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Abstract 
The Newton gravitational constant is considered a cornerstone of modern 
gravity theory. Newton did not invent or use the gravity constant; it was in-
vented in 1873, about the same time as it became standard to use the kilo-
gram mass definition. We will claim that G is just a term needed to correct 
the incomplete kilogram definition so to be able to make gravity predictions. 
But there is another way; namely, to directly use a more complete mass defi-
nition, something that in recent years has been introduced as collision-time 
and a corresponding energy called collision-length. The collision-length is 
quantum gravitational energy. We will clearly demonstrate that by working 
with mass and energy based on these new concepts, rather than kilogram and 
the gravitational constant, one can significantly reduce the uncertainty in 
most gravity predictions. 
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1. Introduction 

Gravity depends on mass, as mass curves space-time (according to general rela-
tivity theory). To find the mass of the Earth in kilograms, one first needs to de-
termine the gravitational constant G. Once G is known, the mass of the Earth 
can be found and then G in combination with M can be used to make gravita-
tional predictions, such as predicting gravitational time dilation. Gravitational 
time dilation and gravitational redshift, for example, play a central role in the 
GPS system and are therefore of great practical importance. 
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With the invention of GPS, researchers working with gravity from a more 
practical perspective have realized that GM could be measured much more pre-
cisely than G and M separately. For example, the National Imagery and Mapping 
Agency (NIMA), states in their technical report on GPS systems [1] that 

“The central term in the Earth’s gravitational field (GM) is known with much 
greater accuracy than either ‘G’, the universal gravitational constant, or ‘M’, the 
mass of the Earth.” (pages 3-3 WGS 84 third version) 

That one should rely on a measure of GM directly1, rather than on G and M 
separately and then multiplying them together, has been of great importance in 
achieving the high precision of the GPS system we have today. Naturally, more 
precise measurements of GM have also been made possible by better measure-
ment devices. This is also clear from the recent report that says “Significant im-
provement in the knowledge of GM has occurred since the original WGS 84 de-
velopment effort and the original WGS 84 value were updated in 1994”. 

The fact that GM is known with much greater accuracy than either G (the 
universal gravitational constant) or M was not specifically mentioned in WGS 66 
or WGS 72, which are two previous versions of the WGS document that is a 
cornerstone document in the theory of calibrating the GPS system. However, it 
seems that even then, GPS researchers possibly realized the importance of mea-
suring GM directly, rather than measuring G and M separately and then multip-
lying them together. In this paper, we will also clearly demonstrate that finding 
G and M separately gives less accuracy. 

Also papers [2] NIMA refer to from 1980 shows that it was not clear yet at 
that time that finding GM directly is more accurate than finding G and M sepe-
rately for so to multiply them together. 

Although it is today well known among many if not most gravitational “prac-
titioners” working with GPS that GM is known with much greater accuracy than 
either G or M, it has never been fully understood or discussed why this is the 
case from a deeper theoretical perspective, despite considerably published lite-
rature on measuring GM, see [3] [4]. However, even when finding GM directly 
without first determining G and M, one still gets the impression that G is indi-
rectly needed, which we will demonstrate is not the case. 

In this paper, we aim to explore this topic in greater depth than done before. 
Due to recent progress in understanding gravity all the way down to the Planck 
scale, we now believe that we have the full explanation. We however need to go 
back all the way to Newton before we go to the very recent progress in gravity 
research. 

2. Background History 

Isaac Newton in his Principia [5] introduced the following gravitational force 
formula: 

 

 

1GM is also known as the geocentric gravitational constant, or simply the gravitational parameter 
( GMµ = ). 
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2
n nM mF

R
=                             (1) 

Newton only stated this formula in words, but never clearly introduced a 
gravity constant. This has also been discussed recently in [6] [7]. Also, Newton’s 
view of mass was very different than today’s view and is why we use the symbols 
Mn and mn instead of M and m. He only mentioned mass once and said it is the 
quantity of matter. Further matter, he claimed, consists of indivisible particles; 
see also his book Opticks [8]. Taken literally, this means Newton meant that 
mass was quantized, as it had to come in quanta of these indivisible particles, 
and thereby Newton actually gave a hint about quantum gravity already in 1684. 
Newton, based on his theory of gravity, was able to calculate the relative mass of 
the Earth, the sun, and a series of planets; see also Cohen [9]. He was also able to 
find the density of the Earth relative to the sun with very high accuracy. Howev-
er, Newton described how he was not able to do what he wanted to, which was to 
find also the density of the Earth relative to a uniform known substance on the 
Earth, such as water or lead. 

Clotfelter [10] in 1987, Hodges [11] in 1998, and Haug [6] in 2021 pointed out 
that Cavendish [12], using what today is known as a Cavendish apparatus and 
which he published about in 1798, never measured the gravitational constant 
nor tried to do so. What Cavendish measured was the density of the Earth rela-
tive to a known substance. Sean [13] in 1999 pointed out that a series of authors 
have incorrectly claimed Cavendish measured the Newton gravitational constant. 
A series of researchers, including such as Noble prize winner Feynman [14] [15], 
have incorrectly claimed Cavendish measured the Newton gravitational constant; 
see, for example, [16] [17]. Despite the many researchers that have looked close-
ly at what Cavendish actually did and did not do, there are still researchers pre-
senting the incorrect information that Cavendish measured G. For example, 
Rothleitner and Schlamminger [18] in 2017 claimed “G was first measured in the 
laboratory by Henry Cavendish in 1798. Still, later in the same paper they cor-
rectly stated: “Thus, originally, Cavendish did not measure G in his famous ex-
periment but the mean density of the Earth, as his article was titled.”. Why 
Rothleitner and Schlamminger then stated, earlier in the paper, that G was first 
measured by Cavendish is confusing at best. 

Cornu and Baille [19] in 1873 were likely the first to introduce what today is 
known as the Newton’s gravitational constant, using the notation 2F fMm r= ; 
in other words, the symbol f for the gravity constant. In 1885 König and Richarz 
[20] suggested a gravity constant G, but it is not fully clear from the paper that 
they suggested 2F GMm r=  as we know it today. This was first clearly sug-
gested by Boyes [21] in 1894. Max Planck [22] used the notation f for the gravi-
tational constant at least as late as 1928, and Einstein [23] used the notation k in 
1916. Whether one uses the notation f, k, or G for the gravitational constant is 
merely cosmetic, but what is important here is that for several hundred years the 
Newton gravity theory was used without a gravity constant. 
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We think it is no coincidence that the gravity constant was introduced in the 
1870s, as this was also when the kilogram standard for mass was accepted across 
Europe. The kilogram had been invented considerably earlier in France, but the 
use of the kilogram definition of mass in European scientific circles happened 
first after the meter convention meeting in 1870. The gravitational constant was, 
in our view, needed as the kilogram mass definition, as we will demonstrate, was 
now somehow incomplete in relation to gravity, unless one also introduced a 
gravity constant. Before 1873 one used in France the kilogram and gram already 
as mass standard for macroscopic and small masses but not for astronomical 
masses yet. In England one used the pound as described by Maxwell [24] in his 
1873 book. Maxwell points out also that that astronomical masses used at that 
time had the dimensions of [L3∙T−2] which is naturally very different than the 
dimensions of the modern mass definition of the kilogram, which simply is said 
to have dimension equal to mass, but then what is gravitational mass? For scien-
tific simplicity one naturally wanted the same mass standard internationally, but 
also the same mass standard for standard macroscopic human handable masses 
as well as astronomical bodies. One decided to go for the kilogram mass, even as 
we will understand through this paper that it likely would have been better to 
change also small masses to the astronomical mass standard of mass being 
[L3∙T−2]. 

In 1961 Thüring [25] concluded that the gravitational constant had been in-
troduced somewhat ad hoc. Further he concluded that it could not be associated 
with a unique property of nature. The gravitational constant is, however, clearly 
needed when working with kilogram mass. It can be found, for example, by us-
ing a Cavendish apparatus. That is, the Cavendish apparatus was not invented to 
find the gravitational constant, but it can also be used to find the gravitational 
constant. The gravitational constant is what is missing in the gravitational for-
mula when using the kilogram definition of mass. What is missing is then found 
by calibration, not by derivation or from some deep fundamental understanding 
of gravity all the way down to the quantum scale. 

