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Abstract 
In this paper, we investigate and analyze one-dimensional heat equation with 
appropriate initial and boundary condition using finite difference method. 
Finite difference method is a well-known numerical technique for obtaining 
the approximate solutions of an initial boundary value problem. We develop 
Forward Time Centered Space (FTCS) and Crank-Nicolson (CN) finite dif-
ference schemes for one-dimensional heat equation using the Taylor series. 
Later, we use these schemes to solve our governing equation. The stability crite-
rion is discussed, and the stability conditions for both schemes are verified. 
We exhibit the results and then compare the results between the exact and 
approximate solutions. Finally, we estimate error between the exact and ap-
proximate solutions for a specific numerical problem to present the conver-
gence of the numerical schemes, and demonstrate the resulting error in 
graphical representation. 
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1. Introduction 

The heat equation is a parabolic second-order linear partial differential equation 
that describes the distribution of heat (or temperature variation) in a given re-
gion over time. It demonstrates the fact of how heat flows through an object. For 
example, if a heated body is placed in a box of cold water, the body’s tempera-
ture will decrease. Eventually, the temperature in the box will equalize at a time 
if no other heat source is applied there. 
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To solve the one-dimensional heat equation, many effective methods can be 
used, such as separation of variables [1] [2] [3] [4], Fourier series methods [5] 
[6], domain decomposition method [7] [8] [9], finite difference method [4] [10] 
[11] [12] [13], finite element method [14] [15], finite volume method [16] [17] 
and many more. In this paper, we use the finite difference method to solve and 
analyze the one-dimensional time-dependent heat equation. The finite differ-
ence method (FDM) is a powerful numerical technique for obtaining the ap-
proximate solution to the initial boundary value problems. It is easy to solve 
PDEs using this method [18]. Taylor series approach is used to find the solutions 
of a partial differential equation in this method [19]. The technique of this me-
thod is that all the derivatives in a partial differential equation are replaced by 
their finite difference approximations, and the PDEs are converted to a set of li-
near algebraic equations. Any iterative procedure can be used to solve this sys-
tem of linear equations. Then, the solution of this system of linear equations is 
referred to as the solution of the PDE [1]. The finite difference method has been 
extensively used by researchers over the past years due to the fact that most of 
the calculations of this method can be carried out on the computer, and hence 
the solution is easy to obtain [20] [21]. 

The aim of this work is to investigate a one-dimensional heat equation by us-
ing explicit Forward Time Centered Space (FTCS) and implicit Crank-Nicolson 
(CN) finite difference schemes. The rest of this paper is organized as follows. We 
present the one-dimensional heat equation with Neumann boundary conditions 
in the next Section. In Section 3, a brief introduction of thermal diffusivity is re-
ported. The derivatives of the temperature distribution ( ),u x t  are approx-
imated by finite differences using the Taylor series in Section 4. The explicit and 
Crank-Nicolson schemes are developed for the one-dimensional heat equation 
in Section 5. The stability criterion is discussed, and the stability conditions for 
both schemes are verified in Section 6. We have exhibited the results and finally 
compared the results between the exact and the approximate solutions. The al-
gorithm is executed by standard computer programming languages in Sections 6 
and 7. We estimate error between the exact and the approximate solutions for a 
specific numerical problem and show it graphically in Section 7. Finally, a short 
conclusion is reported in Section 8. 

2. Model Equations  

In our model problem, we consider the one-dimensional time-dependent heat 
conduction equation of the form [3] [11] [12] [21],  

 ( )
2

2
2 0, ,u u x t

t x
α∂ ∂

− = ∈Ω×Γ
∂ ∂

                  (1) 

where, [ ]0, LΩ =  and [ ]0,TΓ = , with initial condition  

 ( ) ( )0,0 for 0 ,u x u x x L= ≤ ≤                  (2) 

and boundary conditions  
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 ( ) ( )0, for 0 ,u t f x t T= ≤ ≤                  (3) 

( ) ( ), for 0 ,u L t g x t T= ≤ ≤                  (4) 

where, ( ),u u x t=  is the temperature of the substance, α2 is called the thermal 
diffusivity of the substance. Equations (1)-(4) together are called initial boun-
dary-value problem. 

