 
linear momentum; if a vector P  has nothing to do with the reference point 
movement, the point O can be selected arbitrarily. 

If at any time vectors 1 2, , , nP P P  at points 1 2, , , nB B B  were translated 
parallelly to points 1 2, , , nA A A  respectively, in order not to change the 
translation effect, according to Equation (1), the vector moment of 1 2, , , nP P P  
about any fixed point O needs to be added a vector moment of couple  

1
i

n

AB i
i=

×∑ r P . Since we often shift a vector system parallelly to a point such as the  

center of mass, then propose Theorem 1: 
Theorem 1. If vectors 1 2, , , nP P P  at points 1 2, , , nB B B  are translated 

parallelly to a point A at any time, in order not to change the translation effect, 
the total vector moment of 1 2, , , nP P P  relative to any fixed point O needs to  

add a vector moment of couple 
1

i

n

AB i
i=

×∑ r P . 

Similar to the previous analysis, the proof of Theorem 1 is not difficult, 
readers could try it on their own. 

Theorem 1 is universally applicable to every vector, for example, both a force 
and a linear momentum are vectors, and their translational principles can be 
acquired directly. 

Translation principle for a force system. If forces 1 2, , , nF F F  at points 
 

 

Figure 1. Translate a vector. 
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1 2, , , nB B B  are translated parallelly to a point A at any time, in order not to 
change the mechanical effect, the total force moment of 1 2, , , nF F F  about any  

fixed point O needs to add a force moment of couple 
1

i

n

AB i
i=

′ = ×∑M r F . 

Translation principle for a linear momentum system. If linear momentums 

1 2, , , nP P P  at points 1 2, , , nB B B  are translated parallelly to a point A at any 
time, in order not to change the mechanical effect, the total angular momentum 
of 1 2, , , nP P P  about any fixed point O needs to add a momentum moment of  

couple 
1

i

n

AB i
i=

′ = ×∑J r P . 

Translation principle for a force system can be implemented to the  
multi-particle mechanics. If there is a system of particles 1 2, , , nP P P  with masses 

1 2, , , nm m m , linear momentums are ( ) ( ) ( )1 2, , , nt t tP P P , position vectors are 
( ) ( ) ( )1 2, , , nt t tr r r  about a fixed point O and 
( ) ( ) ( )

1 2
, , ,

nC C Ct t tr r r  about the center of mass severally. The position vector 
of the barycenter C about O is ( )C tr , so 

ii C C= +r r r , ( 1,2, ,i n=  ). Set the 
resultant external force acting on the i-th particle is iF , at some moment iF  
are translated parallelly to the center of mass C, according to the translation 
principle for a force system the total torque of iF  about O need to increase a  

moment of couple 
1

i

n

C i
i=

′ = ×∑M r F . Let the resultant force of iF  translated to  

the center of mass is CF , so the motion equation of the barycenter is: 

1

n

C i C
i

m
=

= =∑r F F                         (2) 

where 1 2 nm m m m= + + + . 
The reason why we propose the translation principle of a linear momentum 

system is that the movement law of a barycenter is the variation law of the 
barycenter’s linear momentum, which is each particle linear momentum 
translated parallelly to the center of mass. The angular momentum of the system  

in the zero momentum frame is 
1

i

n

C i
i=

′ = ×∑J r P , relative to any fixed point O in  

an inertial frame, it is ′J  plus the angular momentum of the barycenter about 
O. 

If there are nS interacting particles in a mechanics system, it can be studied as 
a particle group which has a center of mass or n particle groups which have n 
barycenters, so the multi-barycenter mechanics and the multi-particle mechanics 
are not only independent but internal unity. Set numbers of particles in each 
particle group are 1 2, , , nn n n  respectively, namely: 

1 2S nn n n n= + + +                         (3) 

Let the total mass of the i-th particle group is im , ( 1,2, ,i n=  ), the j-th 
particle in the i-th particle group has mass 

jim , its position vector about a fixed 
point O is 

jir , then the position vector 
iCr  of the barycenter iC  of the i-th 

https://doi.org/10.4236/jamp.2023.1110209


H. L. Zhu 
 

 

DOI: 10.4236/jamp.2023.1110209 3255 Journal of Applied Mathematics and Physics 
 

particle group satisfy 

1 1

1

i i

j j j j

i i

j

n n
i i i ij j

C n
iij

m m

mm
= =

=

= =
∑ ∑
∑

r r
r  

Namely 

1

i

i j j

n

i C i i
j

m m
=

= ∑r r                        (4) 

Because there are n barycenters in the system, we call such a mechanics 
system a barycenter group. The total mass of nS particles in the mechanical 
system is m, the position vector of the total barycenter C about O is Cr , then 

1 1

1

1

1

=
i

j j i

i

j

n n n
i i i Cj

C n n
ij

i i

i

m m
mm

== =

= =

=
∑ ∑ ∑
∑ ∑

r r
r  

So 

1 1 1

i

i j j

nn n

C i C i i
i i j

m m m
= = =

= =∑ ∑∑r r r                    (5) 

First we study the simplest kind of barycenter group, in which there are only 
two particle groups and a particle group consisting of only one particle. The 
mutual interactions between the particles satisfy Newton’s third law and 
Theorem 2 is proposed as follows. 