Kilogram has traditionally been related to weight, and weight is not mass. 
However, already in Principia, Newton concluded that weight and mass are 
proportional when the masses are in the same gravitational field; that is, at the 
same distance from the gravitational object, which explains why the only infor-
mation one needs to know about the masses in the gravitational force formula 
from 1873 is the weight of the mass in kilogram. Still, this is not enough infor-
mation, and the rest of the information about the mass needed for gravity one 
can actually get through the gravitational constant that is calibrated from a gra-
vitational observation. This view is somewhat controversial, but our view should 
become clear as you read through the various sections of the paper. When the 
gravitational constant is first calibrated to one observed gravity phenomena, it 
can be used in combination with the Newton formula to predict a series of ob-
servable gravitational phenomena, and this works well without recalibration. 
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This strongly supports that the gravity constant is indeed a constant. General re-
lativity theory adopted the Newtonian gravitational constant that had been in-
vented ad hoc in 1873. The gravitational constant is also needed in general rela-
tivity theory to predict such things as gravitational redshift, gravitational time 
dilation and deflection, and other types of gravitational effects. There is, however, 
also no deep theory in general relativity theory or Newton theory that tells us 
exactly what the gravitational constant represents physically. It is naturally com-
bined with the mass it is multiplied with somehow linked to gravitational bend-
ing of space-time in general relativity theory, but exactly why we need a constant 
is not clear, except that the 1873 Newton modified theory and general relativity 
theory do not work without such a constant. 

3. All Observable Gravitational Predictions Can Be Done  
without Knowledge off G 

We will conjecture that all gravitational phenomena that actually can be ob-
served can be predicted without first knowing G. This has also been recently 
demonstrated by [7] [26] [27]. This, we will later see, is rooted in a deeper un-
derstanding of G and even to its relation to quantum gravity. We will shortly 
demonstrate in this paper that we can make a series of gravity predictions with-
out knowing G, as this point is important for reducing the prediction uncertain-
ty in gravitational predictions. 

Assume we want to make gravitational predictions related to the gravity field 
from the Earth. We can start out by first making a single gravitational observa-
tion. For example, we can find the gravitational acceleration from a drop ball 
with a single built-in stopwatch. The gravitational acceleration is given by: 

2
2

d

Hg
T

=                               (2) 

where H is the height we dropped the ball from above the ground, and Td is the 
time it took for the ball from the drop to hitting the ground.2 That is, we only 
need to know the height and the time. Today, there are even specially designed 
balls for such a purpose, with a built-in stopwatch that stops automatically when 
the ball hits the ground. There is no need to know the mass of the Earth or the 
gravity constant to measure the gravitational acceleration this way. On the other 
hand, to predict the gravitational acceleration in standard theory, we naturally  

have 2
GMg
R

= . Here, both the gravitational constant and kilogram mass of the  

Earth M are needed, as well as the radius of the Earth. However, here we are not 
predicting the gravitational acceleration, but simply measuring it, and that re-
quires no knowledge of G or M. To find G and M, we need to make a series of 
measurements that are totally unnecessary to predict observable gravity pheno-

 

 

2We could naturally have done this more accurately with an advanced gravimeter, but this is not the 
point here. The important point is that using G, as we soon will see, leads to more uncertainty in 
predictions than needed. 
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mena, as G and M are never needed to predict any gravity phenomena. We will 
later return to why this is the case. This does not mean that we do not need to 
know the mass of the gravitational mass, but that the gravitational mass, as we 
will understand it, is not defined by the kilogram mass. 

Next, we can use the observed g to predict a series of other gravity phenomena. 
For example, the orbital velocity of the moon is given by: 

2
1

2
o

gv R
R

=                             (3) 

where R1 is the radius of the Earth and R2 is the distance between the center of 
the moon and center of the Earth. Note that G and M are not needed to predict 
this. Table 1 similarly shows how we can predict a series of gravity phenomena 
and how many of these predictions we can easily check with observations. The 
predictions in Table one are related both to gravity phenomena that can be pre-
dicted with Newton’s gravitational theory and Einstein's general relativity theory. 
The important point here is that we make all these predictions without needing 
to know G or M. 

We do not need to start out with the gravitational acceleration to do this, as 
shown in Table 1. We could just as well have started out with, for example, the 
orbital time of the moon, simply by counting the number of days it takes for the 
moon to orbit the Earth (then convert this to seconds if that is the time unit 
used). Next, we can use this to predict a series of gravitational effects on the 
Earth; for example, we can get orbital velocity, which is equal to: 

2
0

2 Rv
T

=
π                               (4) 

where R2 is the distance from the center of the Earth to the center of the moon. 
This we can find by parallax and knowing the circumference of the Earth; these 
measurements that are all totally independent of any knowledge of gravity, and 
naturally there is no use of G or M. To predict this from Newton’s theory or  

general relativity theory is done by 
2

o
GMv
R

=  so here we need to know G and  

the kilogram mass of the Earth. This requires measuring many more input pa-
rameters, as will be demonstrated soon. Further, the gravitational acceleration 
on the Earth is then given by: 

2 3
2

2 2
1

4 Rg
T R
π

=                              (5) 

where R1 is the radius of the Earth and R2 the center-to-center distance between 
the Earth and the moon. Again, we see there is no need to know G or M to pre-
dict this. Table 2 shows a series of gravity predictions we can make on Earth 
from first finding just the orbital time of the moon. The approach is valid for any 
gravitational object. We could have done the same with the sun as the gravita-
tional object and then instead used the orbital time of the Earth as the orbital 
time. This could then again be used to make a long series of predictions about  
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Table 1. The table shows various gravitational predictions we can make without any 
knowledge of G and M. 

Observable: Formula 
Input parameters 
to be measured: 

Constant 
needed: 

gravitational  
acceleration 2

2

b

Hg
T

=  H, Tb  

Orbital velocity 2
1

2
o

gv R
R

=  H, Tb, R2, R1  

Orbital time 
2

2
1

2

2 RT
g R
R

π
=

 H, Tb, R2, R1  

Light bending 
2
1

2
2

4gR
c R

δ =  H, Tb, R2, R1 c 

Gravitational redshift 
2
1

2
2

gR
c R

δ =  H, Tb, R2, R1 c 

Time dilation 
2
1

2 1 2
2

21 gRT T
R c

= −  H, Tb, R2, R1 c 

 
Table 2. The table shows various gravitational predictions we can make without any 
knowledge of G and M. 

Observable Formula 
Parameters needed 

to be measured 
Constant 
needed. 

Orbital time T T  

gravitational  
acceleration 

2 3
2

2 2
1

4 Rg
T R
π

=  R2, R1, T  

Orbital velocity 22
o

Rv
T

=
π  R2, R1, T  

Light bending 
2 3

2
2 2

1

16 R
T R c

δ =
π  R2, R1, T c 

Gravitational redshift 
2 3

2
2 2

1

R
T R c

δ 4
=

π  R2, R1, T c 

Time dilation 
2 2

2
2 1 2 2

81 RT T
T c
π

= −  R2, R1 c 

 
the effects of the sun’s gravitational field. For example, we could use this to cor-
rectly predict the orbital time of the other planets, or the light bending of the sun, 
or the gravitational redshift from the sun. 

However, if we want to know the kilogram mass of the Earth and use g to find 
it, then we also need to know G, as we have: 
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2gRM
G

=                                (6) 

And if we want to find the kilogram mass of the Earth from the orbital time of 
the moon, we have: 

3
2
2
2RM

T G
π

=                               (7) 

That is, we again need to know G. 
We can also find G from g as we also have: 

2gRG
M

=                                (8) 

And we can find G from the orbital velocity; it is given by: 
3
2
2
2RG

T M
π

=                               (9) 

The problem here is that we need to know M and we were going to use G to 
find M. This means we need another way to find G. We can find G in a Caven-
dish apparatus, and this is done by3: 

2 2

2
2 c

c c

L RG
M T

θπ
=                           (10) 

That is, in the Cavendish apparatus we need to know the distance between the 
two small balls in the Cavendish apparatus L, the distance between the small and 
the large balls from center to center, which is Rc, and also the angle of the arm θ. 
Further, we need to know the oscillation time of the arm in the apparatus: Tc. In 
addition, we need to know the kilogram mass of Mc of one of the large balls in 
the Cavendish apparatus. For all these input parameters that can all be measured 
and that we can calculate G from, naturally measurement errors will occur. The 
errors will cause uncertainty in the measured (extracted) value of G. So, it is well 
known that there will be considerable measurement error in G. There are a series 
of ways to measure the gravitational constant, even using a Cavendish apparatus 
as well as other methods, but the constant has a known large uncertainty in its 
value and is part of the reason why there is still considerable ongoing work going 
to make improvements in measurements of G, see [18] [31] [32] [33] [34] [35]. 
For example, the NIST CODATA 2019 value for the gravitational constant is 
6.67430 × 10−11 m3∙kg−1∙s−2 and with a one standard uncertainty off 0.00015 × 10−11 
m3∙kg−1∙s−2. Now, after we have measured G, we can find the mass of the Earth (in 
kilogram), given by Equation (6). That is, in addition, we need to measure g and 
the radius of the Earth. Now we know the mass of the Earth. 

