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Abstract

In the framework of continuum mechanics, one of possible consistent defini-
tions of deformable permanent magnets is introduced and explored. Similar
model can be used for ferroelectric substances. Based on the suggested defini-
tion, we establish the key kinematic relationship for the deformable perma-
nent magnet and suggest the simplest master system, allowing to analyze be-
havior of such substances.
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1. Introduction and Notation

Magnetic phenomena have found thousands of applications in science and en-
gineering. Of the multitude of authoritative textbooks, dealing with continuum
description of magnetic phenomena we recommend the comprehensive treatise
[1] [2] [3] [4], in which the readers will be able to get information about various
theoretical models of magnetic phenomena and the essential difficulties still ex-
isting in the fundamentals of electromagnetism. In order to avoid some of those
difficulties, we suggested [5] [6] the models based on the concept of the Aleph
tensors. The Aleph tensors have common features with the energy-momentum
tensors of the classical field theories.

Important classes of the models of magnets are known as the permanent
magnets. Several monographs [7] [8] [9] [10] are devoted to the permanent
magnets, with which all of us are familiar from childhood. The concept of per-

manent magnet can be easily introduced for the rigid (i e, non-deformable) sol-
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ids. Needless to say, that the permanent magnet is an idealization, which ignores
many features of real magnetic substances. As always, the idealization implies
some advantages and disadvantages. It ignores several key features. On the other
hand, it allows to investigate more deeply the remaining features. In this paper,
we try to generalize the intuitive understanding of permanent magnet with the
important property of deformability. It is intuitively clear that when rigid per-
manent magnet is rotated, the magnetic field and magnetic polarization rotate
with the rigid body. But how to define the permanent magnet when dealing with
deformable magnetized solid? Presumably, this question does not have a unique
answer. One of possible answers is suggested below.

Notation of this paper is presented in full in monographs [11] [12]; for the
readers’ convenience, we give in the Section “Appendix” brief sketch of this no-
tation.

Consider the immobile spatial coordinate system, referred to the coordinates
z' (the reference indexes from the middle of the Latin alphabet i, j,k run the
values 1, 2, 3) and assume, for simplicity, that our space is Euclidean. In this
space, we consider a material body B, referred to the material coordinates x*
(the material indexes, taken from the beginning of the Latin alphabet a,b,c,
run the values 1, 2, 3 as well). We accept the standard concepts of the covariant
and contravariant indexes and accept the standard agreement regarding summa-
tion over the repeat covariant and contravariant indexes of the same type (e, of
the reference or of the material type).

In addition to the two different sets of coordinate variables, we distinguish al-
so between two different configurations of the body: the initial and the current
configurations of the body. Let the functions z' =z’ (x“,t) be the Eulerian
coordinates z' in the current configuration of the material point with the ma-
terial coordinates x“ at the moment of time # Technically, it is important to
show explicitly the arguments of different functions, although quite often this
practice makes the relationships rather cumbersome. To make the relationships
more compact, we often skip indexes in the arguments of different functions.

We use the notation x“ =x* (zi,t) for the inverse of the function z' (x",t) .
Let us use the notation Z;(z) for the deformation-independent metrics of the
reference spatial system, and the notation X, (x,7) for the deformation-depen-
dent metrics of the actual material configurations. These two metrics tensors are

interconnected by the relationships
i i b
X (x,0)=2Z,2525, Z; = X yx X, (L.1)
where the mixed shift-tensors z/, and x! are defined as

z’; _ oz (x,t)’ 20 = ox (?,t) (12)
: ox* : oz'

The reference and the coordinate configurations are characterized by the cur-
rent covariant bases Z,(z) and contravariant bases and X, (x,t), respectively.

We use the standard notation V, and V_ for the reference and material
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contravariant differentiation in the metrics of the actual configuration (see the
relationships ((A.1)-(A.10)) of the section “Appendix”).

Magnetization is a vector quantity. A distributed magnetization field is cha-
racterized by the density per unit mass M or per unit volume pM , where p
is the mass density. Vector field M can be decomposed with respect to the
material basis M =M ‘X or the spatial basis M =M'Z,. By definition, in va-
cuum, the vector M of vacuum is equal to zero.

