
Journal of Applied Mathematics and Physics, 2023, 11, 3061-3074 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.1110202  Oct. 30, 2023 3061 Journal of Applied Mathematics and Physics 
 

 
 
 

Deformable Permanent Ferroelectric or 
Ferromagnetic Media 

Michael Grinfeld1, Pavel Grinfeld2 

1The U.S. Army Research Laboratory, WMRD, Aberdeen Proving Ground, USA 
2Mathematics Department, Drexel University, Philadelphia, USA 

 
 
 

Abstract 
In the framework of continuum mechanics, one of possible consistent defini-
tions of deformable permanent magnets is introduced and explored. Similar 
model can be used for ferroelectric substances. Based on the suggested defini-
tion, we establish the key kinematic relationship for the deformable perma-
nent magnet and suggest the simplest master system, allowing to analyze be-
havior of such substances. 
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1. Introduction and Notation 

Magnetic phenomena have found thousands of applications in science and en-
gineering. Of the multitude of authoritative textbooks, dealing with continuum 
description of magnetic phenomena we recommend the comprehensive treatise 
[1] [2] [3] [4], in which the readers will be able to get information about various 
theoretical models of magnetic phenomena and the essential difficulties still ex-
isting in the fundamentals of electromagnetism. In order to avoid some of those 
difficulties, we suggested [5] [6] the models based on the concept of the Aleph 
tensors. The Aleph tensors have common features with the energy-momentum 
tensors of the classical field theories. 

Important classes of the models of magnets are known as the permanent 
magnets. Several monographs [7] [8] [9] [10] are devoted to the permanent 
magnets, with which all of us are familiar from childhood. The concept of per-
manent magnet can be easily introduced for the rigid (i.e., non-deformable) sol-
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ids. Needless to say, that the permanent magnet is an idealization, which ignores 
many features of real magnetic substances. As always, the idealization implies 
some advantages and disadvantages. It ignores several key features. On the other 
hand, it allows to investigate more deeply the remaining features. In this paper, 
we try to generalize the intuitive understanding of permanent magnet with the 
important property of deformability. It is intuitively clear that when rigid per-
manent magnet is rotated, the magnetic field and magnetic polarization rotate 
with the rigid body. But how to define the permanent magnet when dealing with 
deformable magnetized solid? Presumably, this question does not have a unique 
answer. One of possible answers is suggested below.   

Notation of this paper is presented in full in monographs [11] [12]; for the 
readers’ convenience, we give in the Section “Appendix” brief sketch of this no-
tation.  

Consider the immobile spatial coordinate system, referred to the coordinates 
iz  (the reference indexes from the middle of the Latin alphabet , ,i j k  run the 

values 1, 2, 3) and assume, for simplicity, that our space is Euclidean. In this 
space, we consider a material body B, referred to the material coordinates ax  
(the material indexes, taken from the beginning of the Latin alphabet , ,a b c , 
run the values 1, 2, 3 as well). We accept the standard concepts of the covariant 
and contravariant indexes and accept the standard agreement regarding summa-
tion over the repeat covariant and contravariant indexes of the same type (i.e., of 
the reference or of the material type).  

In addition to the two different sets of coordinate variables, we distinguish al-
so between two different configurations of the body: the initial and the current 
configurations of the body. Let the functions ( ),i i az z x t=  be the Eulerian 
coordinates iz  in the current configuration of the material point with the ma-
terial coordinates ax  at the moment of time t. Technically, it is important to 
show explicitly the arguments of different functions, although quite often this 
practice makes the relationships rather cumbersome. To make the relationships 
more compact, we often skip indexes in the arguments of different functions.  

We use the notation ( ),a a ix x z t=  for the inverse of the function ( ),i az x t . 
Let us use the notation ( )ijZ z  for the deformation-independent metrics of the 
reference spatial system, and the notation ( ),abX x t  for the deformation-depen-  
dent metrics of the actual material configurations. These two metrics tensors are 
interconnected by the relationships  

( ) . . . .
. . . ., ,i i a b

ab ij a b ij ab i jX x t Z z z Z X x x= =                   (1.1)  

where the mixed shift-tensors .
.
i
az  and .