We now know G and M. To predict the orbital velocity of the Moon, we can 
now use the well-known formula: 

 

 

3There are several different ways to find G using a Cavendish apparatus and similar torsion pendu-
lum inspired apparatuses (se for example [28] [29] [30] [31]), but this is one of the well known ways 
to do it. 
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2
o

GMv
R

=                             (11) 

Here, we will get measurement error in the distance from the Earth to the 
moon, R2; this in addition to measurement errors in Rc, Tc, θ, Mc, Tb, H, and R1 
that are needed to find the mass of the Earth if using the gravity constant as 
measured by a Cavendish apparatus. Be aware if we predict the orbital velocity 
directly from just the observed gravitational acceleration, or from just the orbital 
time, then we are only dealing with measurement errors in R1, R2, and T. Avoid-
ing being dependent on G clearly leads to considerably lower prediction errors, 
as there are far fewer input variables that need to be measured when we do not 
rely on G. We will go as far as to conjecture that it can therefore be seen as a 
mistake to use the gravitational constant G if one wants gravity predictions as 
accurate as possible. Table 3 shows gravitational predictions as predicted in the 
normal framework of using G and M. This requires knowledge of many more 
input parameters than the approach that does not use G and M. Here, we as-
sume G is found by a Cavendish apparatus. Compare Tables 1-3. In Table 3, 
when using G to make predictions, we clearly need many more input parameters. 
There are other ways to find G than the Cavendish apparatus, but we will claim 
that all these methods lead to bigger uncertainty than does not relying on G, as  

 
Table 3. The table shows various things we can find from a Cavendish apparatus and 
what leads to uncertainty. 

Observable Formula 
Parameters needed 

to be measured 
Needed 

constants 

Gravity constant 
2 2

2

2 c

c c

L RG
M T

θ
π

=  Mc, L, Rc, Tc, θ  

Mass M (Earth) 
2 2
1 1

2

2

b

gR HRM
G T G

= =  H Tb, R1, Mc, L, Rc, Tc, θ  

Orbital velocity 
2

o
GMv
R

=  H, Tb, R2, R1, Mc, L, Rc, Tc, θ  

Orbital time 
2

2

2 RT
GM
R

=
π

 
H, Tb, R2, R1, Mc, L, Rc, Tc, θ Orbital time 

Light bending 2
2

4GM
c R

δ =  H, Tb, R2, R1, Mc, L, Rc, Tc, θ c 

Gravitational red-shift 2
2

GM
c R

δ =  H, Tb, R2, R1, Mc, L, Rc, Tcθ c 

Time dilation 2 1 2
2

21 GMT T
R c

= −  H, Tb, R2, R1, Mc, L, Rc, Tc, θ c 

Escape velocity 
2

2
o

GMv
R

=  H, Tb, R2, R1, Mc, L, Rc, Tc, θ  
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they always require measurements of more input variables. The very simple way 
we have described avoiding use of G will therefore reduce prediction uncertainty 
in gravity predictions. 

4. Finding GM Requires Much Less Input Information than  
Does Finding G and M 

All observable gravitational phenomena can be predicted from GM. None of 
them only need G or only M, nor do they need GMm. The small mass m 
( m M ) in the Newton force formula is always canceling out in gravitational 
derivations that lead to formulas that can be checked with observable gravita-
tional observations. The gravity force itself is never observed. In real, two-body 
problems where the gravity force of m also plays a significant role, the gravita-
tional parameter is ( )1 2 1 2G M m GM Gmµ = + = + , so again we always have G 
multiplied by a mass when doing gravity predictions. 

The output units of M are kilogram, and the output unit of G is m3∙kg−1∙s−2. 
This means that when G is multiplied by M, the kilogram output unit of M can-
cels out with the kg−1 in G. Thus for no observable gravitational observation is 
the output unit (dimension) kilogram needed. On the other hand the dimen-
sions L3∙T−2 as was in the original Newton astronomical mass is preserved as it is 
needed for gravitation, when using meters and seconds unit system (S.I.) then 
what is preserved of units after multiplying G with M is m3∙s−2. This is obvious 
when pointed out, but has hardly got attention in the gravitational literature. 
The kilogram is originally a humanly-constructed amount of matter. Since 2019, 
the kilogram has been re-defined in terms of the Kibble balance and the Planck 
constant (see, for example, [36] [37]). Still, the kilogram is a human “arbitrary” 
choice of quantity of matter, and it is well known that even after the 2019 
re-definition and use of the Watt balance (Kibble balance) to measure the kilo-
gram, there is still uncertainty around its measurement. NIST 2019 CODATA 
reports a standard uncertainty of 3 × 10−10 in the kilogram-atomic mass unit re-
lationship. So, to find G and M separately means that G and M separately will 
contain an additional uncertainty related to the uncertainty in kilogram, and we 
will see this is not needed. If G is found from the same mass that it is later used 
to calculate gravity predictions for, then this does not cause any problem, as the 
additional uncertainty in M will then perfectly cancel out with the additional 
(not all, just the additional) uncertainty in G. That is, if you find G from the 
mass of the large ball in a Cavendish apparatus Mc, and then use GMc to predict 
something about the gravitational field of Mc, this does not cause additional er-
rors from using the kilogram definition of mass. It is when you take G found 
from one mass, for example Mc (the large ball in the Cavendish apparatus) and 
then use it to find the mass of another object (for example, the mass of the 
Earth), and then combine G with M, that you add uncertainty that could be 
avoided. The gravitational constant must, in general, be found from a small mass 
that we know the kilogram mass of, and is then later used to make predictions of 
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astronomical gravitational objects. This is not needed, as G is never needed to 
make predictions of gravity phenomena that are observable and can therefore be 
checked. In addition, using the gravitational constant G adds additional uncer-
tainty to our predictions, when G is used on another mass than it has been cali-
brated from. This has nothing to do with G changing with mass (something it 
does not do), but relates to the fact that to measure G requires a series of meas-
ured inputs that are otherwise not needed. 

Table 4 shows how we can find GM directly without going through the much 
longer process to find G and M separately first and then multiplying them with 
each other, as is standard methodology in modern physics; see Table 3. To find 
G and M separately drags in the uncertainty in the kilogram measure, in addi-
tion to other uncertainties such as the uncertainties in the different parameters 
one needs to measure when finding G from a Cavendish apparatus. There are 
also other ways to find G, but they all require some additional measurements 
that are not needed when we directly find GM as a single entity. 

If one wants to reduce uncertainty in the predictions, one should never, in 
general, try to calculate G and M separately; at least, not for any astronomical 
bodies, such as planets, suns, galaxies, or even the whole observable universe. If 
one wants to make gravitational predictions from the sun then one needs one 
precise gravitational observation from the sun. From this, one can get out GM 
directly without knowing G or M separately first. Then GM can be used for all 
other gravitational predictions from the sun. If one wants to make gravitational 
predictions from the gravitational field of the Earth then GM should be calcu-
lated directly from one observable gravitational effect from Earth, such as the 
orbital time of the moon or the gravitational acceleration, which can both be 
easily measured with no knowledge of G and M. This is a general principle that 
holds for any gravitational prediction. For any gravitational mass, one can make 
one gravitational observation and this should then be used to estimate GM di-
rectly without finding G or M separately, and then one would use the found GM 
to predict other gravity phenomena for that gravity object. This approach will, in 

 
Table 4. The table shows various gravitational observations we can use to find GM. To 
find G and M separately requires much more input information and therefore has more 
uncertainty than GM. 

Observable Formula 
Parameters needed 

to be measured 
Constant 
needed 

Orbital time 
2 3

2
2

4 RGM
T
π

=  R2, T  

gravitational  
acceleration 

2
1

2

2

b

HRGM
T

=  H, R1, Tb  

Light bending 
2

4
RcGM δ=  δ, R c 

Gravitational redshift 2GM zRc=  z, R c 
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general, reduce the prediction uncertainty compared to any calculation relying 
on the value of first finding the value of G and M. Why this is the case we will 
better understand when we dive deeply into G and M in the next sections. 

5. Kilogram Mass versus Collision-Time Mass 

As we showed above, to find the kilogram mass of the Earth, we need to know G. 
Further, to find G, we need to know the kilogram mass of the large balls in the 
Cavendish apparatus. But to predict observable gravitational phenomena, we do 
not need to know either G or M. So how is it possible that we do not need to 
know the kilogram mass to make gravity predictions, when gravity is known to 
be linked to mass? 

In our view, the kilogram mass is an incomplete mass definition that never 
should have replaced Newtons mass definition. However, the incomplete kilo-
gram mass gets fixed by multiplying it with the gravity constant G. The kilogram 
mass is then, as we have shown in previous papers and will show again here, 
re-constructed (by multiplying G with M) into a more complete mass definition 
that we will call collision-time. To understand this, we must go to the Planck  

scale. Max Planck [38] [39] introduced in 1899 a unique length: 3p
Gl
c

=
 , time: 

5p
Gt
c

=
 , mass: p

cm
G

=
 , and temperature 

5

2p
b

cT
Gk

=
  (The Planck energy  

is simply p bT k , but Max Planck did not describe it directly, only indirectly 
through Planck temperature that is basically another way to describe energy). 