For isothermal systems, the bulk free energy density 1) per unit mass is
given as a function of the actual material metrics X, , the Lagrangean compo-
nents M“ of the magnetization vector per unit mass, and fixed material con-

stants or tensors, which we do not mention explicitly:

(//zl//(Xab,M”) (1.3)
The magnetoelastic Aleph tensor X’ is defined as follows
N =2p oy zhz7; —inszff L (1.4)
(cd) -0 8r 47

where H' are the Eulerian component of the magnetic field.

The bulk dynamics equations are postulated to be of the form

o' i i ij
p(§+V’VjV ]:vjw (1.5)
where V' are the Eulerian components of the velocity field and o is the mass
density.
The velocity field V' is defined as
. oz’ (x,t)
Vi(x,t)=——"2 1.6
(wt)=—71 (1.6)

We can also consider the velocity components as functions of the Eulerian
coordinates z': we will use the notation ¥’ (z,t) for this function. The func-
tions V' (x,t) and V' (z,t) are different functions. This should not create any
confusion even when we do not show the arguments explicitly, which of the two
functions is meant should be clear from the context; for instance, in the equa-
tions (1.5) we mean V' =V"(z,1).

The momentum balance condition at the boundary with vacuum reads

[2,)66—‘/’5':_{;,- T —inH"Z"f} N,

(ea) 4n 87 ” (1.7)

:(lH’Hf —inszff N,
4n 8n /

vac

where N, are the components of the unit normal to the boundary.
The relationships (1.3)-(1.6) should be amended with the magnetostatics bulk
equations and boundary conditions. The bulk equations read

op(z,t
H = _Li) (1.8)
0z
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V,B'=0 (1.9)
with the magnetic induction B’ defined as
B =H'+4npM'’ (1.10)

The Equation (1.8) reflects the fact that in the absence of macroscopic electric
current the magnetic field is irrotational. The Equation (1.9) reflects the fact that
the magnetic induction is always divergence-free.

At the interfaces, the fields ¢(z,¢), H,(z¢t), and B'(z,t) and/or their de-
rivatives experience finite jumps. Those jumps are not arbitrary but satisfy the

boundary constraints of magnetostatics:
[o] =0 (1.11)
and
[B’I N, =0 (1.12)

The bulk Equations (1.3)-(1.6), (1.8)-(1.10) should be amended with the fol-

lowing thermodynamics relationship:
oy (X, M)

1.13
Yz (1.13)

H,=p
In order to get the mathematically closed master system, the relationships
(1.1)-(1.13) should be amended with the initial conditions and conditions at in-
finity.
In the case of liquid substances, the free energy should be chosen in the form:

(7)< ()

ab>

(1.14)

p=p(Xap)

Using the relationship (1.14), we get instead of (1.4) the following relationship
of the Aleph tensor:

) ov i ) -
N = _pzﬂzv L uwz e L (1.15)
op 8 4

2. Definition of Permanent Deformable Magnet

How to define rigorously the notion of a permanent magnet on the macroscopic
level? It is easy and straightforward to suggest such rigorous definition when
dealing with the model of rigid solid. In words, we just say that the vector of
magnetization “moves with the magnet”. Or, in other words, we can say that the
components of the magnetization vector with respect to the accompanying basis
remain unchanged. Of course, the components with respect basis, fixed in the
space, can change. Formally, let G, ={G,,G,,G,} be the accompanying cova-
riant triangle of the rigid body; this basis does not necessarily consist of the
normalized orthogonal vectors. Let G* ={G1,GZ,G3} be the accompanying

contra-variant triangle; this triangle is defined by the identities

G, -G =5 (2.1)
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Needless to say, that both bases, G, and G”, are time-dependent although
they, in general, depend upon the Lagrangean (material) coordinates.
In terms of the accompanying bases we can define the permanent magnets by

the relationships

oM (x,t):O or 6Ma(x,t):0 (22)
ot ot

where M‘(x,t) and M, (x,t) are the components of the magnetization vec-
tor M (x,t) with respect to the accompanying bases G, and G’, respective-
ly.