3. Thermal Diffusivity (α2)  

Thermal diffusivity is a significant physical quantity that describes the heat 
transfer rate through a medium. Different materials have different thermal dif-
fusivity. It tells us how fast heat transfer occurs within a material from the hotter 
to the colder side. Thus, thermal diffusivity measures how quickly a material 
reacts to temperature changes. 

It is defined as the ratio between the thermal conductivity and the product of 
the density and the specific heat capacity of the body with the pressure held con-
stant, mathematically,  

 2 0 ,
p

K
c

α
ρ

=                             (5) 

where, 
K0 = thermal conductivity of the substance; 
ρ = mass per unit volume of the substance; 
cp = substance’s specific heat capacity. 

4. Finite Difference Discretization  

In order to describe the finite difference techniques, let us consider the rectan-
gular domain Ω×Γ  into a finite number of nodes ( ),i jx t , where Ω is spatial 
domain and Γ is temporal domain. 

Now, we develop the approximations of finite difference formulas according 
to [22]. 

Let I be an open interval and :u I →   be differentiable ( )1n +  times. 
Now, we expand u in Taylor series about a point x, evaluate at x h+  and at 
x h− , respectively as follows,  

 ( ) ( ) ( ) ( ) ( )
2 3

2! 3!
h hu x h u x hu x u x u x′ ′′ ′′′+ = + + + +         (6) 

( ) ( ) ( ) ( ) ( )
2 3

2! 3!
h hu x h u x hu x u x u x′ ′′ ′′′− = − + − +         (7) 

Rearranging (6), we get  

 ( ) ( ) ( ) ( ) ,u x h u x
u x O h

h
+ −

′ ≈ +                   (8) 

which is forward difference formula for ( )u x′ . 
Similarly, from (7), we get the backward difference formula as  

 ( ) ( ) ( ) ( ) ,u x h u x
u x O h

h
− −

′ ≈ +                  (9) 
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By adding (6) and (7), we have  

( ) ( ) ( ) ( ) ( )( )
2

2

2
12

ivu x h u x u x h hu x u x
h

+ − + −
′′= + +  

This gives us the finite difference formula for the second derivative with second 
order accuracy,  

 ( ) ( ) ( ) ( ) ( )2
2

2u x h u x u x h
u x O h

h
+ − + −

′′ = +            (10) 

Now, we can define 
u
t

∂
∂

 as,  

( ) ( ), ,
lim .
k

u x t k u x tu
t k→∞

+ −∂
=

∂
 

Thus, we get,  

 ( ) ( ), ,
,

u x t k u x tu
t k

+ −∂
≈

∂
                   (11) 

which is called a forward difference approximation for 
u
t

∂
∂

. 

In order to find an approximation to the second derivative, 
2

2
u

x
∂
∂

; we start 

with the forward difference  

 ( ) ( ), ,
.

u x h t u x tu
x h

+ −∂
≈

∂
                   (12) 

We need to approximate the terms in the numerator. It is customary to use a 
backward difference approximation. This is given by letting h h→ −  in the 
forward difference form,  

 ( ) ( ), ,u x t u x h tu
x k

− −∂
≈

∂
                   (13) 

applying (13) to 
u
x
∂
∂

 and evaluated at x x=  and x x h= +  we have,  

 ( ) ( ) ( ), ,
, ,

u x t u x h tu x t
x h

− −∂
≈

∂
               (14) 

and  

 ( ) ( ) ( ), ,
, .

u x h t u x tu x h t
x h

+ −∂
+ ≈

∂
             (15) 

5. Schemes for the Heat Equation  

In order to develop the schemes for solving the one-dimensional heat Equation 
(1), both the time and space derivatives are required to replace by their finite 
differences. To perform this task, we need to specify both the time and spatial 
locations of the u values in the finite difference formulas [1]. Therefore, we need 
to introduce subscript i and j to designate the spatial and the time steps of the 
discrete solution, respectively. Hence, we can rewrite Equation (11) under these 
notations as  
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 , 1 , ,i j i ju uu
t k