One can also solve the Planck length formula of Max Planck for G and this 
gives: 

2 3
pl c

G =


                             (12) 

In 1987, Cohen [40] pointed out that solving Planck units with respect to G 
only would lead to a circular problem as one first had to know G to find the 
Planck unit. Trying to express G in this way would just lead, in circular fashion, 
back to needing to know G. This view has been repeated as recently as 2016; see 
McCulloch [41]. However, in recent years it has been demonstrated that we can 
find the Planck length as well as other Planck units totally independent of any 
knowledge of G; see [26] [42] [43] [44] [45]. This means the Newton’s gravita-
tional constant is, in reality, a composite constant; see [46] for an in-depth dis-
cussion and literature review study about this view. 

This means that to measure G can be seen to entail measuring the Planck 
length (squared) as well as the Planck constant and the speed of light. The un-
certainty in G comes from the uncertainty in the Planck length, as the Planck 
constant and the speed of light are exact (by definition at least). Before we can 
understand the consequences and reasons for this fully, we must also investigate 
the kilogram mass from a “new” perspective. Still, it is worth mentioning that it 
is no surprise that there is a big uncertainty in measures of G as it is indirectly 
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related to measuring the square of the smallest distance there is: the Planck 
length. 

The Compton [47] wavelength formula is given by h
mc

λ = . This formula we  

can solve for the mass, and this gives: 

1 1hm
c cλ λ

= =
                          (13) 

where λ  is the Compton wavelength and λ  is the reduced Compton wave-
length, further h is the Planck constant, and   is the reduced Planck constant 
(also known as the Dirac constant). This way to express mass was likely first 
suggested by Haug [48] [49]. One could mistakenly think this way to express the 
kilogram mass only can be used for electrons, as the Compton wavelength for-
mula was developed for the electron, even if it has also been discussed for the 
proton; see [50] [51]. We have demonstrated in a series of papers [6] [26] that 
this form of expressing the kilogram mass, based on its Compton wavelength 
(Equation (13)), can be done for any mass, even for astronomical objects like 
stars and galaxies. We naturally do not claim macroscopic masses have a single 
Compton wavelength. However, the aggregates of all the Compton wavelengths 
of all the elementary particles in the mass of interest can be expressed as an ag-
gregate, which is given by: 

1
1

i
n

i

λ

λ

=
∑

                           (14) 

We can even find the equivalent Compton wavelength of all the mass (equiva-
lent) in the universe, as has recently been demonstrated by Haug [52]. Recently, 
we [53] also demonstrated that the Compton wavelength is identical to what can 
be called the rest-mass photon wavelength. Furthermore, we found that the de 
Broglie [54] [55] wavelength is likely only a mathematical derivative of the 
Compton wavelength. The Compton frequency appears to be directly related to 
the quantization of mass. Moreover, the Compton frequency plays a central role 
in the Schrödinger [56] equation, the Dirac [57] equation, and the Klein-Gordon 
equation, and even in the understanding of the Planck constant from a deeper 
perspective. This is discussed in detail in the paper just mentioned. 

If any kilogram mass can be expressed with Equation (13) then clearly the on-
ly thing that distinguishes one kilogram mass from another is the Compton wa-
velength (when we are only interested in how many kilogram). This is because 
the Planck constant and the speed of light are exact constants that cannot vary 
from object to object. As we have pointed out in a series of papers, the kilogram 
mass is lacking information needed to describe gravity. However, this is fixed in 
standard gravitational theory (without one having had that in mind) by multip-
lying the kilogram mass with G. Be aware that in predictions of all observable 
gravitational phenomena, we always have GM in the prediction formula and 
never GMm. The small mass in the Newton gravity formula always cancels out 
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in derivations to arrive at a formula predicting something observable. Again, in 
real, two-body problems where the small mass also plays a significant role, the 
gravity parameter is ( )1 2 1 2G M m GM Gmµ = + = + . That is, the kilogram mass 
is always multiplied by G and, in our view, this makes the incomplete kilogram 
mass definition complete, as we will discuss. 

Based on the analysis above, we can look at this from a deeper perspective,  

namely by replacing G with its composite 
2 3
pl c

G =


, and M with 1M
cλ

=
 .  

This gives: 
2 3

31p p pl c l l
GM c

c cλ λ
= =





                    (15) 

The embedded Planck constant cancels out from the mass between G and M, 
and the Planck length is introduced into the mass. This actually corresponds to 
what we have coined collision-time mass [58]. The collision-time mass is defined 
as: 

3
p p p

g p

l l lGM M t
c c λ λ

= = =                    (16) 

where pt  is the Planck time, and the integer part of pl
λ

 represents the number  

of certain Planck events per Planck time, and the fractional part is the frequency 
probability for one more such event; see [58]. For any macroscopic mass, the in-
teger part is so large that the fractional part can be ignored. For example, for the  

Earth we have 30275pl
λ
≈ , which is an enormous amount of Planck events per  

Planck time. This means GM is identical to c3 multiplied by the collision-time 
mass. To find G multiplied by M, that is GM, requires much less information 
than finding G and M separately. One can, for example, estimate GM from only 
orbital time of the moon, as given by: 

2 3
2

2
4 RGM

T
π

=                            (17) 

where R2 is the distance from the center of the moon to the center of the Earth, 
and T the orbital time of the moon around the Earth; see also the previous sec-
tion. This only requires one constant: the speed of light. To find G and M sepa-
rately requires much more information and measurements than finding just GM, 
and all observable gravitational phenomena can be predicted by GM. 

To find the kilogram of a mass is indirectly related to finding the Compton 
wavelength of that mass, and to find G is indirectly linked to finding the Planck 
length that, in our view, is also embedded in the collision-time mass which is the 
real mass. The only time we need to extract G is when we want to calculate 
Planck units separately, when relying on using the standard Max Planck method. 
The Newton gravitational constant is never needed to make gravitational predic-
tions for any observable gravity phenomena. This also means we can always get a 
more accurate prediction of the gravity mass (collision-time mass) than the ki-
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logram mass for large objects. To find the kilogram mass from, for example, the  

orbital time of the moon, we had 
3 2
2

2
4RM

T G
π

= . To do the same for the colli-

sion-time mass, we have: 
3 2
2

2 3
4

g
RM
T c

π
=                             (18) 

We need knowledge of the speed of light instead of the gravity constant. There 
is no uncertainty in the speed of light, but the uncertainty in measurements of  

the gravitational constant is considerable. Again, Mg is nothing more than 3
GM
c

  

so this naturally relates to needing considerably less input information to find 
GM than to find G and M separately, as shown in the previous sections. Still, in 
our view, there is more to it than that, as G is not related to anything physical, 
but a composite constant, not by assumption, but by calibration and based on 
how mass in gravity has been defined since 1873. The gravity constant is needed 
to fix the incomplete kilogram mass. 

It is possible to express the Newton gravity force as: 

3
2

g gM m
F c

R
=                           (19) 

or even as 

2

Eg g
g

E
F c

R
=                           (20) 

where p
g p

l
E l

λ
=  is the gravitational energy (collision-length) as described in  

detail by [59] [60]. Both these formulas for the gravity force give different output 
units than the 1873 Newton gravitational formula used in modern physics today. 
However, no one has ever measured the gravitational force, only its conse-
quences. 

When it comes to predictions of observable gravitational phenomena, these 
three gravitational force formulas all give the same output predictions in both 
numbers and units, but they require different input. So should the scientific 
community prefer a model that requires a constant G with large uncertainty in it 
to predict gravity phenomena, as well as the constant that isn’t linked to any-
thing physically observable, or should one prefer a model where the constant is 
exact and therefore doesn’t lead to additional uncertainty and is linked to some-
thing physical, namely the speed of light? We are in no doubt we would prefer 
the latter. Table 5 demonstrates that the 1873 modified Newton gravity formula, 
as well our new gravity force formula that never relies on G and therefore gives 
more precise predictions, are the same at the depth of reality, but this is only 
true when one understands G is a composite constant and that the kilogram 
mass also can be written as a composite form. 

In Table 5, pay attention to how, when replacing G with its composite form, 
and replacing the kilogram mass with the way we can write it based on the  
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Table 5. The table shows several important things. All gravitational predictions in the table that can actually be observed depend 

on GM and not on GMm. Further, at a deeper level, 
2

2 pl
GM c

λ
= , the c2 in some predictions, cancel out, but all gravitational pre-

dictions at a deeper level contain 
2
pl
λ

 so the Planck length and the reduced Compton wavelength of the mass should tell us 

something essential. Further, the Newton gravity force written as 2

Eg g
g

E
F c

R
=  gives exactly the same predictions in numbers 

and output units as the well-known 1873 modified Newton force formula. This is in spite of the gravity force formulas having 
different output units. 