What if we want to consider deformable magnets instead of rigid magnets?
The simplest generalization will be the following. First, we replace the bases G,
and G“ with the Lagrangean (material) bases X, (x,7), X* (x,t) , respective-
ly. Then, we can define deformable permanent magnet by one of the relation-

ships (2.2); for instance,

M (x,t) 8 a -
— _E<M(x,t)  X“(x,))=0, (2.3)

« _ »
.

where is the symbol of scalar product of corresponding vectors. In words,
this definition means that the contravariant components of the magnetization
vector with respect to the accompanying (material) basis remain fixed. To some
extent this definition reminds the behavior of the vorticity vector in ideal liquid.
Also, conceptually it is logically possible to define the permanent magnet with
the relationship
oM, (x,t) 0

py =5(M(x,t)-Xa (x,t))=0 (2.4)

The relationships (2.3), (2.4) are not mathematically equivalent and lead to dif-
ferent physical conclusions. Per Tamm [4], the ultimate choice should be made on
the basis of comparison with experiment. In the absence of experimental evi-
dence, we can make our choice on the basis of convenience of aesthetics. Below,

we dwell on the choice based on the relationship (2.3).

3. The Master Equation for the Model of Permanent
Deformable Magnet in the Eulerian Description

The relationships (2.3) provide the quite straightforward and simple definition
of the model of permanent deformable magnet when using the Lagrangean (ma-
terial) description of continuum media. However, the material description is
quite cumbersome in various situations. In particular, when dealing with hy-
drodynamics researchers obviously prefer the Eulerian description. Below, we
try to establish the Eulerian analogy of the definition of the permanent deforma-
ble magnet. We will establish the following key relationship:
%ﬁ”hmz,twiw ()M (V) (20)=0 ()

where M’ (z,t) and V'’ (z,t) are the Eulerian components of the magnetiza-
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tion and velocity fields, which expressed as functions of the variables z' and £
and use the covariant differentiation V,, based on the spatial metrics Z, (2).

First, we rewrite the definition (2.2) of permanent deformable magnet as fol-
lows:

0 ) _
E(M(z,t)z:z(m X (x,t))—O (3.2)

We remined that the function M (z,) differs essentially from the function
M (x,t); in fact, the following relationship hold

M(x“,t)zM(z",t)

- (3.3)
z' :zl(x“,t)

The notation (3.3) indicates that the variable z' in the right-hand side of
Equation (3.3) should be replaced with the function z' (x“ ,t) .
We, then, get, using the distributivity of the scalar product:

0 .

E(M(z,t)zzz(w) X (x1))

:xa(xt).ﬁ(M(zt) Jr M=), o X (5 =0
’ 61,‘ ’ z:z(x,t) ’ z:z(x,t) at ?

Let us differentiate the two terms in (3.4) separately.

First, we get the relationship

d _OM (z,1)
E(M (Z”)z:zw)) T a

(3.4)

+V, M(z,l)
z:z(x,t)

z=z(x.1) v (Z’t)L:z(x,z) (3.5)

as implied by the following chain:

, )_ oM (z,1) +6M(z,t)| oz' (x,1)
=) ot oz ot

z:z(x,t)

z:z(x,t)
3 oM (z,t)
o

+V, M (z,t)L:z(X,t) V(1) z=x(a)

z:z(x,t)
We, then, get the following identity

X (x,t) =7/ (z) pme(d) x (Z,t)
Combining Equations (3.5), (3.6), we get
u 0
X (x,t) -E(M(z,t) z:z(m)

[6Mj (z,t)
z:z(x,l)

o +V’(z,t)ViMj (z,t)j

3.6
z=z(x,1) ( )

(3.7)

=5 (2.1)

z:z(x,t)
as implied by the following chain:
OM (z,1)

Z‘f
(Z) z=z(x,t) ot

z=z(x,t) x[; (Z’ t)

z:z(x,l)

z=z(x,t) x4aj. (Z’t) 2=2(x) : Vl' M(Z,t) r—z(x) Vi (Z,t)
oM’ (z,t)
z:z(x,t) 8t

+Z’(z)

z:z(x,t)

+x5 (z,t)
z:z(X,l)

V.M’ (z,1)

Vi (zt)

z:z(x,t)

z=z| x,t) z:z(.r,t)
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j
=xlf;»(z,t) e {aM—(Z’t)+Vi(Z’t)V[Mj (Z’t)J

ot

z:z():,t)

We turn now to the second term in (3.4). First, we get

DX (5.0) =2 (X (x,0) X, (x.1))
ot ot (3.8)
ab *
AT ()4 x0 () e L51)
ot ot

For any symmetric mutually inverse tensor fields R, (x,r) and N (x,t)

we get the identity
aSab (X,t) _ _S“”de 8Rcd (x,t)
ot or
which can be applied to the metric tensors X, (x,£) and X“(x,f):