Theorem 2. There are n particles in a barycenter group ( 2n ≥ ). The 
interaction rule for an arbitrary particle A with the particle group B consisting of 
the rest particles is: the resultant forces of the mutual interaction between A and 
the centre of mass of B are equal in magnitude, opposite in direction and 
effecting a force moment of couple ZM . ZM  and BAM , which A acts upon B 
about its barycenter CB, are equal in magnitude and opposite in direction. 

Proof. The mutual interactions between particles of B are the internal forces 
of B, the mutual interactions between A and any particle of B are the external 
forces of B. Set the force that the i-th particle of B acts upon A is Aif , the force that 
A acts upon the i-th particle of B is iAf . Aif  and iAf  are equal in magnitude, 
opposite in direction and along the straight line joining the two particles, 
( 1,2, , 1i n= − ), namely 

Ai iA= −f f                             (6) 

So the resultant external force which particle group B acts upon A and the 
resultant external force which A acts upon the particle group B satisfy 

1 1

1 1

n n

Ai iA
i i

− −

= =

= −∑ ∑f f                         (7) 

As A is a mass point, so the resultant external force AF  which B acts upon it 
is 

1

1

n

A Ai
i

−

=

= ∑F f  
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According to the translation principle for a force system, translating iAf  
parallelly to the barycenter CB of B, the translation effect not only produces a 
resultant force BF , and produces a moment of couple BAM : 

1

,
B

n

BA C i iA
i=

= ×∑M r f                         (8) 

where 
BC ir  is the position vector of the i-th particle about CB, distinctly BAM  is 

equal to the torque which A acts upon B about CB, and 
1 1

1 1

n n

A Ai iA B
i i

− −

= =

= = − = −∑ ∑F f f F  

So 

A B= −F F                           (9) 

Namely AF  and BF  are equal in magnitude and opposite in direction. 
Usually AF  and BF  are not in the same straight line and produce a moment of 
couple 

BZ AC B= ×M r F , so the total torque acting upon the system is Z BA+M M . 
The barycenter group composed of A and B can be regard as a particle group D 
consisting of n particles, since the mutual interactions between n particles belong 
to the internal forces of D, so about any fixed point O, the total torque generated 
by internal forces is zero, then regardless of whether the system is isolated, we 
have 

0Z BA+ ≡M M                        (10) 

So Theorem 2 is proved. ZM  and BAM  are generally changing over time, 
but Equation (10) hold eternally.                                       

According to Theorem 2, in general, a mass point has a force and torque effect 
on a mass point group. To describe the mechanical effect more clearly and 
succinctly, it can be reduced to a force acting on the center of mass and a force 
moment of couple acting on the mass point group. The force will change the 
motion state of the center of mass and the force moment of couple will change 
the rotation state of the mass point group. 

Here is a typical case to illustrate Theorem 2, in Figure 2 the mass of three 
particles P, Q and S are all m, the mutual interaction is their gravitation. Set P 
and Q form a particle group B, G is the gravitational constant, the resultant force  

2
22 11

5 5 5 5S x y
Gm Gm  

= + + 
 

F e e  acting upon S is not along the straight line  

joining S and the centre of mass of B obviously, namely 0Z ≠M , we get 
0BS ≠M  by Equation (10). So the interaction which S exerts on B are force and 

torque at the same time. 
Below we further analyze BAM , set 

( )B BiA i iA C iA i Cm m′ = − = −f a a f r  

where 
BCa  is the accelerated speed of CB, iAa  is the accelerated speed of the 

i-th particle in B which subjected to iAf , so 
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Figure 2. Three particles form a barycenter group. 
 

BiA iA i Cm′= +f f r                           (11) 

For 
1

0
B

n

i C i
i

m
=

=∑ r , according to Equation (8) 

1 1 1
B B B B

n n n

BA C i iA C i iA C i C i
i i i

m
= = =

′= × = × − ×∑ ∑ ∑M r f r f r r  

We get 

1 1
B B

n n

BA C i iA C i iA
i i= =

′= × = ×∑ ∑M r f r f                  (12) 

If the mutual interaction between the particles is gravitation, iA′f  is the tidal 
force which A acts upon the i-th particle in the particle group B, Equation (12) 
explains the force moment of couple which A acts upon B is equal to the total 
torque which A acts upon each particle in B about the center of mass CB and 
equals the total torque of tidal force which A acts upon each particle in B about 
CB. 

According to Theorem 2, we can propose Theorem 3: 
Theorem 3. There are n particle groups in a barycenter group, the interaction 

rule between any two particle groups A and B is: the resultant forces AF  and 

BF  of the mutual interaction between their barycenters are equal in magnitude, 
opposite in direction, and resulting in a force moment of couple ZM ; the force 
moment of couple ABM  which B acts upon A about the barycenter CA and the 
force moment of couple BAM  which A acts upon B about the barycenter CB 
satisfy 0Z AB BA+ + ≡M M M . 