.
a
ix  are defined as  

( ) ( ). .
. .

, ,
,

i a
i a
a ia i

z x t x z t
z x

x z
∂ ∂

≡ ≡
∂ ∂

                   (1.2)  

The reference and the coordinate configurations are characterized by the cur-
rent covariant bases ( )i zZ  and contravariant bases and ( ),a x tX , respectively. 

We use the standard notation i∇  and a∇  for the reference and material 
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contravariant differentiation in the metrics of the actual configuration (see the 
relationships ((A.1)-(A.10)) of the section “Appendix”).  

Magnetization is a vector quantity. A distributed magnetization field is cha-
racterized by the density per unit mass M  or per unit volume ρM , where ρ  
is the mass density. Vector field M  can be decomposed with respect to the 
material basis a

aM=M X or the spatial basis i
iM=M Z . By definition, in va-

cuum, the vector M  of vacuum is equal to zero.  
For isothermal systems, the bulk free energy density   per unit mass is 

given as a function of the actual material metrics abX , the Lagrangean compo-
nents aM  of the magnetization vector per unit mass, and fixed material con-
stants or tensors, which we do not mention explicitly:  

( ), a
abX Mψ ψ=                         (1.3) 

The magnetoelastic Aleph tensor ijℵ  is defined as follows 

( )

. .
. .

1 12
8 4

ij i j k ij i j
c d k

cd

z z H H Z H H
X
ψρ

π π
∂

ℵ ≡ − +
∂

            (1.4) 

where iH  are the Eulerian component of the magnetic field.  
The bulk dynamics equations are postulated to be of the form 

i
j i ij

j j
V V V
t

ρ
 ∂

+ ∇ =∇ ℵ ∂ 
                    (1.5) 

where iV  are the Eulerian components of the velocity field and ρ  is the mass 
density. 

The velocity field iV  is defined as  

( ) ( ),
,

i
i z x t

V x t
t

∂
≡

∂
                       (1.6)  

We can also consider the velocity components as functions of the Eulerian 
coordinates iz : we will use the notation ( ),iV z t  for this function. The func-
tions ( ),iV x t  and ( ),iV z t  are different functions. This should not create any 
confusion even when we do not show the arguments explicitly, which of the two 
functions is meant should be clear from the context; for instance, in the equa-
tions (1.5) we mean ( ),i iV V z t= . 

The momentum balance condition at the boundary with vacuum reads 

( )

. .
. .

1 12
4 8

1 1 ,
4 8

i j i j k ij
c d k j

cd sub

i j k ij
k j

vac

z z H H H H Z N
X

H H H H Z N

ψρ
 
 
 π π 

 
 π

∂
+ −


= −

π

∂



          (1.7) 

where jN  are the components of the unit normal to the boundary. 
The relationships (1.3)-(1.6) should be amended with the magnetostatics bulk 

equations and boundary conditions. The bulk equations read 

( ),
i i

z t
H

z
ϕ∂

= −
∂

                       (1.8)  
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0i
i B∇ =                            (1.9)  

with the magnetic induction iB  defined as 

4i i iB H Mρ≡ + π                       (1.10) 

The Equation (1.8) reflects the fact that in the absence of macroscopic electric 
current the magnetic field is irrotational. The Equation (1.9) reflects the fact that 
the magnetic induction is always divergence-free. 

At the interfaces, the fields ( ),z tϕ , ( ),iH z t , and ( ),iB z t  and/or their de-
rivatives experience finite jumps. Those jumps are not arbitrary but satisfy the 
boundary constraints of magnetostatics: 

[ ] 0ϕ +

−
=                          (1.11) 

and  

0i
iB N

+

−
  =                         (1.12) 

The bulk Equations (1.3)-(1.6), (1.8)-(1.10) should be amended with the fol-
lowing thermodynamics relationship: 

( ), a
ab

a a

X M
H

M

ψ
ρ
∂

=
∂

                   (1.13) 

In order to get the mathematically closed master system, the relationships 
(1.1)-(1.13) should be amended with the initial conditions and conditions at in-
finity.  