X (x,t) X (x,1)

=—X“x" (3.9)
Ot Ot
We also get the following relationship
0X ., (x,t
%:vyﬁ, VY (3.10)

Indeed, we get, using the definition of the actual material basis, and the Leib-

nitz rule of differentiation of products

an,—(x,t) :g(XC (x.2)-X, (x,t))

i 2;( oX (3:11)
:#.X{j (x,t)+XC (x,t)-%
We proceed, using the relationship
oX
#:Xb(x,t)vyb(x,t), (3.12)

as implied by the following chain
oX. (x,t) 0 GX(x,t) 0 aX(x,t) B aV(x,t)
o ot oxt ax* o axf

=V (X, ()7 (x.0)) = X, (x.0) V.V (x.0)

=VCV(x,t)

Combining (3.11), (3.12), we get the relationship (3.10); indeed, we get the
following chain:
X X X
X (1) o c(x’t)on(x,t)+Xc(x,t)'a 160
ot ot ot
=X, (x0)V V(1) X, + X, - X, (x,0)V, V¢ (x,t)
=X, VV +X V' =VV,+V,V,

Combining (3.9), (3.10), we get
ox (x,t)

=V vy (3.13)
ot
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Combining (3.12), (3.13), we get
X" (x,t
%: _X, (x.0) V" (3.14)

as it follows from the chain:

X" (X" (x,6) X, (x,t ) X
X' () X" (60X (0] K™ (xt) e g Kelt)
ot ot ot ot

== (VPP + V)X, (x.0) + X" (x.0) X, (x.0) V7 (x.0)

== (VP + V)X, (x5.0)+ X, (x0) V'V (x,) ==X, (x,) VIV

Let us rewrite (3.14) as
ox* ()C,t) axzkysi
=z, (3.15)
Ot '
as implied by the following chain:
oX“(x,t ) ) )
# =X, (0, 0)VV ==Z 2V (Vx| = -2,V (V'x) ) == Z,x 0V

Combining (3.2), (3.5), (3.15), we get

0 a
5(M(z,t)z o X0 t))
M 4 , 4 . (3.16)
:xj.‘(z,t) e(e) {aa—EZ’t)+Vl(ZJ)ViM’/(Z,t)—M’VI.V’}
' z:z(x,t)
as it is implied by the following chain:
_( e t))
= ~M(zt)|_ oy ZXV
z:z(x,t)

@M’ Zt

y -x M, (z,t)|H(m vy
z=z(x,t

zzxt

| {‘W V() (= r)}
(2

Vl(z t)V M/ (Z t)}

=x% (z,t)

M/ . , _ _

z:z(x,t)
Combining the relationships (3.2), (3.16), we arrive at the required relation-
ship (3.1).

4. The Full Master System for the Model of Permanent
Deformable Magnet in the Eulerian Description

Analysis of the model of permanent deformable magnet requires some correc-
tions in the master system (1.1)-(1.13). First of all, the free energy density
cannot depend upon the density of the magnetization vector M“ since this

vector remains constant; thus, the free energy density reads
v=y(X,.T), (4.1)
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where T'is the absolute temperature. For the sake of brevity, we will still consider
only isothermal case and ignore the variable 7.

The appearance of the Lagrangean actual metrics X, looks like the incon-
sistency with the goal of providing the Eulerian description of the continuum
media. Indeed, the definition of the metrics X, explicitly uses the Lagrangean
(material) description. Therefore, some comments are required here. In fact, the
Eulerian description basically means that the ultimate independent variables are
actually the Eulerian coordinates z* and the time # That does not mean
though, that the objects with the Lagrangean (material) indexes cannot appear in
the intermediate relationships. For instance, the shift-tensor x} (z" ,t) is one of
the most widespread objects in the Eulerian description. Another widespread
object z'  isthe inverse of x% (zk,t) . The inverse tensor can be presented as

. 104

z,, =——— where A=det
YA oxy

x5 (2.0) (4.2)

with this definition (4.2) the tensor field z* appears to be the tensor-function
of the independent variables (zk ,t) , as it should be when using the Eulerian de-
scription. There is also another definition of the tensor z" ; it reads

z5 =oz* (xc,t) / Ox* . With the last definition, the same tensor z' appears as
the function of x°,¢. Thus, it cannot be the ultimate element of the Eulerian
description, but it can be the intermediate object.