Proof. Assuming n particle groups in a barycenter group which has nS particles, 
the mutual interactions between any two particle groups A and B belong to each 
other’s external forces, set A has nA particles and B has nB particles, the force 

( )A
ijf  is the j-th particle in B acting upon the i-th particle in A, the force ( )B

jif  is 
the i-th particle in A acting upon the j-th particle in B, ( )A

ijf  and ( )B
jif  are 

equal in magnitude, opposite in direction and along the straight line joining the 
two particles, namely 

( ) ( )A B
ij ji= −f f                         (13) 

According to the translation principle for a force system, the resultant external 
forces AF  which the particles of B acting upon the barycenter of A and the 
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resultant external forces BF  which the particles of A acting upon the barycenter 
of B satisfy 

( ) ( )

1 1 1 1 1 1

,
A B A B A Bn n n n n n

A B
A ij iA ji jB B

i j i j i j= = = = = =

= = = − = − = −∑∑ ∑ ∑∑ ∑F f F f F F        (14) 

where the force iAF  is all the particles in B acting upon the i-th particle in A 
and the force jBF  is all the particles in A acting upon the j-th particle in B. 
According to Equation (14), AF  and BF  are equal in magnitude and opposite 
in direction, set their moment of couple is ZM . By the translation principle for 
a force system, the external forces iAF  which B acts upon A are translated 
parallelly to the barycenter CA of A will produce a moment of couple ABM  

1

,
A

A

n

AB C i iA
i=

= ×∑M r F                        (15) 

where 
AC ir  is the position vector of the i-th particle about CA, ABM  is equal to 

the torque which B acts upon A about CA. The external forces jBF  which A 
acts upon B are translated parallelly to the barycenter CB of B will produce a 
moment of couple BAM  

1

,
B

B

n

BA C j jB
j=

= ×∑M r F                       (16) 

where 
BC jr  is the position vector of the j-th particle about CB, BAM  is equal to 

the torque which A acts upon B about CB. A and B can be as a system D, the total 
torque acting upon D is Z AB BA+ +M M M , D is essentially a particle group too, 
the mutual interactions between particles within it belong to the internal forces 
of D, the total torque about any fixed reference point generated by internal 
forces is zero, so regardless of whether the system is isolated, 

0Z AB BA+ + ≡M M M                      (17) 

Theorem 3 then proved.                                            
According to Theorem 3, in general, the mutual interaction between any two 

particle groups A and B can be reduced to the forces between their barycenters 
and the force moment of couple between them, and the interaction resultant 
forces are not on the same straight line. Equations (15), (16) show that ABM  
and BAM  are usually not equal in magnitude and opposite in direction. Since 
any object in reality is a group of particles, therefore, Newton’s third law is 
sometimes established strictly, and sometimes it is approximately established. 

Let’s take a typical case to explain Theorem 3. In Figure 3, the mass of four 
particles P, Q, R and S are all m, the interaction is their mutual gravitation, set P, 
Q form a particle group B, and R, S form another particle group A, the resultant  

force 
2

22 1 11
5 5 5 5 2A x y
Gm Gm  

= + + + 
 

F e e  acting upon A is not along the  

straight line joining barycenters of A and B obviously, namely 0Z ≠M , we can 
obtain 0AB BA+ ≠M M  by Equation (17). Then the mutual interactions between 
A and B are force and moment of couple at the same time. 
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Figure 3. Four particles form a barycenter group. 

 
Now we, set 

( ) ,
A AiA i iA C iA i Cm m′ = − = −F a a F r  

where 
ACa  is the accelerated speed of CA, iAa  is the accelerated speed of the 

i-th particle in A which subjected to iAF , so 

AiA iA i Cm′= +F F r                         (18) 

For 
1

A

A

n

i C i
i

m
=

=∑ r 0 , according to Equation (15) 

1 1 1

A A A

A A A A

n n n

AB C i iA C i iA C i C i
i i i

m
= = =

′= × = × − ×∑ ∑ ∑M r F r F r r  

We get 

1 1

A A

A A

n n

AB C i iA C i iA
i i= =

′= × = ×∑ ∑M r F r F                  (19) 

Set 

( ) ,
B B BjB j jB C jB j C jB jB j Cm m m′ ′= − = − ⇒ = +F a a F r F F r        (20) 

where 
BCa  is the accelerated speed of CB, jBa  is the accelerated speed of the 

j-th particle in B which subjected to jBF , similarly can be obtained 

1 1

B B

B B

n n

BA C j jB C j jB
j j= =

′= × = ×∑ ∑M r F r F                 (21) 

If the mutual interaction between the particles is gravitation, iA′F  is the tidal 
force which B acts upon the i-th particle in the particle group A. Equation (19) 
explains the force moment of couple which B acts upon A is equal to the total 
torque which B acts upon each particle in A about the center of mass CA and 
equals the total torque of tidal force which B acts upon each particle in A about CA. 

If A is a particle, B is a spherical symmetry rigid body, it is not difficult to 
prove 0Z BA= ≡M M ; if A is a particle group, B is a spherical symmetry rigid 
body, it is not difficult to prove 0BA Z AB= + ≡M M M ; if A and B are both 
spherical symmetry rigid bodies, it is not difficult to prove 0Z BA AB= = ≡M M M . 
Readers can try to prove the three laws themselves. 