In the case of liquid substances, the free energy should be chosen in the form: 

( ) ( )
( )

, ,
ab

a a
ab X

X M M
ρ ρ

ψ ρ
=

= Ψ                (1.14) 

Using the relationship (1.14), we get instead of (1.4) the following relationship 
of the Aleph tensor: 

( )2 1 1
8 4

ij ij k ij i j
kZ H H Z H H

ρ
ρ

ρ
∂

π π
Ψ

ℵ ≡ − − +
∂

          (1.15) 

2. Definition of Permanent Deformable Magnet 

How to define rigorously the notion of a permanent magnet on the macroscopic 
level? It is easy and straightforward to suggest such rigorous definition when 
dealing with the model of rigid solid. In words, we just say that the vector of 
magnetization “moves with the magnet”. Or, in other words, we can say that the 
components of the magnetization vector with respect to the accompanying basis 
remain unchanged. Of course, the components with respect basis, fixed in the 
space, can change. Formally, let { }1 2 3, ,a =G G G G  be the accompanying cova-
riant triangle of the rigid body; this basis does not necessarily consist of the 
normalized orthogonal vectors. Let { }1 2 3, ,a =G G G G  be the accompanying 
contra-variant triangle; this triangle is defined by the identities 

b b
a aδ⋅ =G G                         (2.1) 
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Needless to say, that both bases, aG  and bG , are time-dependent although 
they, in general, depend upon the Lagrangean (material) coordinates.  

In terms of the accompanying bases we can define the permanent magnets by 
the relationships 

( ),
0

aM x t
t

∂
=

∂
 or ( ),

0aM x t
t

∂
=

∂
                 (2.2)  

where ( ),aM x t  and ( ),aM x t  are the components of the magnetization vec-
tor ( ),x tM  with respect to the accompanying bases aG  and bG , respective-
ly.  

What if we want to consider deformable magnets instead of rigid magnets? 
The simplest generalization will be the following. First, we replace the bases aG  
and aG  with the Lagrangean (material) bases ( ),a x tX , ( ),a x tX , respective-
ly. Then, we can define deformable permanent magnet by one of the relation-
ships (2.2); for instance, 

( ) ( ) ( )( ),
, , 0

a
aM x t

x t x t
t t

∂ ∂
= =

∂ ∂
M X ,              (2.3) 

where “  ” is the symbol of scalar product of corresponding vectors. In words, 
this definition means that the contravariant components of the magnetization 
vector with respect to the accompanying (material) basis remain fixed. To some 
extent this definition reminds the behavior of the vorticity vector in ideal liquid. 

Also, conceptually it is logically possible to define the permanent magnet with 
the relationship  

( ) ( ) ( )( ),
, , 0a

a

M x t
x t x t

t t
∂ ∂

= =
∂ ∂

M X               (2.4) 

The relationships (2.3), (2.4) are not mathematically equivalent and lead to dif-
ferent physical conclusions. Per Tamm [4], the ultimate choice should be made on 
the basis of comparison with experiment. In the absence of experimental evi-
dence, we can make our choice on the basis of convenience of aesthetics. Below, 
we dwell on the choice based on the relationship (2.3).  

3. The Master Equation for the Model of Permanent  
Deformable Magnet in the Eulerian Description 

The relationships (2.3) provide the quite straightforward and simple definition 
of the model of permanent deformable magnet when using the Lagrangean (ma-
terial) description of continuum media. However, the material description is 
quite cumbersome in various situations. In particular, when dealing with hy-
drodynamics researchers obviously prefer the Eulerian description. Below, we 
try to establish the Eulerian analogy of the definition of the permanent deforma-
ble magnet. We will establish the following key relationship: 

( ) ( ) ( ) ( ) ( )
,

, , , , 0
j

i j i j
i i

M z t
V z t M z t M z t V z t

t
∂

+ ∇ − ∇ =
∂

      (3.1) 

where ( ),jM z t  and ( ),jV z t  are the Eulerian components of the magnetiza-
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tion and velocity fields, which expressed as functions of the variables iz  and t, 
and use the covariant differentiation i∇ , based on the spatial metrics ( )ijZ z .  