Another example is the definition of the permanent deformable magnet (2.3).
This definition is relevant for the Lagrangean description, whereas the relation-
ship (3.1) is relevant for the Eulerian description. The two definitions are ma-
thematically and physically equivalent each other, although this equivalence is
not obvious at all. But, technically, these definitions lead to quite different equa-
tions and may have essential advantages with respect to each other, depending
on different circumstances (like, for instance, initial and boundary conditions,
the equations of state, etc.)

It is essential that the key thermodynamic identity (1.13) at fixed M“ be-
comes meaningless and should be excluded from the master system for perma-
nent deformable magnet. Instead of the identity (1.13), the relationship (3.1)
must be included into the master system.

The bulk master system for the permanent magnetic liquid substance in
the Eulerian description

A detailed discussion of magnetic liquids, including their applications and
fundamentals, can be found in the monograph [13]. The full master system for
the permanent deformable magnetic liquids consists of the following equations:

1) the momentum equation

p(%-ﬁ-V.iVjVij:VLai(w zh 7% lHkH"Zi"+4iHiH-’j (4.2)
T

j a‘h T o
b 8n
2) the mass conservation equation

‘Z—fw,.(prff):o (4.3)

DOI: 10.4236/jamp.2023.1110202 3069 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.1110202

M. Grinfeld, P. Grinfeld

3) the thermodynamics relationship

t//(Xab,M”)Ed)(p),Wherep:p(Xab) (4.4)
4) the Eulerian kinematic definition of the permanent magnetic substance
M’ . , o
aa—iz’t)Jr Vi (2.)V. M (2,) =MV VT =0 (4.5)

5) the identity of the magnetic induction
V,(H' +4mpM')=0 (4.6)
6) the identity of the magnetic field /' and the potential ¢ (in the absence
of electric currents)
H =V (4.7)
The natural arguments of the magnetic fields H',B’, and ¢ are the Eule-
rian independent variables z' and £ The only potential obstacle for the fully

Eulerian description is the term z'z}dw /06X, . However, for the equation of

state (4.4) the term z"z/ 0y [dX,, can be rewritten as

0 i j i
%z;zﬁ; =-p(p)Z", (48)

where the “pressure” p(p) isdefinedas p(p)=p’0¥(p).
Using Equation (4.8), we can rewrite the momentum Equation (4.2) in the

purely Eulerian form

p(aa—i+ VjVjV’):Vj (—p(p)Zij —éHkH"Z"j +ﬁH"Hfj (4.9)

In this form, all the functions obviously depend only on the Eulerian coordi-
nates z' and ¢
5. The Bulk Master System for the Permanent Magnetic

Liquid Incompressible Substance

When dealing with incompressible permanent magnet liquid substance, the free
energy density appears to be the function of the absolute temperature. When
consider the isothermal process, the free energy density appears to be just a fixed
parameter. The pressure p cannot be expressed in terms of the free energy den-
sity, and the Equations (4.2), (4.3) should be replaced with the following pair:

p(oV' V'V V)=V, (-p2’ ~(8n) H,H'Z' +(4n) ' H'H')  (5.1)
VIVi=0 (5.2)

The Equations (4.5)-(4.7) remain unchanged.

6. Discussion and Conclusions

We introduced the notion of a deformable continuum with permanent magne-

tization. This logically rigorous definition generalizes the widespread intuitive
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notion of permanent magnet. This is our first main result. The intuitive defini-
tion is logically rigorous when using the model of rigid (i.e., non-deformable)
solid. However, the intuitive definition is unclear when considering deformable
substances.

In the simplest form (2.2), our definition of permanent deformable magnet
requires the Lagrangean description of continuum media. It claims that the con-
travariant material components M (x",t) of the magnetization vectors remain
unchanged at each material point. This definition appears to be totally consistent
with the traditional intuitive understanding of the permanent magnet. It remains
meaningful when considering deformable substances.

Despite its simplicity, the Lagrangean definition is often inconvenient because
of some other reasons. For instance, traditionally the systems of hydrodynamics
and electromagnetism make use of the Eulerian variables and description (see,
for instance, [2] [4] [7]). Therefore, it is desirable to establish the description of
deformable continuum with permanent magnetization based on the Eulerian va-
riables and description. This problem is solved in the section “The master equa-
tion for the model of permanent deformable magnet in the Eulerian description”;
see the keynote relationship (3.1). This relationship is our second main result.