If there are n particle groups in a barycenter group, we analyze the law of 
energy change caused by the interaction forces between any two particle groups 
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A and B. For the sake of simplicity, we assume that all the work done by the 
interaction forces between them translates into the kinetic energy of each other. 
Set d ABT  is the differential of the kinetic energy of the particle group A caused 
by the particle group B and d BAT  is the differential of the kinetic energy of B 
caused by A. So 

1 1

d d , d d
A Bn n

AB iA iA BA jB jB
i j

T T
= =

= ⋅ = ⋅∑ ∑F r F r                (22) 

Set d ABT ′  be the differential of the kinetic energy of A in the zero momentum 
frame with the origin CA, which caused by B, namely 

1

d d
A

A

n

AB iA C i
i

T
=

′ = ⋅∑F r                        (23) 

According to Equation (18) 

1 1 1

d d d d
A A A

A A A A

n n n

AB iA C i iA C i C i C i
i i i

T m
= = =

 
′ ′= ⋅ = ⋅ + ⋅  

 
∑ ∑ ∑F r F r r r  

Then 

1 1

d d d
A A

A A

n n

AB iA C i iA C i
i i

T
= =

′ ′= ⋅ = ⋅∑ ∑F r F r                 (24) 

Similarly can be obtained 

1 1

d d d
B B

B B

n n

BA jB C j jB C j
j j

T
= =

′ ′= ⋅ = ⋅∑ ∑F r F r                (25) 

In general, it is obviously d dAB BAT T≠ , d dAB BAT T′ ′≠ . If the mutual interaction 
between the particles is gravitation, iA′F  is the tidal force which B acts upon the 
i-th particle in A. Equation (24) explains that the differential of the kinetic 
energy of A in the zero momentum frame with the origin CA, which caused by B, 
is equal to the sum of the elementary work which the total external forces of B 
acting upon each particle in A about the center-of-mass frame of A do, and 
equals the sum of the elementary work which the tidal forces of B acting upon 
each particle in A about the center-of-mass frame of A do. 

Because a star is non-rigid body, some of the kinetic energy caused by the 
work, which the forces of other stars acting upon it about its center-of-mass 
frame do, is converted into the star’s heat energy due to friction and collision. 
Therefore, Equations (24), (25) reveal an important source of the thermal energy 
inside a star. 

According to Equations (19), (24), we can propose Theorem 4: 
Theorem 4. There are n particle groups in a barycenter group, A and B are 

arbitrary two particle groups in the system. If the mutual interaction between 
particles is gravitation, then: 

The force moment of couple which B acts upon A is equal to the total torque 
which B acts upon each particle in A about the center of mass CA and equals the 
total torque of tidal force which B acts upon each particle in A about CA. 

The differential of the kinetic energy of A in the zero momentum frame with 
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the origin CA, which caused by B, is equal to the sum of the elementary work 
which the total external forces of B acting upon each particle in A about the 
center-of-mass frame of A do, and equals the sum of the elementary work which 
the tidal forces of B acting upon each particle in A about the center-of-mass 
frame of A do. 

3. The Origin and Variation Laws for the Rotation Angular  
Momentum of Galaxies and Stars 

In order to reveal the origin and variation laws for the rotation angular momen-
tum of galaxies and stars, we first propose the variation principle for a vector. 

Theorem 5. If two vectors A  and B  satisfy 

d
dt

=
A B                              (26) 

Then the direction of A  will change towards B  with time. 
Proof. According to Equation (26) we can get 

( ) ( )d d d dt t t t t= ⇒ + − =A B A A B  

The directions of dtB  and B  are same, if the directions of ( )tA  and B  
are same or opposite, according to the superposition principle for vectors we can 
get ( )dt t+A  will both change towards B . 

Set the angle between ( )tA  and B  is ϕ , ( 0 ϕ< < π ), the angle between 
( )dt t+A  and B  is ψ , and the angle between ( )tA  and ( )dt t+A  is θ . 

Obviously, θ  is quite small but greater than zero. The relations between vectors 
( )tA , ( )dt t+A  and dtB  are shown in Figure 4. We translate dtB  parallelly 

to the intersection point of ( )tA  and ( )dt t+A , could find ϕ ψ θ− =  as 
shown in Figure 5, namely the direction of A  constantly approaching B  with 
time. So Theorem 5 proved.                                           

From the above analysis, it is not difficult to further conclude: If the angle ϕ  
between ( )tA  and B  is less than 2π , then ( )tA  will become larger with 

 

 
Figure 4. The relationship between A(t) , A(t + dt) and Bdt is shown graphically. 

 

 
Figure 5. The direction of the vector A is shown graphically as it changes with time. 
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time; if 2ϕ = π , ( )tA  will not change; if 2ϕ > π , ( )tA  will be smaller 
over time. 