 Standard from deeper level: Alternative: 

Mass 
1M
cλ

=
  (kg) p

g p

l
M t

λ
=  (collision-time mass) 

Energy 2E Mc=  (joule) p
g p

l
E l

λ
=  (gravitational energy) 

Gravitational constant 
2 3
pl c

G =


 gc  m/s 

Non observable (contains GMm) 

Gravity force 2

MmF G
R

=  (kg∙m∙s−2) 
2

Eg g
g

E
F c

R
=  m/s 

3
2

g g
g

M m
F c

R
=  m/s 

Observable predictions, identical for the two methods: (contains only GM) 

Gravity acceleration 
2

2
2 2

plGMg c
R Rλ

= =  
2

2 2
2 2
g p

g g

E l
g c c

R Rλ
= =  

Orbital velocity 
2
p

o

lGMv c
R Rλ

= =  
2

g p
o g g

E l
v c c

R Rλ
= =  

Orbital time 2

2 2

p

R RT
GM l

cR Rλ

π π
= =  

2

2 2

g p
g g

R RT
E lc c
R Rλ

= =
π π  

Velocity ball Newton cradle 
2

22 2 p
out

lGM cv H H
R R λ

= =  
2

2g g p
out g

c c l
v E H H

R R λ
= =  

Periodicity Pendulum 
(clock) 2

22 2
p

L L LT R R
g GM c l

λ
= = =

π
π π  2

2 2

g g g p

R L LT R
c E c l

λ
= =

π π  

Frequency Newton spring 
21

2 2
plGM cf

R x R xλ
= =

π π
 

2

2 2
g g g pc E c l

f
R x R xλ

= =
π π

 

Gravitational red shift 

2

2
1 1

2

2
2 2

221 1
1 1

2 21 1

p

p

lGM
R c R

z
GM l

R c R

λ

λ

− −
= − = −

− −

 

2

1

2

2

2 2
1 1

1 1
2 21 1

g p

L

g p

h

E l
R R

z
E l
R R

λ

λ

− −
= − = −

− −
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Continued 

Time dilation 
2 2

2 221 1 p
R f f

lGMT T c T
R Rλ

≈ − = −  
22 2

1 1g p
R f f

E l
T T T

R Rλ
≈ − = −  

Gravitational deflection 
(GR) 

2

2

4 4 plGM
c R R

δ
λ

= =  
24

4g pE l
R R

δ
λ

= =  

Advance of perihelion ( ) ( )
2

2 2 2

66
1 1

plGM
a e c a e

σ
λ

π
=

−
π

=
−

 
( ) ( )

2

2 2

6 6
1 1

g pE l
a e a e

σ
λ

= =
−

π

−

π
 

Micro lensing 
2

2

44 ps L s L

s L s L

ld d d dGM
c d d d d

θ
λ

− −
= =  

24
2 ps L s L

g
s L s L

ld d d d
E

d d d d
θ

λ
− −

= =  

 

Compton wavelength formula, then what we have in every formula is 
2
pl
λ

.  

Also, note that the Planck length is a constant, and λ  is a variable depending 
on the gravitational mass size. In addition, in some gravitational predictions we 
need one more constant, namely the speed of light (gravity). Further, we natu-
rally need the distance from the gravity mass center to where we want to make 
the predictions for, so R. 

It is important to understand we do not need to calculate or find the Planck 
length and the Compton wavelength separately to make these gravity predictions 
despite them being dependent on both the Planck length and the Compton wa-
velength. What we need for all gravity predictions related to observable phenomena  

is 
2
pl
λ

 (or in some cases 2
pl
λ ). This parameter can be found easily from basically  

any observable gravity observation without any knowledge of the Planck length, 
the Compton wavelength, the gravity constant, or the Planck constant. This is 
demonstrated in Table 6. 

To separate out the Planck length, we need to know the Compton wavelength. 
This we can measure for any mass, even large ones, but it requires much more  

input than just measuring 
2
pl
λ

. To separate out pl  and λ  is similar to sepa-

rating out G and the kilogram mass M. However, even if such separation is not  
needed for predicting any observable gravitational observation, it is needed to 
understand and study the quantum level of gravity and matter. The factor: 

p
p

l
l
λ

                            (21) 

should, in our view, be interpreted as the gravitational collision-length energy. 
This is directly related to gravity and can also be called quantum gravitational  

energy. The last term pl
λ

 should again be interpreted as the number of Planck  

events in the mass M per Planck time; see [58] [59]. It is also the reduced  
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Table 6. The table shows various gravitational observations we can use to find 
2
pl
λ

. To 

find pl  and λ  separately requires much more input information and therefore there is 

more uncertainty in them than 
2
pl
λ

. 

Observable Formula 
Parameters needed 

to be measured 
Constant 
needed 

Orbital time 
2 2 3

2
2 2

4pl R
c Tλ
π

=  R2, T c 

gravitational  
acceleration 

2 2
1

2 2

2p

b

l HR
c Tλ

=  H1, R1, Tb c 

Light bending 
2

4
pl Rδ
λ
=  δ, R  

Gravitational redshift 
2
pl

zR
λ
=  z, R  

 
Compton frequency per Planck time. It is, for any macroscopic mass, an enormous 
number as the reduced Compton wavelength of a macroscopic mass is much 
smaller than the Planck length. No real wavelength can be smaller than the 
Planck length, in our view. The reason the equivalent Compton wavelength for a 
macroscopic mass is smaller than the Planck length is because it is an aggregate, 
and the aggregate follows the formula 14. It is therefore not a physical Compton 
wavelength, but we could call it an equivalent aggregated Compton wavelength. 

There is much that is new in this presented interpretation, and it can seem 
controversial, but many of the answers to questions that some readers likely have 
can be found in a series of papers we have now published about collision space- 
time. Even if one ignores that theory here, it is still quite clear that one gets more 
accurate gravitational predictions by not relying on measuring G and M sepa-
rately and then multiplying them together to make gravitational predictions. It is  

always more accurate to just find GM directly as well as 2 p
p

l
c l

λ
 directly than to  

find G and M separately, or pl  and λ  separately. Gravity is, at the deepest 
level, linked to both Compton frequency and the Planck length, but to make 
gravity predictions we can find both of these in the needed combination at the 
same time. This will, in general, lead to considerably less uncertainty in the gra-
vitational predictions than those one gets by first finding G, as is the case in 
standard gravitational physics. 

6. The Uncertainty in pl 2

λ
 from Gravity Observations Is  

Smaller than for Only the Planck Length 

In this section, we show how we can find the Planck length independent of 
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knowledge off G and  . This has been shown previously in some of our other 
papers, but here our focus is on first finding the Planck length squared, divided 
by the Compton wavelength; this needs much less information and therefore 
gives less uncertainty in the predictions. Further, we discuss why there is much 
more uncertainty in the Planck length than the Planck length squared, divided 
by the Compton wavelength. 

From the previous section, it is clear that we can find the term p
p

l
l
λ

 easily  

from a series of gravity observations with no knowledge of G or  . For example, 
we can find this term by simply measuring the orbital time of the moon; it is 
about 27.3 days, which correspond to 27.3 24 60 60 2358720× × × ≈  seconds. 
Further, we need the distance from the Earth to the moon and this is approx-
imately 38,440,0000 meters. We also need to know the speed of light, which we 
can measure totally independent of any knowledge about gravity, or we can just 
look it up. It is 299792458 m sc = . Now we can plug this into the first formula 
in Table 6: 

2 2 3 2 3
2

2 2 2 2
4 384400000

299792458 2358720
0.0045 m

pl R
c Tλ

≈

π ×
=

×
4π

=  

However, to extract the Planck length we need to know the reduced Compton 
wavelength of the Earth. This we can find by the Compton wavelength formula  

Mc
λ =

 , but this we can only do if we know the kilogram mass of the Earth M.  

To find this mass, we can go through the procedure of first finding the gravita-
tional constant from a Cavendish apparatus, then calculating the mass of the  

Earth by solving the orbital time formula 2

2

2 RT
GM
R

=
π  with respect to M. But  

again, we then need to rely on G. We can naturally do this if we do not care 
about being dependent on G. Still, this means there will be more uncertainty in  

the Planck length estimate than in 
2
pl
λ

, which we could easily extract without  

knowledge of G or M. There is, however, another way to find the Compton wa-
velength independent of both knowledge of G and  . First, however, we show a 
way to find the Planck length independent of G. In a Cavendish apparatus we 
have: 

2 2 2

2 2

2p c

c

l L R
T c

θ
λ

π
=                           (22) 

That is also in a Cavendish apparatus we need no knowledge off G to find 
2
pl
λ

. 