+ −∂
=

∂
                        (16) 

and Equation (10) as  

 
2

1, , 1,
2 2

2
.i j i j i ju u uu

x h
+ −− +∂

=
∂

                    (17) 

For Crank-Nicolson scheme, the derivation of Equation (10) as 
2

1, 1 , 1 1, 1
2 2

2
.i j i j i ju u uu

x h
+ + + − +− +∂

=
∂

                 (18) 

The second order partial derivative 
2

2
u

x
∂
∂

 can also be expressed by using the 

central difference at ix  and jt  and for any constant λ  ( 0 1λ≤ ≤ ), 

( )
2 2 2

2 2 2
, , , 1

1
i j i j i j

u u u
x x x

λ λ
+

     ∂ ∂ ∂
= − +     ∂ ∂ ∂     

              (19) 

 ( )
2

1, , 1, 1, 1 , 1 1, 1
2 2 2

,

2 2
1 ,i j i j i j i j i j i j

i j

u u u u u uu
x h h

λ λ+ − + + + − +− + − + ∂
= − + ∂ 

  (20) 

where, the notation ( ), ,i j i ju u x t=  is used to represent the numerical solution 
on a finite rod (substance) x∈Ω  and t∈Γ . 

5.1. Forward Time Centered Space (FTCS) Explicit Scheme  

In this section, we consider the Forward in Time and Central in Space (FTCS) 
scheme, where we replace the time derivative in (1) by the forward difference 
scheme (16) and the space derivative in (1) by the central difference scheme (17). 
This yields,  

, 1 , 1, , 1,2
2

2
0i j i j i j i j i ju u u u u

k h
α+ + −− − +

− =  

, 1 , 1, , 1,2
2

2
or, i j i j i j i j i ju u u u u

k h
α+ + −− − +

=  

 ( )
2

, 1 , 1, , 1,2or, 2 .i j i j i j i j i j
ku u u u u

h
α

+ + −− = − +             (21) 

Now we use the Courant-Friedrichs-Lewy or CFL condition in Equation (21).  

The CFL condition for one dimension heat equation is 
2

2
kr

h
α

= . By using this 

condition in Equation (21), we get  

( ), 1 , 1, , 1,2i j i j i j i j i ju u r u u u+ + −− = − +  

, 1 1, , 1, ,or, 2i j i j i j i j i ju ru ru ru u+ + −= − + +  

, 1 1, , , 1,or, 2i j i j i j i j i ju ru u ru ru+ − += + − +  

 ( ), 1 1, , 1,1 2 .i j i j i j i ju ru r u ru+ − +∴ = + − +               (22) 

Equation (22) is called the Forward Time, Centered Space or FTCS approxima-
tion to the heat equation. The FTCS solution can be extracted from the grid of 
Figure 1. 
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Figure 1. Forward time centered space (FTCS) explicit scheme. 

 
We exhibit the nature of the FTCS scheme (22) in Figure 2 and Figure 3 for 

the one-dimensional heat Equation (1) by the standard computer programming 
languages with boundary conditions ( ) ( )0, 1, 0u t u t= = , and initial condition 

( ) ( ) ( )0 ,0 sinu x u x n x= π= , 1,2n = .  

5.2. Crank-Nicolson Scheme  

To develop the Crank-Nicolson scheme [23] for our model Equation (1), we put 
1
2

λ =  in Equation (20), for each , 0,1,2,3,i j =  , [24], we have,  

 ( )
2

1, , 1, 1, 1 , 1 1, 12 2
,

1 2 2 ,
2 i j i j i j i j i j i j

i j

u u u u u u u
x h + − + + + − +

 ∂
= − + + − + ∂ 

     (23) 