When we study the motion state of any particle group A, we can use all other 
substances in the entire universe as the second particle group B. According to 
Theorem 3, under normal circumstances, A is subject to the force AF  upon its 
barycenter and the moment of couple ABM  from B. If A is in equilibrium, 

0A =F , 0AB =M , that is, linear momentum and angular momentum of A are 
conserved. AF  is the only reason for the movement change of the barycenter of 
A, ABM  is the only reason for the change of A’s angular momentum, combined 
with Theorem 5, we can analyze the origin and variation of the angular 
momentum of galaxies and stars. 

It exists that various types of galaxies rotate about their center of mass. 
Galactic rotation curves measured the earliest were normal spiral galaxies [11] 
[12] [13] [14] [15]. Later, the rotation curves of other types galaxies were also 
measured and discussed successively, such as SB galaxy [16] [17], E galaxies, S0 
galaxy, Irr galaxy, etc [18] [19] [20] [21]. 

It is generally believed that the angular momentum of galactic rotation is 
obtained through the mutual interaction of the tides of the surrounding celestial 
bodies [1] [2]. This is a qualitative analysis with hypothetical components, which 
does not explain why the tidal force can generate torque, what the relationship 
between the torque generated by gravity and the torque generated by tidal force 
is, what the relationship that the torque of the mutual interaction between 
galaxies and surrounding celestial bodies satisfy is and so on. 

According to multi-barycenter mechanics, the entire universe can be considered 
as a barycenter group and each galaxy a particle group. On the basis of Theorem 3 
and 4, the mutual interaction between particle groups generally produces a force 
moment of couple, which explains why universally galaxies rotate around their 
barycenter. The force moment of couple is not only equal to the total torque of 
the external force acting upon each particle in the galaxy about its barycenter, 
but also equal to the total torque of the tidal force acting upon each particle in 
the galaxy about its barycenter. The direction of the total moment of couple M  
acting upon a galaxy is always uniquely determined. According to Theorem 5, 
the direction of the angular momentum J  of the galaxy will constantly change 
towards the direction of M  over time. Although the magnitude and orientation 
of M  vary with time, it always makes star’s motion orbit in the galaxy constantly 
converge to a same plane, and the revolution directions of every star’s motion 
orbit tend to be consistent. So, after a long enough time, under the action of the 
total moment of couple M , galaxies are generally flat and the revolution 
directions of the internal stars are generally the same. 

As for the irregular shape of some galaxies, the reasons may be: 1, for some 
reasons the total moment of couple acting upon a galaxy is too small, for example, 
it is very far away from other galaxies. 2, two galaxies are colliding with each other, 
or the time after the collision between two galaxies is not long enough. 3, 
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galaxies are newly formed. 
Until 1939, the nonuniform rotation of the Earth was finally confirmed [8]. In 

almost all geophysics books and related literatures [3] [4] [22] [23], the origin of 
the angular momentum of the Earth’s rotation is avoided. When analyzing the 
influence of the tidal force on rotation, it is generally believed that the tidal force 
will always slow the angular speed of the earth rotation [8] [9] [10]. In the 
literatures about rotation of the Sun and the solar system’s planets and satellites, 
there is almost no mention about the origin of the angular momentum of their 
rotation [5] [6] [24] [25]. Let’s analyze the problem below. 

We can also think of the entire universe as a barycenter group and treat each 
star as a particle group. According to Theorem 2 and 3, the force moment of 
couple produced by the mutual interaction between the particle groups reveals 
the reason for the star rotation around its barycenter. There is no doubt that the 
collisions with other stars are also the cause. If there is a large amount of liquid 
water on the surface of the planet, tidal-induced changes in the distribution of 
matter at the same time have an important negative effect on the angular veloci-
ty of rotation. Due to the universal existence of the force moment of couple, a 
star is not a rigid body and the continuous change of its material distribution 
will cause the successive variation of moment of inertia, the principal axis of in-
ertia and the interaction with other planets. So, the changes in the rotation of a 
star are generally more complicated. 

The observation of changes in the rotation of the Earth and the Sun is an im-
portant content of geophysics and solar physics and has important practical sig-
nificance. For example, the earthquake is related to changes in the angular veloc-
ity of the Earth’s rotation [26]. Many observations have proved the complexity of 
the changes in the state of rotation of the Earth and the Sun [24] [27]. According 
to the previous analysis, it can be concluded that within classical mechanics, the 
angular momentum of a star’s rotation has two origins: 1, it is affected by the 
force moment of couple of other stars and matter in the universe. 2, it collides 
with other stars or objects. There are three reasons for the change of the star’s 
rotation state: 1, the effect of the force moment of couple of other stars and mat-
ter in the universe. 2, changes in the material distribution of the star. 3, the colli-
sion with other stars or objects. 