In the section “The full master system for the model of permanent deformable
magnet in the Eulerian description”, we established the full master systems for
permanent deformable magnetizable substances.

Needless to say, that several key features of real magnets are deliberately ig-
nored in our models. This concerns, in particular, the equations of state for the

permanent magnets. They will be taken into accounts in our future studies.
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Appendix

When describing electrostatics and anisotropy simultaneously we must use both
the Lagrangean coordinates X“ and the Eulerian coordinates z'.

Let the spatial radius-vector be the time-dependent vector-function of the Eu-
lerian coordinates Z =Z(z,t).Let Z,(z,t)= 6Z(z,t)/6zi ,
Z,(z,t)=Z,(z,t)-Z;(z,t) be the covariant basis and metrics of the reference
(Eulerian) coordinate system. We use the notation V; for the (time-dependent)
spatial covariant differentiation based on the metrics Z; (z,t) . Let F;k (Z,t) be
the Christoffel associated with the metrics Z, (z,7).

All other operations with tensors, having the indexes of the type “i, j,k 7, are
introduced in a standard way. In this sketch we will not dwell on those.

Let the spatial radius-vector be the time-dependent vector-function of the La-
grangean coordinates X = X (x,7) in the actual (current) configuration Let
X, (x,1)= aX(x,t)/ﬁx“ s X, (x1)=X,(x,1)-X,(x,t) be the covariant basis
and metrics of the actual (current) coordinate system. We use the notation V,
for the time-dependent covariant differentiation, based on the metrics X, (x,7).
Let I’y (x,7) be the Christoffels associated with the metrics X, (x,¢). All oth-
er operations with tensors, having the indexes of the type “a,b,c,---” are intro-
duced in a standard way. In this draft we will not dwell on those.

So far, there was no difference between the Lagrangean and Eulerian coordi-
nates. The key difference between the two in various applications is the follow-
ing. The evolution of the Eulerian coordinate system (basically the radius-vector
Z(z,t) field) is assumed known up-front: it is not part of solving problem un-
der consideration. On the contrary, the radius-vector X(x,7) of the actual
coordinate system is the central un-known field of the problem under study.
Typically, we learn the motion of the actual radius-vector with respect to the
reference coordinate system. The problems are usually formulated as finding of

the motion-functions
=7 (x“,t), x =x* (zi,t), =7 (x“ (zj,t),t) (A.1)

Since, we know everything about the Eulerian (reference) coordinate system
the ultimate independent unknown are (zi,t); This means, in particular, that
the main unknown function is x“ (zi,t), not zi(x“,t) (although the two are
closely connected).

All said so far, can be expressed as the identities
Z(z",t) = X(x" (z",t),t), X(x“,t) = Z(z" (x",t),t) (A.2)
These identities imply the following ones:
2 ((20).0)5 (2.0) =5, 2 (x(z0)0)¥! (1) = 43

The two-point tensors =z (x,f) and xj.‘(z,t) are called distortions. Ac-
cording to what was said above, even the distortion z', (x,t) should be ulti-

mately treated as the tensor function of (zi ,t) .
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The following identities are valid for the Christoffel symbols

2,0

; ; 0z
Iy =T x%z}z% + x5,
J a7 .c axbaxc I
A4
o’z *x* (A4
o Vet~ T2z, ok T )

For the mixed tensors of the type T;‘,’, (z,t) the actual covariant differentia-

tion is defined as follows
V1 ()= T m s r et T (A5)

The Lagrangean covariant differentiation V, is defined according to the
identity
V,=zV,,V, =x5V, (A.6)
The following relationships for the bases and distortions are of key impor-
tance
v.Z =0,V X, =0V.Z =0V X, =0 (A7)
and
szi" (z,t) =0,V,x¥ (z,t) = O,ch_’; (z,t) =0,V x; (Z,t) =0 (A.8)
The following relationships for the metrics read
V,Z;=V,Z2,=V7"=V.2"=V 7" =V,5 =V 5 =0,

)

(A.9)
vV.X,=VX,=V,X"=V X"=V X"=V5 =V =0
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