Now, using (23) and (16) in Equation (1), we get  

( )
2

, 1 ,
1, , 1, 1, 1 , 1 1, 12 2 2 0

2
i j i j

i j i j i j i j i j i j

u u
u u u u u u

k h
α+

+ − + + + − +

−
− − + + − + =  

 ( )
2

, 1 , 1, , 1, 1, 1 , 1 1, 12 2 2 0.
2i j i j i j i j i j i j i j i j
ku u u u u u u u

h
α

+ + − + + + − +⇒ − − − + + − + =  (24) 

For the simplicity of calculation, we use the CFL condition, 
2

2
kr
h
α

= , thus Equ-

ation (24) becomes,  

( ), 1 , 1, , 1, 1, 1 , 1 1, 12 2 0
2i j i j i j i j i j i j i j i j
ru u u u u u u u+ + − + + + − +− − − + + − + =  

 
( )

( )
1, , 1, 1, 1 1, 1

, 1

2 1
.

2 1
i j i j i j i j i j

i j

ru r u ru ru ru
u

r
+ − + + − +

+

+ + + + +
⇒ =

+
     (25) 

Equation (25) is the Crank-Nicolson scheme for the one dimensional heat equa-
tion.  

Setting 1r = , i.e., 
2

2
hk
α

=  then Equation (25) reduces to  

 ( ), 1 1, 1, , 1, 1 1, 1
1 4 .
4i j i j i j i j i j i ju u u u u u+ + − + + − += + + + +           (26) 
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(a) 

 
(b) 

Figure 2. Temperature distribution and mesh plot for the explicit scheme in (a) and (b) are 
presented, respectively, for 0.5r =  and spatial domain 0x =  to x = π . (a) Temperature 
distribution; (b) Temperature distribution in mesh. 
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(a) 

 
(b) 

Figure 3. Temperature distribution and mesh plot for the explicit scheme in (a) and (b) are 
presented, respectively, for 0.5r =  and spatial domain 0x =  to 2x = π . (a) Temperature 
distribution; (b) Temperature distribution in mesh. 
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The CN solution (26) can be made sense from the grid of Figure 4. Moreover, 
We show the temperature distribution of the one-dimensional heat Equation (1) 
by the standard computer programming languages using the CN scheme (26) 
under the boundary conditions ( ) ( )0, 1, 0u t u t= = , and the initial conditions 

( ) ( ) ( )0 ,0 sinu x u x n x= π= , 1,2n =  in Figure 5 and Figure 6, respectively.  

6. Stability Analysis  

Stability is one of the most important properties of a system. It is a measure of 
the performance of a system which refers to the ability of the system to perform 
satisfactorily. It tells us the fact of how good the performance of the system is, 
whether it is stable or unstable. In this section, we discuss the Von-Neumann 
stability analysis for the one-dimensional heat equation for the explicit and 
Crank-Nicolson Schemes. The stability analysis was based on the citation [20] 
[24] [25] [26]. 

From the definition of the error in the numerical approximation, we get  

 , , , ,i j i j i ju Uξ = −                            (27) 

where, ,i jU  is the exact solution at grid point ( ),i j  and ,i ju  is the approx-
imate solution.  

For linear differential equations with periodic boundary condition, the spatial 
variation of error may be expanded in a finite Fourier series, in the interval Ω as  

 ( )
1

e ,m
M

ik x
m

m
x Aξ

=

= ∑                         (28) 

where the wave number , 1,2, ,m
mk m M
L

= =
π

  and 
LM
h

= , 1i = −  and x 

is the independent space variable, e mik x  is the complex exponential. 
The time dependence of the error is included by assuming the amplitude of 

error mA  is a function of time. Since, the error tends to grow or decay expo-
nentially with time, it is reasonable to assume that the amplitude varies expo-
nentially with time; hence,  

 

 
Figure 4. Crank-Nicolson implicit scheme. 
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(a) 

 
(b) 

Figure 5. Temperature distribution and mesh plot for the Crank-Nicolson scheme in (a) and 
(b) are presented, respectively, for 1.0r =  and spatial domain 0x =  to x = π . (a) Tem-
perature distribution; (b) Temperature distribution in mesh. 
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(a) 

 
(b) 

Figure 6. Temperature distribution and mesh plot for the Crank-Nicolson scheme in (a) and 
(b) are presented, respectively, for 1.0r =  and spatial domain 0x =  to 2x = π . (a) Tem-
perature distribution; (b) Temperature distribution in mesh. 
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( ) ,
1

, e e .m
M

ik xat
i j

m
x tξ ξ

=

= = ∑                      (29) 

Since the difference equation for error is linear (the behavior of each term of the 
series is the same as the series itself), it is enough to consider the growth of error 
of a typical term:  

 ( ) ,, e e .mik xat
m i jx tξ ξ= =                       (30) 

The stability characteristics can be studied using just this form for the error with 
no loss in generality. 