4. Simulation Solution for N-Body Problem 

Multi-body problem has always been the focus of mechanical research [28] [29], 
numerical simulation is a major research method because of the inability to 
obtain exact solutions in general [30] [31]. Suppose an isolated system with mass 
m, it has n interacting particles. If a particle A has mass mA, velocity Av  and 
position vector Ar  about a fixed point O; the rest of the particles 1 2 1, , , nP P P −  
with masses 1 2 1, , , nm m m − , velocities 1 2 1, , , n−v v v  and position vectors  

1 2 1, , , n−r r r  about O respectively. Set 1 2 1, , , nP P P −  form a particle group B 
with the center of mass CB, mass mB and B Am m m= − . The speed Bv  of CB 
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satisfy 

1 1 2 2 1 1n n
B

B

m m m
m

− −+ + +
=

v v vv 

 

According to Theorem 2, the interaction forces of A and CB are equal in 
magnitude , opposite in direction, and generally not in a same straight line, 
namely 

1 1

2
1 1

,i i
B

ii

n n
A P AP

A Ai C
i i APAP

m m
G

rr

− −

= =

= = = −∑ ∑
r

F F F               (27) 

where AiF  is the force which iP  acts upon A, AF  is the resultant force which 
the particle group B acts upon A, 

BCF  is the force which A acts upon the 
barycenter CB, so the N-body problem is transformed into a special two-body 
problem of A and CB. If the laws of motion of A and CB can be solved, we can 
use the similar method to solve the movement laws of all other particles in the 
system. 

The approximate simulation is calculated as follows: 
On the line of AF , we suppose there is a virtual D with mass of mD and initial 

velocity 0Dv , set 
1

0 0
1

,
n

D B D B i
i

m m m
−

=

= = =∑v v                    (28) 

Set the interaction force between A and D to meet the inverse-square law, 
namely 

1

2 2
1

i i
B

ii

n
A P AP A AD

A D C
i AP ADAP AD

m m kG
r rr r

−

=

= = = − = −∑
r rF F F            (29) 

The numerical value of kA could be chosen appropriately by experimental 
datum, according to Equation (29) we have 

1
1 2

i i

ii

A AD
AD

ADn A P AP

APAP
i

k
rm m

G
rr

−

=

=

∑

rr
r

               (30) 

Using Equation (30) we can solve the initial position vector 0Dr  of D. As AF  
and DF  in the same straight line, the centre of mass of A and D is in the active 
line of AF  distinctly, and its mass is m, its initial position vector can be solved by 

0Ar  and 0Dr , we call the barycenter of A and D the corresponding barycenter 
for A, written as CA, set 1AC A = r



, 2AC D = r


, so the kinetic equation of A about 
CA is: 

( )
1

1 2
11 2

A
A

km
rr r

=
+

rr                     (31) 

In the zero momentum frame with the origin CA 

1 2 1 2 1 2 1 20 A D A D
A D A D

D A

m m m mm m m r m r r r r r
m m
+ +

+ = ⇒ = ⇒ + = =r r  
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Then 

( )

2
1

1 2 2
11

A D
A

A D

k mm
rm m r

=
+

rr                       (32) 

Similarly the kinetic equation of D about CA could be get 

( )

2
2

2 2 2
22

A A
D

A D

k mm
rm m r

=
+

rr                      (33) 

Equations (32), (33) are two typical central force problems, according to Binet 
equation, A and D around CA for conic curve movement, their orbits are 
determined by kA and the initial value. 

Since the initial states of n particles in the isolated system are known, and A is 
a randomly selected particle, the law of motion of other particles can be obtained 
similarly. 

Based on the above analysis, we can conclude the following laws: 
1. An isolated system composed of n particles with the gravitational interaction, 

an arbitrary particle A is approximately around its corresponding barycenter CA 
for conic curve movement. 

2. For the system composed of 3 or more particles, the barycenter C of the 
system and the corresponding barycenter Ci of each particle have the same mass, 
but generally different the position vectors. 

The above rules are obtained under the premise of rough simulation and need 
to be further amended according to experiments. Since gravitational forces 
between an object and another object are generally not on a same straight line, 
the solution for the two-body problem is actually an approximation too. 

5. Multi-Barycenter Mechanics (2) 

In addition to the above-mentioned unique laws, multi-barycenter mechanics 
has some similar laws to multi-particle mechanics yet. 

If there are n particle groups in a mechanics system, numbers of particles in 
each particle group are 1 2, , , nn n n  respectively, ( 1 2S nn n n n= + + + ). Set the 
total mass of the i-th particle group is im , ( 1,2, ,i n=  ), the position vector of 
the barycenter Ci about a fixed point O is 

iCr . The j-th particle in the i-th 
particle group has mass 

jim , its position vector is 
jir . The total mass of nS 

particles is m, the position vector of the total barycenter C about O is Cr , and 

1 1 1

i

i j j

nn n

C i C i i
i i j

m m m
= = =

= =∑ ∑∑r r r                    (5) 

Differentiating Equation (5) with respect to t, we get 

1 1 1 1 1 1

i i

i i j j j

n nn n n n

C C i C C i i i
i i i j i j

m m m
= = = = = =

= = = = =∑ ∑ ∑∑ ∑∑r p r p r p    

Then 
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1 1 1

i

i j

nn n

C C i
i i j= = =

= =∑ ∑∑p p p                       (34) 

Equation (34) explains that the linear momentum Cp  of the total center of 
mass of the barycenter group is equal to the sum of the barycenters linear 
momentum of each particle group, and equal to the sum of each particle linear 
momentum in the system. Differentiating Equation (5) twice with respect to t, 
we have 