First, we rewrite the definition (2.2) of permanent deformable magnet as fol-
lows: 

( ) ( ) ( )( ),
, , 0a

z z x t
z t x t

t =

∂
⋅ =

∂
M X                    (3.2) 

We remined that the function ( ),z tM  differs essentially from the function 
( ),x tM ; in fact, the following relationship hold  

( ) ( ) ( ),
, ,

i i a
a i

z z x t
x t z t

=
≡M M                      (3.3) 

The notation (3.3) indicates that the variable iz  in the right-hand side of 
Equation (3.3) should be replaced with the function ( ),i az x t . 

We, then, get, using the distributivity of the scalar product: 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )

,

, ,

, ,

, , , , 0

a
z z x t

a a
z z x t z z x t

z t x t
t

x t z t z t x t
t t

=

= =

∂
⋅

∂
∂ ∂

= ⋅ + ⋅ =
∂ ∂

M X

X M M X
     (3.4) 

Let us differentiate the two terms in (3.4) separately. 
First, we get the relationship 

( ) ( )( ) ( )
( )

( ) ( ) ( )
( ), , ,

,

,
, , ,i

iz z x t z z x t z z x t
z z x t

z t
z t z t V z t

t t= = =
=

∂∂
= +∇

∂ ∂
M

M M   (3.5) 

as implied by the following chain: 

( ) ( )( ) ( )
( )

( )
( )

( )

( )
( )

( ) ( ) ( )
( )

,
, ,

, ,
,

, , ,
,

,
, ,

i

iz z x t
z z x t z z x t

i
i z z x t z z x t

z z x t

z t z t z x t
z t

t t tz

z t
z t V z t

t

=
= =

= =
=

∂ ∂ ∂∂
= +

∂ ∂ ∂∂

∂
= +∇

∂

M M
M

M
M

 

We, then, get the following identity 

( ) ( )
( )

( )
( )

.
., ,

, ,a j a
jz z x t z z x t

x t z x z t
= =

=X Z                 (3.6) 

Combining Equations (3.5), (3.6), we get 

( ) ( ) ( )( )
( )

( )

( ) ( ) ( )
( )

,

.
. ,

,

, ,

,
, , ,

a
z z x t

j
a i j
j iz z x t

z z x t

x t z t
t

M z t
x z t V z t M z t

t

=

=
=

∂
⋅
∂

 ∂
= + ∇  ∂ 

X M

       (3.7) 

as implied by the following chain: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

.
., ,

,

.
. ,, , ,

. .
. ., , , ,

,

,
,

, , ,

,
, , , ,

j a
jz z x t z z x t

z z x t

j a i
j i z z x tz z x t z z x t z z x t

j
a a j i
j j iz z x t z z x t z z x t z z x t

z z x t

z t
z x z t

t

z x z t z t V z t

M z t
x z t x z t M z t V z t

t

= =
=

== = =

= = = =
=

∂
⋅

∂

+ ⋅∇

∂
= + ∇

∂

M
Z

Z M

 

https://doi.org/10.4236/jamp.2023.1110202


M. Grinfeld, P. Grinfeld 
 

 

DOI: 10.4236/jamp.2023.1110202 3067 Journal of Applied Mathematics and Physics 
 

( )
( )

( ) ( ) ( )
( )

.
. ,

,

,
, , ,

j
a i j
j iz z x t

z z x t

M z t
x z t V z t M z t

t=
=

 ∂
= + ∇  ∂ 

 

We turn now to the second term in (3.4). First, we get 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

, , ,

, ,
, ,

a ab
b

ab
bab

b

x t X x t x t
t t

X x t x t
x t X x t

t t

∂ ∂
∂ ∂

∂ ∂
= +

∂ ∂

=X X

X
X

        (3.8) 

For any symmetric mutually inverse tensor fields ( ),abR x t  and ( ),cdS x t  
we get the identity 

( ) ( ), ,ab
cdac bdS x t R x t

S S
t t

∂ ∂
= −

∂ ∂
, 

which can be applied to the metric tensors ( ),abX x t  and ( ),cdX x t : 

( ) ( ), ,ab
cdac bdX x t X x t

X X
t t

∂ ∂
= −

∂ ∂
                (3.9) 

We also get the following relationship 

( ),cd
c d d c

X x t
V V

t
∂

= ∇ +∇
∂

                  (3.10) 