We now define the amplification factor as,  

 , 1

,

.i j

i j

G
ξ
ξ

+=                            (31) 

Then, the necessary and sufficient condition for the error to remain bounded, 
maintaining numerical stability is,  

 1 or 1 1.G G≤ − ≤ ≤                      (32) 

6.1. Stability Criterion for FTCS Scheme  

Now, we are going to show that Equation (32) holds for our FTCS numerical 
scheme (22). From Equation (30), we get by [20] [26],  

 , e e mik xat
i jξ =                          (33) 

 ( )
, 1 e e ma t k ik x

i jξ +
+ =                        (34) 

 ( )
1, e e mik x hat

i jξ +
+ =                        (35) 

 ( )
1, e e .mik x hat

i jξ −
− =                        (36) 

Since, both the numerical solution ,i ju  and the exact solution ,i jU  satisfy Eq-
uation (22), therefore, the error ,i jξ  also follows the discretized PDE Equation 
(22). Thus we have,  

 ( ), 1 , 1, , 1,2 .i j i j i j i j i jrξ ξ ξ ξ ξ+ + −= + − +                  (37) 

Using Equations (33)-(36) in Equation (37), we get  
( ) ( ) ( )( )e e e e e e 2e e e e .a t k x h x hik x at ik x at ik at ik x at ikm m r m m m+ + −= + − +  

Divide by e eat ik xm  to yield after simplification,  

 ( )e 1 e e 2ak ik h ik hr m m−= + + −                   (38) 

We know that,  

 e cos sin ,i iθ θ θ= +                        (39) 

and  

 e cos sin .i iθ θ θ− = −                       (40) 

Subtracting (39) from (40) we get,  
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e e 2 sini i iθ θ θ−− =  

 e esin .
2

i i

i

θ θ

θ
−−

⇒ =                       (41) 

Putting 
2
mk hθ =  in (41), we get  

2 2e esin ,
2 2

m mik h ik h

mk h
i

−
−  = 

 
 

squaring both sides, we get  

 2 e e 2sin
2 4

m mik h ik h
mk h  + −  = −   

   
                (42) 

From (38) and (42), we get  

 2e 1 4 sin
2

ak mk hr  = −  
 

                     (43) 

However, by Equations (33)-(36) in Equation (31), the last yield  

 eakG =                           (44) 

Thus, by Equations (43), (44) plugged into (32), the condition for stability is 
given by  

 21 4 sin 1
2
mk hG r  = − ≤ 

 
                   (45) 

And from (45), we can write,  

 21 4 sin 1
2
mk hr  − ≥ − 

 
                    (46) 

And  

 21 4 sin 1
2
mk hr  − ≤ − 

 
                    (47) 

For the above conditions, Equations (46) and (47), to hold for all m (and there-

fore all 2sin
2
mk h 

 
 

), we need to consider (46) and (47) separately. 

Equation (46) yields  

 24 sin 2
2
mk hr   ≤ 

 
                      (48) 

Note that the term 24 sin
2
mk hr  

 
 

 is always positive, i.e., always in the range [0, 

1]. The worst case is when 2sin 1
2
mk h  = 

 
, therefore, Equation (48) yields  

1
2

r ≤  

 
2

2
1
2

kr
h
α

⇒ = ≤                       (49) 
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Again Equation (47) yields  

 24 sin 0
2
mk hr   ≥ 

 
                      (50) 

Since 2sin
2
mk h 

 
 

 range is [0, 1] Equation (50) yields  

 0r ≥                            (51) 

which always holds. Combining (49) and (51), we get 
10
2

r≤ ≤ . Hence, the 

CFL condition 
2

2
kr

h
α

=  plays an important role to the stability analysis [27].  