Next, we can re-formulate it to only have the Planck length on the left side, 
and this gives: 
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2 2
2

2 2

2 c
p

c

L Rl
T c

θλ
=

π  

2 2
2

2 3

2
1
c

p

c

L Rl
T c

c

θ

λ

π
=




                       (23) 

Since 1
cλ

  is the formula we can use to express the kilogram mass of the  

large ball in the Cavendish apparatus, since λ  is the reduced Compton wave-
length of this mass, then we can replace this with m. In other words, we just 
need a standard tool to measure weight to find the kilogram mass of m. We get: 

2 2
2

2 3

2 c
p

c

L Rl
T c m

θπ
=
  

2 2

2 3

2 c
p

c

L Rl
T c m

θπ
=


                      (24) 

A more detailed derivation and analysis of this can be found in the appendix 
of our 2017 paper [42], which was the first paper clearly demonstrating how to 
find the Planck length independent of G. However, here our main focus is that  

to find the Planck length leads to higher uncertainty than does finding 
2
pl
λ

,  

because it is clear we need to measure the kilogram weight of the large ball in the 
Cavendish apparatus if we want to find the Planck length. On the other hand, to  

find 
2
pl
λ

 (Equation (22)), we do not need to know the kilogram mass of the  

large ball (or any object) in the Cavendish apparatus. This is very similar to how, 
to find G, we also need to know the kilogram mass of the large balls in the Ca-
vendish apparatus, but not when we want to find GM. Predictable gravitational 
phenomena do not need G but they need GM, just as they do not need the pl   

but 
2
pl
λ

. From a deeper understanding of gravity, this is naturally the same thing 

as 
2

2 pl
GM c

λ
= . 

We can also find the Compton wavelength without knowledge of the Planck 
constant  , by observing Compton scattering of the electron, and this gives: 

2, 1,

1 cose
γ γλ λ

λ
θ

−
=

−
                         (25) 

where eλ  is the Compton wavelength of the electron. All we need to observe, to 
find this, is the wavelength of the photon when shot out towards the electron 

1,γλ , and the wavelength of the photon scattered by the electron 1,γλ , as well as 
the angle between the incoming and outgoing photon. In other words, we need 
no knowledge of the Planck constant or G to measure this. 

Next, we can find the Compton wavelength of the proton using a cyclotron. 
The ratio of the Compton wavelength of the electron and proton is equal to their 
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cyclotron frequency ration. This is because the proton and electron have the 
same absolute value of charge. The cyclotron frequency is given by: 

qBf
m

=                              (26) 

where q is the charge, B is the magnetic field, and m is the mass of the particle 
one runs in the cyclotron. The cyclotron frequency ratio is therefore given by: 

e

e e eP

PP e P

P

q B
f m m

q Bf m
m

λ
λ

= = =                       (27) 

Experimental cyclotron frequency research shows that this ratio is about 
1836.15; see, for example, [61] [62]. This is the well-known proton electron mass 
ratio that is identical to the electron proton Compton wavelength ratio. So, the 
Compton wavelength of the proton is simply the Compton wavelength of the 
electron divided by the proton to electron cyclotron frequency ratio. We do not 
claim the proton has one single physical Compton wavelength, but that the 
Compton wavelength we derive can still be used to find the mass of the proton. 

Next, we will find the Compton wavelength of a macroscopic object from 
which we can measure effects from a gravitational field. That is, we “simply” 
need to count the number of protons and neutrons in one of the two large (iden-
tical) balls in the Cavendish apparatus; that is, to count the number of atoms. 
The Compton wavelength of the mass of the whole ball is then simply the 
Compton wavelength of the proton divided by the sum of the number of protons 
and neutrons in that mass. For simplicity, we can treat protons and neutrons as 
having the same mass, which is close to reality. To accurately count the number 
of atoms in a sphere of macroscopic size is not easy, but fully possible. One of 
the competing methods for a new kilogram standard consisted of actually 
counting atoms in silicon spheres’ (28Si) crystals; see [63] [64] [65]. Also, other 
methods to count atoms exist [66] [67]. So even though it is hard and quite ex-
pensive, it is fully possible to count the number of atoms in such a sphere. 

In addition, it is well known that the mass of a bound element (mass) is typi-
cally slightly different than the aggregate of the mass of the individual atoms. 
The main component of this is nuclear binding energy; see, for example, [16] 
[68]. The nuclear binding energy is always less than 1% for any known atom and 
therefore the maximum error in the Compton wavelength, created by ignoring 
binding energy in its estimation, will be one percent. We can naturally quite eas-
ily incorporate the binding energy. However, for gravity predictions, we need  

2
pl
λ

 and not the Planck length or Compton wavelength as separate entries. When 

we estimate 
2
pl
λ

 directly from a gravitational observation, then the binding  

energy is automatically accounted for as then there is no need to count atoms in 
that case. 
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7. Even Newton’s Original Formula Is More Accurate than  
Using G in the 1873 Formula 

Modern physics uses the 1873 modified version of Newton’s gravitational for-
mula and thinks G is essential for gravity predictions. As we have shown in the 
sections above, when first extracting G from one mass by, for example, using a 
Cavendish apparatus for using G in combination with another mass than one ca-
librated it from, leads to unnecessary additional uncertainty in the gravity pre-
dictions. If one fully understands the 1873 formula, and only relies on calibrat-
ing GM from one gravity observation from the gravitational mass one plans to 
do other gravity predictions for, then this is not an issue. However, this is not 
normally what is done as the gravity community has not thought carefully about 
this. 

Very few papers have even questioned why G came into place and what it tru-
ly represents. University textbooks have, for decades, also not made physics stu-
dents aware that the so-called Newton gravity force formula they learn about is a 
modified version of Newton’s original formula. Assume we just use Newton’s 
original formula: 

2
n nM mF

R
=                           (28) 

then gravitational acceleration must be: 

2
n n

n
M mm a

R
=  

2
nMa

R
=                           (29) 

Assume we measure gravitational acceleration on the surface of the Earth with  

a drop ball to be 2
2

2 9.81 m sHg
T

= ≈ . This means the Newton mass of the Earth  

must be: 

2
29.81 m s nM

R
=  

2 29.81 m snM R= ×  

2 2 14 3 26371000 9.81 m s 3.98 10 m snM −= × ≈ × ⋅           (30) 

The Newton mass is equal to meters cubed, divided by seconds squared. At 
the time of Newton, the meter and second were not yet invented as units, but at 
least it would be “length-unit” cubed, divided by “time-units” squared. Now 
from this we can, for example, calculate the orbital speed of the moon. It must 
be: 

14

2

2 2 384400000 2373632 s
3.98 10
384400000

n

RT
M
R

×
= ≈

π
≈

π

×
             (31) 

which corresponds to 27.47 days after we divided the number above by the 
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number of seconds per day 24 × 60 × 60. Every observable gravity phenomena 
that can be predicted by the 1873 modified Newton gravity force formula that is 
used today can be predicted by the original Newton gravity force formula; see 
[7]. 

Actually, the original Newton force formula can be interpreted in several dif-
ferent ways. It can be interpreted as that nM GM= . This view is correct in rela-
tion to the numerical example just given above. And again, gravity predictions 
do not depend on G and M separately, or GMm, but on GM that can be ex-
tracted directly from one gravitational observation. This would mean the mass  

was defined as 
2

2 p
n

l
M GM c

λ
= = . The output unit of the mass is then m3∙s−2  

which, in our view, is no stranger than kilogram, but still it seems to lack logical 
sense for something physical. 

Another potential interpretation that we like much better is that the Newton 
force formula is identical to: 

3
2 2

g gn n M mM mF c
R R

= =                       (32) 

This would be true only if one has linked the distance to time through the 
speed of light, which means 1gc c= = . In that case, the mass is the collision  

length, namely p
n g p

l
M M t

λ
= = , but we cannot, with this interpretation of the  

original Newton formula, work with meters and seconds. It is unlikely Newton 
had thought about this possible interpretation, but theoretically he could have as 
he knew well the speed of light, mentioning in Principia it takes about eight mi-
nutes for the light to go from the sun to the Earth. 

The original Newton formula, the 1873 modified formula, as well as the recent 
Newtonian type of gravity force formulas that we have recently introduced, all 
predict the same if used consistently. However, the 1873 modified formula, if not 
understood from a deeper perspective, can lead to less accurate predictions than 
necessary because one thinks one needs to rely on G. Again, G is never needed to 
predict a single observable gravity phenomena, for it is GM that is needed and  

that, at a deeper level, is: 
2

2 pl
c

λ
. 