Indeed, we get, using the definition of the actual material basis, and the Leib-
nitz rule of differentiation of products 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

,
, ,

, ,
, ,

cd
c d

c d
d c

X x t
x t x t

t t
x t x t

x t x t
t t

∂ ∂
= ⋅

∂ ∂
∂ ∂

= ⋅ + ⋅
∂ ∂

X X

X X
X X

     (3.11) 

We proceed, using the relationship 

( ) ( ) ( )
,

, ,c b
b c

x t
x t V x t

t
∂

= ∇
∂

X
X ,               (3.12) 

as implied by the following chain 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

, , , ,
,

, , , ,

c
cc c c

c b
c c b c

x t x t x t x t
x t

t t tx x x
x t V x t x t V x t

∂ ∂ ∂ ∂∂ ∂
= = = = ∇

∂ ∂ ∂∂ ∂ ∂
= ∇ = ∇

X X X V
V

X X
 

Combining (3.11), (3.12), we get the relationship (3.10); indeed, we get the 
following chain: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , ,
, ,

, , , ,

cd c d
d c

c e
c e d c e d

c c
cd c ce d c d d c

X x t x t x t
x t x t

t t t
x t V x t x t V x t

X V X V V V

∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂
= ∇ ⋅ + ⋅ ∇

= ∇ + ∇ =∇ +∇

X X
X X

X X X X  

Combining (3.9), (3.10), we get 

( ),ab
a b b aX x t
V V

t
∂

= −∇ −∇
∂

                 (3.13) 
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Combining (3.12), (3.13), we get 

( ) ( )
,

,
b

c b
c

x t
x t V

t
∂

= − ∇
∂

X
X                  (3.14) 

as it follows from the chain: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, ,, , ,
, ,

, , , ,

, , , ,

bcb bc
c cbc

c

c b b c bc d
c d c

c b b c b c c b
c c c

X x t x tx t X x t x t
x t X x t

t t t t
V V x t X x t x t V x t

V V x t x t V x t x t V

∂∂ ∂ ∂
= = +

∂ ∂ ∂ ∂
= − ∇ +∇ + ∇

= − ∇ +∇ + ∇ = − ∇

XX X
X

X X

X X X

 

Let us rewrite (3.14) as 

( )
.

,a
a k i

k i

x t
x V

t
∂

= − ∇
∂

X
Z ,                  (3.15) 

as implied by the following chain: 

( ) ( ) ( ) ( ). . . . .

,
,

a
c a k c i a k c i a a k i

c k c i k c i k i

x t
x t V z V x z V x x V

t
∂

= − ∇ = − ∇ = − ∇ = − ∇
∂

X
X Z Z Z  

Combining (3.2), (3.5), (3.15), we get 

( ) ( ) ( )( )
( )

( )

( ) ( ) ( )
( )

,

.
. ,

,

, ,

,
, , ,

a
z z x t

j
a i j i j
j i iz z x t

z z x t

z t x t
t

M z t
x z t V z t M z t M V

t

=

=
=

∂
⋅

∂
 ∂ = + ∇ − ∇ 

∂  

M X

  (3.16) 

as it is implied by the following chain: 

( ) ( ) ( )( )
( )

( )

( ) ( ) ( )
( )

( ) ( )

( )
( )

( ) ( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

,

.
. .,,

,

.
. . ,,

,

.
. ,

, ,

,
, , , ,

,
, , , ,

,
, , ,

a
z z x t

j
a i j a k i
j i k iz z x tz z x t

z z x t

j
a i j a k j
j i j k z z x tz z x t

z z x t

j
a i j
j iz z x t

z t x t
t

M z t
x z t V z t M z t z t x V

t

M z t
x z t V z t M z t x M z t V

t

M z t
x z t V z t M z

t

=

==
=

==
=

=

∂
⋅

∂
 ∂ = + ∇ − ⋅ ∇ 

∂  

 ∂ = + ∇ − ∇ 
∂  

∂
= + ∇

∂

M X

M Z

( )
( ),

i j
i

z z x t

t M V
=

  − ∇ 
  

 

Combining the relationships (3.2), (3.16), we arrive at the required relation-
ship (3.1). 