Figure 7 and Figure 8 show that the explicit scheme is stable for 0.4r =  and 
0.5r =  respectively. But, the explicit scheme is unstable when the value of r ex-

ceeds 0.5. The instability of the explicit scheme is shown in Figure 9 for 0.6r = . 
The spatial domain of the substance is considered as 0x =  to x = π  in Fig-
ures 7(a)-9(a) and the spatial domain 0x =  to 2x = π  is used in Figures 
7(b)-9(b), respectively.  

We observe that our explicit numerical scheme satisfy the stability property. 
Hence, we can conclude that our scheme is numerically efficient.  

6.2. Stability Criterion for Crank-Nicolson Scheme  

By the Crank-Nicolson scheme, the discretized form of Equation (1)  

, 1 , 1, 1 , 1 1, 1 1, , 1,2 2 0.
2 2i j i j i j i j i j i j i j i j
r ru u u u u u u u+ − + + + + − +   − − − + − − + =     

Using similar arguments as in the FTCS method, the error ,k mξ  also follows the 
discretized ODE equation of the Crank-Nicolson scheme  

 , 1 , 1, 1 , 1 1, 1 1, , 1,2 2 0
2 2i j i j i j i j i j i j i j i j
r rξ ξ ξ ξ ξ ξ ξ ξ+ − + + + + − +   − − − + − − + =      (52) 

Divide (52) by ,i jξ ,  

 , 1 , 1, 1 , 1 1, 1 1, , 1,

, , , , , , , ,

2 2
0

2 2
i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

r rξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ

+ − + + + + − + +   
− − − + − − + =   

      
  (53) 

Simplifying each term in Equation (53), we get  

 
( )

, 1

,

e
e

a t k
i j

at
i j

G
ξ
ξ

+
+ = =                         (54) 

 1, 1

,

e mi j ik h

i j

G
ξ
ξ
− + −=                          (55) 

 1, 1

,

e mi j ik h

i j

G
ξ
ξ
+ + =                          (56) 

 1,

,

e mi j ik h

i j

ξ
ξ
− −=                           (57) 

 1,

,

e mi j ik h

i j

ξ
ξ
+ =                           (58) 
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(a) 

 
(b) 

Figure 7. Stability for the explicit numerical scheme for the spatial domain 0x =  to x = π  
in (a) and spatial domain 0x =  to 2x = π  in (b), respectively, using 0.4r = . 

https://doi.org/10.4236/jamp.2023.1110204


Md. S. H. Mojumder et al. 
 

 

DOI: 10.4236/jamp.2023.1110204 3114 Journal of Applied Mathematics and Physics 
 

 
(a) 

 
(b) 

Figure 8. Stability for the explicit numerical scheme for the spatial domain 0x =  to x = π  
in (a) and spatial domain 0x =  to 2x = π  in (b), respectively, using 0.5r = . 
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(a) 

 
(b) 

Figure 9. Instability for the explicit numerical scheme for the spatial domain 0x =  to x = π  
in (a) and spatial domain 0x =  to 2x = π  in (b), respectively, using 0.6r = . 
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Plugging Equations (54)-(58) into Equation (53) yields  

 ( ) ( )1 e 2 e e 2 e
2 2

m m m mik h ik h ik h ik hr rG G − −− = − + + − +          (59) 

Using a trigonometric identity involving complex exponentials, such as  

 2cos e ei iθ θθ −= +                        (60) 

Using (60) into (59) yields  

( )( ) ( )( )1 2cos 2 2cos 2 .
2 2m m
r rG G k h k h− = − + −  

Simplifying, we get  

 
( )( )
( )( )

1 1 cos
1 1 cos

m

m

r k h
G

r k h
− −

=
− −

                   (61) 

Remembering that the cosine range is [−1, 1], the value we should explore for 
cosine values are ( )cos 1,0,1mk h = − , hence we arrive at three facts. 