8. Field Equation That Give All the Same Results as General  
Relativity But without the Need of G 

Einstein’s [23] field equation is given by 

4
1 8 .
2v v v v

GR Rg g T
cµ µ µ µ− + Λ =
π                      (33) 

It is clear that this equation requires the gravitational constant. The field equ-
ation itself does not give gravitational predictions that can be tested against ob-
servations without first solving the field equation based on chosen boundary 
conditions. Schwarzschild [69] assumed that the cosmological constant was zero, 
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as Einstein had also assumed at that time (1916), and that one was dealing with a 
spherical, non-rotating gravitational mass. Based on this, he derived the metric 
using spherical polar coordinates, and got the following equation 

( )
1

2 2 2 2 2 2 2d 1 d 1 d d sin d .k ks t R R
R R

α θ θ φ
−

   = − − − − +   
   

         (34) 

Next one must find α and k, where one end up with two equations that must 
be solved (see, for example, [70]), 

( ) ( )
1

1 and 1 .k kA R B R
R R

α
−

   = + = +   
   

                (35) 

The standard is then to find k and α by considering the weak-field limit where  
GM

R
Φ = −  is the Newton gravitational potential, which means we get 

( )
2 2

21 ,
A R

c c
Φ

→ +                          (36) 

This gives 2cα =  and 2
2GMk

c
= − . Inserting this into Equation (34), we get  

the well-known “textbook” [71] Schwarzschild metric: 

( )
1

2 2 2 2 2 2 2 2
2 2

2 2d 1 d 1 d d sin dGM GMs c t R R
Rc Rc

θ θ φ
−

   = − − − − +   
   

   (37) 

This appears to require knowledge of G. However, as we have pointed out in  

Section 5, the gravitational constant can be written as 
2 3
pl c

G =


 (see [46]) and 

the kilogram mass M as 1M
cλ

=
 . By replacing G and M with these in the  

Schwarzschild metric, we obtain: 

( )

12 3 2 3

2 2 2 2 2 2 2 2
2 2

1 12 2
d 1 d 1 d d sin d

p p

M M

l c l c
c cs c t R R

c R c R
λ λ

θ θ φ

−
   
   
   = − − − − +   
      
   

 

   

( )
1

2 2 2 2 2 2 2 22 2
d 1 d 1 d d sin dp p p p

M M

l l l l
s c t R R

R R
θ θ φ

λ λ

−
   

= − − − − +   
   

   (38) 

As we have demonstrated in Section 5, the term p
p

l
l
λ

 can be found without  

knowledge of G. This means that we only need to know the speed of light con-
stant c to make all predictions from the Schwarzschild metric, provided that the  

metric is understood from a deeper level. The term pl
λ

 is the reduced Compton  

frequency per Planck time, so this can actually be seen as a quantization of gen-
eral relativity theory, where one has even incorporated the Planck scale, as re-
cently suggested [72]. 

Still, why do the field equations contain G? We have recently shown in [60] 
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that there is another field equation that gives all the same predictions as Eins-
tein’s field equation, but it is given by: 

1 8 ,
2

R Rg g Eµν µν µν µν− + Λ π=                     (39) 

The term: Eµν , is now identical to Einstein’s stress-energy tensor except that 
any energy in it is linked to what we have defined as collision-length energy  

p
g p

l
E l

λ
=  and collision-time mass p

g p

l
M t

λ
= . This should not be mistaken as  

simply setting just 1G c= = . This field equation does not depend on G and the 
speed of light indirectly comes in when we develop the metric and calibrating to 
Newton. If we follow the same procedure as Schwarzschild, we end up with the 
metric: 

( )
1

2 2 2 2 2 2 2 22 2
d 1 d 1 d d sin d ,g gM c M c

s c t R R
R R

θ θ φ
−

   
= − − − − +   
   

    (40) 

or alternatively: 

( )
1

2 2 2 2 2 2 2 22 2
d 1 d 1 d d sin d ,g gE E

s c t R R
R R

θ θ φ
−

   
= − − − − +   
   

     (41) 

As p
g p

M

l
E l

λ
=  and p

g p
M

l
M t

λ
= , we end up with: 

( )
1

2 2 2 2 2 2 2 22 2
d 1 d 1 d d sin d ,p p p p

M M

l l l l
s c t R R

R R
θ θ φ

λ λ

−
   

= − − − − +   
   

    (42) 

which is the same as the Schwarzschild metric coming from Einstein’s field equ-
ation when understood from a deeper perspective. That is Equation (38) and 
Equation (42) are identical. However, our new approach has the advantage that 
nowhere in our theory is G needed; still, we can give the same predictions as 
general relativity theory. This in our view ultimately demonstrated G is not 
needed in gravitational physics when understood from a deeper perspective. 

We also think there is no coincident that the 4
G
c

 part of the Einstein constant  

when multiplied by standard joule defined energy turn the joule energy into 
what we have defined as collision-length energy, that is 

2

4
p p

g p

l lG cE E l
cc λ λ

= = =



                      (43) 

See [60] for a more in depth discussion on this. 
Modern Newtonian theory, which is the post-1873 version after the gravita-

tional constant was inserted into Newton’s formula, as well as the general theory 
of relativity and various alternative gravitational theories, all rely on the gravita-
tional constant (denoted as G). Our collision space-time theory, as well as the 
original Newtonian theory, does not rely on the gravitational constant and can 
explain why one can achieve higher precision in predicting gravitational obser-
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vations without using G. Aside from the improved precision in predictions, the 
original Newtonian theory provides the same predictions as the modern 
post-1873 version. 

Based on recent progress in understanding the Planck scale and demonstra-
tions of ways to find the Planck length independent of G (see [46]), a new ave-
nue has opened up to quantize and link general relativity to the Planck scale, as 
seen in [73]. By carefully studying the newly quantized version of the general re-
lativity theory, it becomes clear that all predictable gravity phenomena depend  

on knowing the factor p
p

l
l
λ

, where the last part, pl
λ

, represents the reduced  

Compton frequency in the mass Mg per Planck time. The reduced Compton 
frequency in matter can only be observed in quanta of integers, where the smal-
lest observable frequency is 1, within the observational time window of the 
Planck time. A frequency lower than that can be seen as a probability. This im-
plies that gravity is dominated by probabilistic effects for masses smaller than 
the Planck mass and by determinism for masses pm m . As demonstrated in  

Section 6, it is also more precise to find p
p

l
l
λ

 directly rather than pl  and λ  

separately. 

GM Is the Newton Mass 

As stated at the beginning of the paper, the original formula for the Newtonian 
gravity force is: 

2
n nM mF

R
=                            (44) 

This formula was used all the way up to 1873, as can be seen, for example, by 
reading Maxwell’s [24] book “A Treatise on Electricity and Magnetism”. In the 
book, Maxwell points out that astronomical masses have the dimensions of 
[L3∙T−2]. The dimensions of GM are also [L3∙T−2], which means that the kilogram 
mass cancels out when we multiply G with M as demonstrated in section 5. 
Therefore, there is no need for kilograms in gravitational predictions. Maxwell 
also explains how Mn can easily be found, for example, from gravitational acce-
leration. In the original Newtonian theory, gravitational acceleration is given by: 

2
nMg

R
=                            (45) 

As g can be found, for example, by simply dropping a ball from a height H  

and measuring the time it takes to drop, and inserting this into 2
2

d

Hg
T

=  to 

measure g, one can easily find Mn without G. This is because we must have 
2

2
2

n
d

HRM
T

= . The gravitational constant was not even invented at the time  

Maxwell published his book; it was invented several months after Maxwell’s 
book was published. 
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If one should use G and M, then G has to be found, for example, first by using 
a Cavendish apparatus. However, if G is applied to any other mass than the large 
ball in the Cavendish apparatus, then the error in finding GM by first finding G 
and then M, and then multiplying these together, will be larger than finding GM 
directly. To find GM directly is, in reality, to find the Newtonian mass, which 
requires less input than finding the kilogram mass M. The reason is that the ki-
logram mass contains information that is not needed for gravity, and in addition, 
it lacks information that is needed for gravity. Therefore, it needs to be multip-
lied by G to extract information that is not needed and to introduce information 
into the mass that is needed. In the Newtonian gravitational mass, there is no 
information that is not needed, and all the information needed about mass to 
make gravity predictions is present. See also [72] that gives an overview of many 
possible mass definitions, and how the Newton mass Mn as well as the colli-
sion-time mass are complete masses for gravitational purposes while the kilo-
gram mass and many other possible mass definitions are not. 