4. The Full Master System for the Model of Permanent  
Deformable Magnet in the Eulerian Description 

Analysis of the model of permanent deformable magnet requires some correc-
tions in the master system (1.1)-(1.13). First of all, the free energy density ψ  
cannot depend upon the density of the magnetization vector aM  since this 
vector remains constant; thus, the free energy density reads 

 ( ),abX Tψ ψ= ,                       (4.1) 
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where T is the absolute temperature. For the sake of brevity, we will still consider 
only isothermal case and ignore the variable T. 

The appearance of the Lagrangean actual metrics abX  looks like the incon-
sistency with the goal of providing the Eulerian description of the continuum 
media. Indeed, the definition of the metrics abX  explicitly uses the Lagrangean 
(material) description. Therefore, some comments are required here. In fact, the 
Eulerian description basically means that the ultimate independent variables are 
actually the Eulerian coordinates kz  and the time t. That does not mean 
though, that the objects with the Lagrangean (material) indexes cannot appear in 
the intermediate relationships. For instance, the shift-tensor ( ).

. ,a k
ix z t  is one of 

the most widespread objects in the Eulerian description. Another widespread 
object .

.
k
az  is the inverse of ( ).

. ,a k
ix z t . The inverse tensor can be presented as  

( ). .
. ..

.

1 where det ,k a
a ka

k

Az A x z t
A x
∂

= ≡
∂

               (4.2) 

with this definition (4.2) the tensor field .
.
k
az  appears to be the tensor-function 

of the independent variables ( ),kz t , as it should be when using the Eulerian de-
scription. There is also another definition of the tensor .

.
k
az ; it reads  

( ).
. ,k k c a
az z x t x= ∂ ∂ . With the last definition, the same tensor .

.
k
az  appears as 

the function of ,cx t . Thus, it cannot be the ultimate element of the Eulerian 
description, but it can be the intermediate object.  

Another example is the definition of the permanent deformable magnet (2.3). 
This definition is relevant for the Lagrangean description, whereas the relation-
ship (3.1) is relevant for the Eulerian description. The two definitions are ma-
thematically and physically equivalent each other, although this equivalence is 
not obvious at all. But, technically, these definitions lead to quite different equa-
tions and may have essential advantages with respect to each other, depending 
on different circumstances (like, for instance, initial and boundary conditions, 
the equations of state, etc.)   

It is essential that the key thermodynamic identity (1.13) at fixed aM  be-
comes meaningless and should be excluded from the master system for perma-
nent deformable magnet. Instead of the identity (1.13), the relationship (3.1) 
must be included into the master system. 

The bulk master system for the permanent magnetic liquid substance in 
the Eulerian description 

A detailed discussion of magnetic liquids, including their applications and 
fundamentals, can be found in the monograph [13]. The full master system for 
the permanent deformable magnetic liquids consists of the following equations: 

1) the momentum equation 

. .
. .

1 1
8 4

i
j i i j k ij i j

j j a b k
ab

V V V z z H H Z H H
t X

ψρ
  ∂ ∂

+ ∇ =∇ − +   π π∂ ∂  
    (4.2) 

2) the mass conservation equation 

( ) 0i
i V

t
ρ ρ∂
+∇ =

∂
                      (4.3)  
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3) the thermodynamics relationship 

( ) ( ) ( ), , wherea
ab abX M Xψ ρ ρ ρ≡ Φ =               (4.4) 

4) the Eulerian kinematic definition of the permanent magnetic substance 

( ) ( ) ( )
,

, , 0
j

i j i j
i i

M z t
V z t M z t M V

t
∂

+ ∇ − ∇ =
∂

            (4.5) 

5) the identity of the magnetic induction 

( )4 0i i
i H Mρπ∇ + =                       (4.6) 

6) the identity of the magnetic field iH  and the potential ϕ  (in the absence 
of electric currents) 

i iH ϕ≡ −∇                           (4.7) 

The natural arguments of the magnetic fields ,i iH B , and ϕ  are the Eule-
rian independent variables iz  and t. The only potential obstacle for the fully 
Eulerian description is the term . .