1 1 1

i

i j j

nn n

C i C i i
i i j

m m m
= = =

= =∑ ∑∑r r r                       (35) 

For the barycenter group, the mutual interactions between each particle group 
are the internal forces of the system, but for every particle group, the interaction 
forces with other particle groups are the external forces. Set the resultant 
external force acting upon the total barycenter C of the system is CF , the 
resultant external force acting upon the barycenter Ci of the i-th particle group is 

iCF , and the resultant external force acting upon the j-th particle in the i-th 
particle group is ( )e

jiF , according to motion equations of a particle and a particle 
group, we can obtain 

( )e, ,
i i j j jC C i C C i i im m m= = =r F r F r F                    (36) 

Combining Equation (35) we have 

( )e

1 1 1

i

i j

nn n

C C i
i i j= = =

= =∑ ∑∑F F F                     (37) 

Namely the resultant external force acting upon C is equal to the sum of 
external forces acting upon Ci, and is equal to the total external force acting 
upon each particle. 

Using Equations (35), (37), we can get the motion principle for a barycenter 
group: 

Motion principle for a barycenter group: There are n particle groups in a 
mechanical system, if the total external force which they are subject to is  

( )e

1 1

i

j

nn

Ci
i j= =

=∑∑F F , then 

22 2

2 2 2
1 1 1

dd d
d d d

i
ji

j

nn n iC C
i i C

i i j

m m m
t t t= = =

= = =∑ ∑∑
rr r F              (38) 

Proof. The mechanical system can be regarded as a particle group, according 
to the translation principle for a force system and Equation (2), we get: 

( )
2

e
2

1 1

d
d

i

j

nn
C

Ci
i j

m
t = =

= =∑∑
r F F                    (39) 

According to Equation (5), we have: 
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2
22

2 2 2
1

12

1

2

2 2
1 1

1

d
dd

d d d

d
d

d d

i

i

i

j j

i
j

j

n
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i
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m
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=

=

=

=

= =

 
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 
 
 
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So the principle proved.                                            
According to the motion principle for a barycenter group, we can get the 

linear momentum principle for a barycenter group and the conservation law of 
the linear momentum for a barycenter group: 

Linear momentum principle for a barycenter group: In any motion of a 
barycenter group, the rate of increase of the total linear momentum of all 
barycenters is equal to the total external forces acting upon each particle, namely 

1d
d

i

n

C
i C

t
= =∑ p

F                         (40) 

Proof. According to the motion principle for a barycenter group: 
2

2
1 1

1

1

d dd
d dd

dd ,
d d

i i

i
i

n n
C C

i C i
i i

nn

i
i C

C
i

m m
t tt

m
t t

= =

=

=

 
= =  

 

 
= = 

 

∑ ∑

∑
∑

r r
F

p
v

 

where 
iCp  is the linear momentum of the barycenter of the i-th barycenter 

group, so the principle proved.                                        
Conservation principle of linear momentum for a barycenter group: In 

any motion of an isolated barycenter group, the total linear momentum of all 
barycenters is conserved, that is 

1
i

n

C
i

K
=

=∑ p                             (41) 

Proof. According to the linear momentum principle for a barycenter group, 
when 0C =F , 

1

1

d
0

d
i

i

n n
Ci

C
i

K
t
=

=

= ⇒ =∑
∑

p
p  

where K is a constant quantity. So the principle proved.                    
Let us analyze the total kinetic energy formula for a barycenter group. Set the 

position vector of the barycenter Ci of the i-th particle group about a fixed point 
O is 

iCr ; the j-th particle in the i-th particle group has mass 
jim , its position 

vector about O is 
jir  and about Ci is 

ji′r , the kinetic energy of the particle is  

( )2
21 1

2 2j j j i ji i i C im m ′= +r r r   , and 
1 1

0
i i

j j j j

n n

i i i i
j j

m m
= =

′ ′= =∑ ∑r r , then 
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So 

( )2
2

1 1 1

1 1
2 2

i

i j j

nn n

i C i i
i i j

T m m
= = =

′= +∑ ∑∑r r                    (42) 

That is, the total kinetic energy of a barycenter group is equal to the sum of 
kinetic energy of each barycenter and the kinetic energy of each particle group 
about its barycenter. 

Since a barycenter group can be regarded as a particle group, the forms of 
their kinetic energy principle are the same. The kinetic energy principle of the 
i-th particle group relative to its barycenter can also be obtained in a similar way 
as follows 

( ) ( ) ( )2 e i

1 1 1

1d d d
2

i i i

j j j jj j

n n n

i i i ii i
j j j

m
= = =

 ′ ′ ′= ⋅ + ⋅ 
 

∑ ∑ ∑r F r F r              (43) 

where the total external and internal forces acting upon the j-th particle in the 
i-th particle group are ( )e

jiF  and ( )i
jiF  respectively, by Equation (43), we obtain 

( ) ( ) ( )2 e i

1 1 1 1 1 1
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i i i
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For 
, ,

j i j j i j j i ji C i i C i i C i′ ′ ′= + = + = +r r r r r r r r r                    (45) 

The angular momentum J  of a barycenter group about a fixed point O is 
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So 

( )
1 1

, ,
i

i i i i j j

nn

C i C C C i i i
i j= =

′ ′ ′ ′= + = × = ×∑ ∑J J J J r P J r P           (46) 

where 
iCJ  is the angular momentum of Ci about O, 

ji′P  is the linear 
momentum of the j-th particle about Ci in the i-th particle group, i′J  is the 
total angular momentum of the i-th particle group about Ci. Equation (46) 
reveals the total angular momentum of a barycenter group about any fixed point 
O is equal to that the total angular momentum of each barycenter Ci about O 
plus the total angular momentum of each particle group about its barycenter. 