Fact-01: If ( )cos 1mk h = − , then from (61), we get  

 
1 2 .
1 2

rG
r

−
=

+
                        (62) 

Since 0r > , then 1G ≤ , always. 
Fact-02: If ( )cos 0mk h = , then from (61), we get  

 
1 .
1

rG
r

−
=

+
                        (63) 

Since 0r > , then 1G ≤ , always. 
Fact-03: If ( )cos 1mk h = , then from (61), we get  

 1.G =                          (64) 

Then 1G ≤ , always. Therefore, we can simply say, the Crank-Nicolson scheme 
is unconditionally stable.  

Figures 10-12 show that the Crank-Nicolson scheme is always stable. The 
mesh ratio 0.5r = , 1.0r =  and 1.5r =  are used in Figures 10-12, respectively. 
The spatial domain is considered as 0x =  to x = π  in Figures 10(a)-12(a) 
and the spatial domain 0x =  to 2x = π  is used in Figures 10(b)-12(b), re-
spectively.  

The above figures illustrate that the Crank-Nicolson numerical scheme satis-
fies the stability conditions and thus we can conclude that the scheme is numer-
ically efficient.  

7. Error Analysis and Results Discussion  

In this section, we focus on an error analysis between the exact solution and the 
approximate solution. To derive the relative error between the exact solution 
and the approximate solution for FTCS scheme, we compute the relative error in 
L1-norm defined by  

error ,e a

e

u u
u
−

=  
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(a) 

 
(b) 

Figure 10. Stability for Crank-Nicolson scheme for the spatial domain 0x =  to x = π  in (a) 
and spatial domain 0x =  to 2x = π  in (b), respectively, using 0.5r = . 

https://doi.org/10.4236/jamp.2023.1110204


Md. S. H. Mojumder et al. 
 

 

DOI: 10.4236/jamp.2023.1110204 3118 Journal of Applied Mathematics and Physics 
 

 
(a) 

 
(b) 

Figure 11. Stability for Crank-Nicolson scheme for the spatial domain 0x =  to x = π  in (a) 
and spatial domain 0x =  to 2x = π  in (b), respectively, using 1.0r = . 
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(a) 

 
(b) 

Figure 12. Stability for Crank-Nicolson scheme for the spatial domain 0x =  to x = π  in (a) 
and spatial domain 0x =  to 2x = π  in (b), respectively, using 1.5r = . 
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where, eu  and au  are the exact solution and the approximate solution com-
puted by finite difference scheme, respectively. 

The exact solution of heat Equation (1) with boundary conditions  

( ) ( )0, , 0u t u L t= = , and initial condition ( ) ( )0 ,0 sin xu x u x
L

 = =  
 
π  is [1],  

 

 
(a) 

 
(b) 

Figure 13. Comparison between the exact solution and the explicit numerical solution (a) and 
L1-norm of the error (b). (a) Comparison of the exact and the approximate solutions; (b) Error. 
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( )
2 2

2, sin e .
t

Lxu x t
L

α π
− =  

 
π

                  (65) 

In Figure 13, we compare the exact and the approximate solution of the 
one-dimensional heat equation. In this case, we use FTCS explicit scheme to ap-
proximate the numerical solution. The L1-norm of the error is plotted in Figure 
13(b). From the figure, it is clear that our numerical scheme converges and effi-
ciently accurate.  

8. Conclusion  

In this work, two finite difference schemes for the one-dimensional heat equa-
tion are presented. In the first step, the explicit and Crank-Nicolson schemes 
have been developed. Later, the stability criterion is set, and the stability condi-
tions are verified for both the schemes, which shows the validity of the numeri-
cal schemes. By using standard computer programming codes, we examine the 
stability criteria. We find that the explicit scheme is conditionally stable with  

10
2

r≤ ≤ , and the Crank-Nicolson scheme is unconditionally stable. Finally, we  

discuss the error between the exact and the approximate solution of the 
one-dimensional heat equation, and validate the efficiency of our numerical 
schemes.  
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