. .
i j
a b abz z Xψ∂ ∂ . However, for the equation of 

state (4.4) the term . .
. .
i j
a b abz z Xψ∂ ∂  can be rewritten as   

 ( ). .
. .
i j ij
a b

ab

z z p Z
X
ψ ρ∂

= −
∂

,                    (4.8) 

where the “pressure” ( )p ρ  is defined as ( ) ( )2p ρ ρ ρ≡ ∂Ψ . 
Using Equation (4.8), we can rewrite the momentum Equation (4.2) in the 

purely Eulerian form 

( ) 1 1
8 4

i
j i ij k ij i j

j j k
V V V p Z H H Z H H
t

ρ ρ
 ∂  + ∇ =∇ − − +   ∂ π π  

     (4.9) 

In this form, all the functions obviously depend only on the Eulerian coordi-
nates iz  and t.        

5. The Bulk Master System for the Permanent Magnetic  
Liquid Incompressible Substance 

When dealing with incompressible permanent magnet liquid substance, the free 
energy density appears to be the function of the absolute temperature. When 
consider the isothermal process, the free energy density appears to be just a fixed 
parameter. The pressure p cannot be expressed in terms of the free energy den-
sity, and the Equations (4.2), (4.3) should be replaced with the following pair:  

( ) ( ) ( )( )1 18 4i j i ij k ij i j
t j j kV V V pZ H H Z H Hρ − −∂ + ∇ =∇ − − π+π     (5.1) 

0i
iV∇ =                              (5.2) 

The Equations (4.5)-(4.7) remain unchanged. 

6. Discussion and Conclusions 

We introduced the notion of a deformable continuum with permanent magne-
tization. This logically rigorous definition generalizes the widespread intuitive 
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notion of permanent magnet. This is our first main result. The intuitive defini-
tion is logically rigorous when using the model of rigid (i.e., non-deformable) 
solid. However, the intuitive definition is unclear when considering deformable 
substances.  

In the simplest form (2.2), our definition of permanent deformable magnet 
requires the Lagrangean description of continuum media. It claims that the con-
travariant material components ( ),a cM x t  of the magnetization vectors remain 
unchanged at each material point. This definition appears to be totally consistent 
with the traditional intuitive understanding of the permanent magnet. It remains 
meaningful when considering deformable substances. 

Despite its simplicity, the Lagrangean definition is often inconvenient because 
of some other reasons. For instance, traditionally the systems of hydrodynamics 
and electromagnetism make use of the Eulerian variables and description (see, 
for instance, [2] [4] [7]). Therefore, it is desirable to establish the description of 
deformable continuum with permanent magnetization based on the Eulerian va-
riables and description. This problem is solved in the section “The master equa-
tion for the model of permanent deformable magnet in the Eulerian description”; 
see the keynote relationship (3.1). This relationship is our second main result.  

In the section “The full master system for the model of permanent deformable 
magnet in the Eulerian description”, we established the full master systems for 
permanent deformable magnetizable substances. 

Needless to say, that several key features of real magnets are deliberately ig-
nored in our models. This concerns, in particular, the equations of state for the 
permanent magnets. They will be taken into accounts in our future studies.  
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Appendix  

When describing electrostatics and anisotropy simultaneously we must use both 
the Lagrangean coordinates aX  and the Eulerian coordinates iz . 

Let the spatial radius-vector be the time-dependent vector-function of the Eu-
lerian coordinates ( ),z t=Z Z . Let ( ) ( ), , i

i z t z t z= ∂ ∂Z Z ,  
( ) ( ) ( ), , ,ij i jZ z t z t z t≡ ⋅Z Z  be the covariant basis and metrics of the reference 

(Eulerian) coordinate system. We use the notation i∇  for the (time-dependent) 
spatial covariant differentiation based on the metrics ( ),ijZ z t . Let ( ),i

jk z tΓ  be 
the Christoffel associated with the metrics ( ),ijZ z t . 

All other operations with tensors, having the indexes of the type “ , ,i j k ”, are 
introduced in a standard way. In this sketch we will not dwell on those. 