The total torque M  acting upon the barycenter group is 

( )

1 1

1 1 1 1

1 1

1

i

j j

i i

i j j j

i i
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nn
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n nn n
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C C i
i i
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C i
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= =

= = = =

= =

=

= ×

′= × + ×

′= × +

′= +

∑∑

∑∑ ∑∑

∑ ∑

∑

M r F

r F r F

r F M

M M

 

So 

( )
1 1

, ,
i

i i i i j j

nn

C i C C C i i i
i j= =

′ ′ ′= + = × = ×∑ ∑M M M M r F M r F         (47) 

The physical meaning of Equation (47) is a barycenter group is subjected to 
external forces 

jiF , the total torque of 
jiF  about any fixed point O is equal to 

that the total torque of external forces 
iCF  acting upon n barycenters about O 

plus the total torque of 
jiF  about the barycenter Ci. 

A barycenter group can be regarded as a particle group, so d
dt

=
J M  

established, combining with Equation (47), we have 

1 1

d
d i

n n

C i
i it = =

′= = +∑ ∑
J M M M                       (48) 

Since 

2

2

d
d

d d d dd
d d d d d

i
i

i i i i
i i i i

C
C i

C C C C
i C C C C

m
t

m m
t t t t t

 
× 

 = = × + × = × =

r
r

J r r r
r r F M  

Then 
d
d

i
i

C
Ct

=
J

M                            (49) 

That is, about O the rate of increase of the angular momentum of the i-th 
barycenter is equal to the torque of the total external force acting upon Ci. 

According to Equation (45), we can get 
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Namely 

d
d

i
it

′
′=

J M                          (50) 

That is, the rate of increase of the total angular momentum of the i-th particle 
group about its barycenter Ci is equal to the total torque about Ci of the external 
forces acting upon each particle. 

According to the above rules, angular momentum laws for a barycenter group 
can be summarized as follows: 

1. About any fixed point O in an inertial frame, the rate of increase of the 
angular momentum J  of a barycenter group is equal to the torque M  of the 
total external force acting upon each particle; the rate of increase of the angular 
momentum 

iCJ  of the i-th barycenter is equal to the torque 
iCM  of the total 

external force acting upon Ci. 
2. The rate of increase of the total angular momentum i′J  of the i-th particle 

group about its barycenter Ci is equal to the total torque i′M  about Ci of the 
external forces 

jiF  acting upon each particle. 
3. About any fixed point O in an inertial frame, the total angular momentum 

of a barycenter group is equal to that the total angular momentum of each 
barycenter Ci about O plus the total angular momentum of each particle group 
about its barycenter. 

4. A barycenter group is subjected to external forces 
jiF , the total torque of 

jiF  about any fixed point O is equal to that the total torque of external forces 

iCF  acting upon n barycenters about O plus the total torque of 
jiF  about 

barycenter Ci. 

6. Discussions and Conclusions 

The study and understanding of the laws of physics by humans is always dee-
pening [32] [33]. Mutual interactions between any actual objects are the interac-
tions between particle groups. Thus, it is necessary to study the mechanics laws 
for the system composed of multiple particle groups. This paper fills the theo-
retical gap in this area of classical mechanics. 

On the basis of multi-particle mechanics, we have established the mul-
ti-barycenter mechanics and proposed the motion principle, the linear momen-
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tum principle, conservation principle of linear momentum etc. for a barycenter 
group. Any object in reality is a group of particles, such as the universe, galaxies, 
stars, molecules, atoms and so on. Even basic particles without the internal 
structure can be regarded as a particle group consisting of one particle. In nature, 
mutual interactions between any actual objects are the interactions between par-
ticle groups, thus any mechanical system in the real world is a multi-barycenter 
mechanical system. According to the laws of multi-barycenter mechanics, we 
will have an overall clear understanding of any complex mechanical system. 

Theorem 1 presented in this thesis reveals the translation principles for a vec-
tor system. Using Theorem 2, the conventional multi-body problem can be 
transformed into a special two-body problem, by the method of simulation cal-
culation, the motion law of each particle can be roughly obtained. According to 
Theorem 3, in general, the mutual interactions between any two particle groups 
are force and moment of couple at the same time, and the interaction resultant 
forces are not on a same straight line. Therefore, Newton’s third law is some-
times established strictly, and sometimes it is approximately established. Theo-
rem 4 finds the principle of the internal relationship between gravity and tidal 
force. Combined with Theorem 5 about the variation principle for a vector, the 
origin and change laws for the rotation angular momentum of galaxies and stars 
are clear. 
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