The mass in the modified Newton formula of 1873, which is now known as 
the Newtonian gravitational force formula, is measured in kilograms. So, if the 
kilogram falls out of the formula, does this mean that gravity is not related to 
mass? We have indeed demonstrated that all observable gravitational phenome-
na can be predicted without knowing the mass (M) or the gravitational constant 
(G) in the force formula, see [27]. The reason for this is not that gravity does not 
depend on mass, as it naturally does, but that it depends on the collision-time 
mass. If we multiply the collision-time mass with c3, we get the Newtonian mass 
(Mn). In fact, we have: 

3
g nGM c M M= =                          (46) 

Therefore, the method of finding GM directly as is used in the GPS system, 
rather than first finding G and then M, is essentially to find Mn, which is the 
Newtonian mass directly. This can be done from most gravitational observations 
as was pointed out even by Maxwell, but naturally with much higher accuracy 
today due to much better measurement devices. We have recently presented yet 
another field equation consistent with the original Newtonian gravity force for-
mula as the weak field limit. This field equation is given by [60]: 

4
1 8 ,
2

R Rg g E
cµν µν µν µν−
π

+ Λ =                    (47) 

where Eµν  now is the stress-energy tensor, but now linked to the Newton mass 
Mn and its corresponding Newton energy 2

n nE M c=  rather than the kilogram 
mass M and the joule energy 2E Mc= . 

Once again, there is no need for G in this field equation or its solutions, as the 
only constant required is c. For example the Schwarzschild type solution in this 
field equation is simply 

( )
1

2 2 2 2 2 2 2 2
2 2

2 2d 1 d 1 d d sin dn nM Ms c t R R
c R c R

θ θ φ
−

   = − − − − +   
   

      (48) 
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This means that the way practitioners that have developed the GPS system 
that find GM directly without first finding G and M, is in reality finding the old 
Newton mass: Mn. To find Mn requires no information about the kilogram. If 
both general relativity theory and the 1873 modified Newton theory were giving 
a full understanding of gravity, then there should be no difference in precision 
by first finding G and then M, and multiplying them together to get GM com-
pared to finding GM without first finding G and M. 

While the theory of general relativity may be more complicated compared to 
our two new field equations, these equations are strongly linked to Einstein's 
theory since they yield identical predictions. Two of the field equations can ex-
plain why finding GM directly, rather than G and M, gives greater precision: G is 
not needed when using the correct mass, which is also embedded in GM. The 
method practitioners use to find GM directly is consistent with these equations 
and cannot be fully explained within general relativity theory. That is, general 
relativity theory cannot predict why this is the case without modification. How-
ever, at the deepest quantum level, our quantum gravity version of general rela-
tivity can provide an explanation. In relation to the Schwarzschild metric, both 
general relativity theory and the two new field equations are the same at the 
deepest level, as demonstrated in [60] and also in section 8. While general rela-
tivity theory is fully correct, it may be slightly overly complicated. That is we can 
get rid of the gravitational constant G, but we then need to switch to a different 
energy and mass definition, see [72]. 

9. Practical Implications 

All technology based on predictions from gravity phenomena where high preci-
sions is needed, such as GPS, should rely only on either Newton mass Mn or col-
lision-time mass Mg for maximum precision, and not on the kilogram mass M 
and the gravitational constant G. Currently, this is done (“unknowingly”) indi-
rectly by gravitational practitioners, such as for GPS, by relying on finding GM 
directly instead of finding G and M independently and then multiplying them 
together. The latter method will result in unnecessary measurement errors as is 
well known by GPS agencies, such as the National Imagery and Mapping Agency 
as is quite clear from their document WGS 84 version 3. 

Therefore, 3
n gGM M c M= =  should be used for GPS on Earth, as it is cur-

rently done, but also in spaceship navigation, where gravity measurements are 
relied upon for navigation, such as in the solar system. In this case, the Helio-
centric Gravitational Constant ,gGM



 should be used see also [74]. The Helio-
centric Gravitational Constant is when fully understood essentially simply the 
original Newtonian mass of the Sun ,nM



, which again is the collision-time 
mass of the Sun ,gM



 multiplied by c3. 
The same is true for any gravitational object where predictions of gravitational 

effects are important, such as navigation, or actually for any gravitational predic-
tion. It will always be more accurate to find GM directly, which is simply the 
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Newtonian mass Mn, which is identical to 3
gc M , rather than to first find G and 

then the kilogram mass M of the gravitational object of interest for making pre-
dictions. For example, when navigating around Mars, one should use the Mn of 
Mars in all predictions, which is identical to GM and 3

gc M . 
The reason why finding GM directly is much more accurate than finding first 

G and then M cannot be fully explained inside General Relativity Theory. Gen-
eral Relativity Theory is also linked to the 1873 ad hoc modified Newton formula 
when the gravity constant was introduced. However, the explanation for why 
finding GM directly without first finding G and then M is possible within our new 
gravitational model, which is based on two new Einstein-inspired field equations. 

Even if our new and deeper understanding of gravity does not necessarily lead 
to any practical improvements in geodetic technology, it provides a solid and 
profound theoretical understanding of why methods that rely on GM directly 
are superior in accuracy to those that involve finding G and M separately and 
then multiplying them together. The only exception is when both G and M are 
determined from the mass in the Cavendish apparatus, that is when G is used on 
the same mass it was found from, the additional measurement errors in G and M 
will in that special case cancel out. However, in practice, for geodetic technology, 
one would first need to find G from one mass (for example in a Cavendish ap-
paratus) and next to apply G on a different mass, the Earth. Ultimately, the way 
practitioners use gravity theory in practice for GPS (by finding GM directly) is 
fully consistent with our two new field equations, but cannot be fully explained 
in Einstein’s general relativity theory. General relativity theory cannot predict 
that finding GM directly gives higher precession, but our new field equations 
can. We know all this may sound controversial, but we ask the gravity research 
community to think carefully about this before jumping to prejudiced or rapid 
conclusions. That said, we are naturally open to criticism, discussions and other 
viewpoints. 

10. Conclusions 

We have demonstrated that by not relying on finding the gravity constant G as 
well as the kilogram mass of the gravitational object, we will get more accurate 
gravitational predictions. The gravitational constant G was invented in 1873, 
about at the same time as the kilogram definition of mass in gravity came into 
use. The kilogram unit is also embedded in G, as can be seen from its output 
units. However, the kilogram output unit cancels with the kilogram output units 
in the kilogram mass. No observable gravitational phenomena cares about the 
kilogram definition of mass as it is not the essence of mass related to gravity. At 
a deeper level, the gravitational constant contains the Planck length and the 
Planck constant as well as the speed of light. From a deeper perspective, the gra-
vitational constant must be multiplied by the kilogram defined mass of the gra-
vitational object to get the Planck constant (related to kilogram) out of the kilo-
gram mass, and the Planck length into the kilogram mass. At a deeper level, all  
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observable gravitational observations are dependent on p
p

l
l
λ

 and some are, in  

addition, dependent on the speed of gravity cg, which is identical to the speed of 
light c. This means all gravitational predictions only need two constants: c and 
the Planck length. However, the Planck length is not needed as a separate con-
stant to make gravity predictions that also can be observed, but it is needed in  

the form p
p

l
l
λ

, which can be extracted easily from any observable gravity phe-

nomena with no knowledge of any constant. 
We will claim that our insight is an important step for understanding quan-

tum gravity from a theoretical point of view, but also because it has practical im-
plications for gravity predictions. Quantum gravity is, in this view, remarkably 
already embedded in even standard Newton gravity and also general relativity, 
but this cannot be seen from its surface. Well, it is likely more correct to say our 
quantum gravity theory has Newton gravity as a good first approximation. 
However, our new insight also has important practical implications; namely, that 
one should never estimate G first, and then M, and then depend on G to esti-
mate gravity effects, with the exceptions of if G is only used in connection to the 
mass it was calibrated to. However, if one calibrates G from a Cavendish appa-
ratus, i.e., it is calibrated to the mass of the large balls in the apparatus, then if 
next used to predict gravitational effects for the mass of the Earth or any other 
mass, it will, as we have demonstrated, lead to unnecessary additional uncer-
tainty. The way to minimize uncertainty in gravity predictions is to calibrate GM,  

Mn, 3
gc M  (they are all the same from a deeper understanding 2 p

p

l
c l

λ
, but of 

these, only GM can give the incorrect impression one which is dependent on G) 
directly from one gravitational observation of the mass of interest, and to switch to 
the new Einstein-inspired gravitational field equation presented in this paper. This 
yields the same predictions as general relativity theory, but with lower uncertainty. 

While it is true that the accuracy of our gravity predictions, which no longer 
rely on the gravitational constant G, has to some degree already been tested by 
the National Imagery and Mapping Agency (NIMA) independently of our work, 
as documented in the Department of Defense World Geodetic System 1984 
document, we also encourage other gravity laboratories to rigorously assess our 
claims and methods. Notably, there is little published information, to our know-
ledge, that quantifies the extent of improvement in gravity predictions achieved 
by eliminating reliance on G. 
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