Let the spatial radius-vector be the time-dependent vector-function of the La-
grangean coordinates ( ),x t=X X  in the actual (current) configuration Let  

( ) ( ), , a
a x t x t x= ∂ ∂X X , ( ) ( ) ( ), , ,ab a bX x t x t x t≡ ⋅X X  be the covariant basis 

and metrics of the actual (current) coordinate system. We use the notation a∇  
for the time-dependent covariant differentiation, based on the metrics ( ),abX x t . 
Let ( ),a

bc x tΓ  be the Christoffels associated with the metrics ( ),abX x t . All oth-
er operations with tensors, having the indexes of the type “ , , ,a b c ” are intro-
duced in a standard way. In this draft we will not dwell on those. 

So far, there was no difference between the Lagrangean and Eulerian coordi-
nates. The key difference between the two in various applications is the follow-
ing. The evolution of the Eulerian coordinate system (basically the radius-vector 
( ),z tZ  field) is assumed known up-front: it is not part of solving problem un-

der consideration. On the contrary, the radius-vector ( ),x tX  of the actual 
coordinate system is the central un-known field of the problem under study. 
Typically, we learn the motion of the actual radius-vector with respect to the 
reference coordinate system. The problems are usually formulated as finding of 
the motion-functions 

( ) ( ) ( )( ), , , , , ,i i a a a i i i a jz z x t x x z t z z x z t t= = ≡            (A.1)  

Since, we know everything about the Eulerian (reference) coordinate system 
the ultimate independent unknown are ( ),iz t ; This means, in particular, that 
the main unknown function is ( ),a ix z t , not ( ),i az x t  (although the two are 
closely connected). 

All said so far, can be expressed as the identities 

( ) ( )( ) ( ) ( )( ), , , , , , ,i a i a i az t x z t t x t z x t t≡ ≡Z X X Z          (A.2)  

These identities imply the following ones: 

( )( ) ( ) ( )( ) ( ). . . .
. . . ., , , , , , ,i a i i b b
a j j a i az x z t t x z t z x z t t x z tδ δ= =         (A.3) 

The two-point tensors ( ).
. ,i
az x t  and ( ).

. ,a
jx z t  are called distortions. Ac-

cording to what was said above, even the distortion ( ).
. ,i
az x t  should be ulti-

mately treated as the tensor function of ( ),iz t .  
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The following identities are valid for the Christoffel symbols 
2

. . . .
. . . .

2 2
. . . . . .

. . . . . .

,

,

i
a i a j k a
bc jk i b c ib c

i a
a i i j k i a a b c
bc a jk b c jk i bc j kb c j k

zx z z x
x x

z xz z z x x x
x x z z

∂
Γ = Γ +

∂ ∂
∂ ∂

= Γ −Γ = Γ −Γ
∂ ∂ ∂ ∂

         (A.4) 

For the mixed tensors of the type ( ). .
. . ,i a
j bT z t  the actual covariant differentia-

tion is defined as follows 

( ) ( ). .
. .. . . . . . . . . . . .

. . . . . . . . . . . .

,
,

i a
j bi a i i a l i a d a i c d c i a

k j b kl j b kj j b k dc j b k db j ck

T z t
T z t T T x T x T

z
∂

∇ ≡ + Γ −Γ + Γ − Γ
∂

   (A.5)  

The Lagrangean covariant differentiation k∇  is defined according to the 
identity  

. .
. .,k c

c c k k k cz x∇ = ∇ ∇ = ∇                       (A.6) 

The following relationships for the bases and distortions are of key impor-
tance 

0, 0, 0, 0k i k a c i c a∇ = ∇ = ∇ = ∇ =Z X Z X                (A.7) 

and 

( ) ( ) ( ) ( ). . . .
. . . ., 0, , 0, , 0, , 0i a i a

k a k i c a c iz z t x z t z z t x z t∇ = ∇ = ∇ = ∇ =         (A.8) 

The following relationships for the metrics read 

0,

0

ij ij ij i i
k ij c ij k c c k j c j

ab ab ab a a
k ab c ab k c c k b c b

Z Z Z Z Z

X X X X X

δ δ

δ δ

∇ =∇ =∇ =∇ =∇ =∇ =∇ =

∇ =∇ =∇ =∇ =∇ =∇ =∇ =
      (A.9)  
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