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Abstract

Solitons and bifurcations for the generalized Tzitzéica type equation are stu-
died by using the theory of dynamical systems and Hamilton function. With
the help of Maple and bifurcation theory of differential equations, the bifur-
cation parameter conditions and all the bifurcation phase portraits are ob-
tained. Because the same energy value of the Hamiltonian function is corres-
ponding to the same orbit, thus the periodic wave solutions, bright soliton
and dark soliton solutions are defined.

Keywords
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1. Introduction

The Tzitzéica type equations contain the following four nonlinear evolution

equations [1]-[6]

U, —U, +€e' —e? =0, (1.1)
and
U, +e" =0, (1.2)
and
U, +e'+e? =0, (1.3)
and
u,—e"-e?=0. (1.4)
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which play an important role in nonlinear fiber optics. Equations (1.1), (1.2),
(1.3) and (1.4) present the Tzitzéica, Liouville, Dodd-Bullough-Mikhailov and
Tzitzéica-Dodd-Bullough equations, respectively. For instance, Kumar [1]
studied the Tzitzéica type equations by the method of sine-Gordon expansion.
In [7], with the help of generalized exponential rational function method, the
authors researched Equations (1.1) and (1.4). Zafar [8] discussed Equations (1.1),
(1.3) and (1.4) by the Painlevé transformation and the simplest equation method.
Hosseini [9] studied the Tzitzéica type equations using the exp, function method.

’

In [10], the (Ej -expansion method was applied for constructing more general

exact solutions of the Tzitzéica type equations. In [11], the improved

tan (@J -expansion method was used to study the Tzitzéica type equations

and the dispersive dark optical solitons were obtained. For more literature, we
can refer to [12]-[19].

Obviously, there is no single way to solve the soliton solutions of all nonlinear
evolution equations, which leads to the generation of many new methods, such
as the G'/ G*? -expansion method and the sine-cosine method [20], the func-
tional variable method and first integral approach [21], the semi-inverse varia-
tional principle [22], Lie symmetry approach [23], the method of F-expansion
[24] [25], the modified simple equation method and the trial equation method
[26] [27], the asymmetric method [28], the Gaussian ansatz [29] [30], the soliton
perturbation theory [31] [32], the simplest equation method and the G'/G
-expansion method [33] [34], the theory of dynamical systems [35] [36] [37]
[38].

In this paper, We will devote ourselves to research the following generalized
Tzitzéica type equation

KU, — KU, +au, + e’ +ye™ +ne =0, (1.5)

where «,f,7 and 7 are real constants. As far as we know, Equation (1.5) has
not been studied. In particular, we notice that some well-known equations are
included in Equation (1.5). When «=1, a=y=0, f=-1 and n=1,
Equation (1.5) reduces to the Tzitzéica equation. When x=y=7=0 and

a = =1, Equation (1.5) reduces to the Liouville equation. When x=y=0
and a=pf=n=1, Equation (1.5) reduces to the Dodd-Bullough-Mikhailov
equation. When x=f=0, a=1 and y=7n=-1, Equation (1.5) reduces to
the Tzitzéica-Dodd-Bullough equation. Using the theory of dynamical systems,
the bounded solitons and bifurcations of Equation (1.5) will be discussed. These
conclusions are new and have important applications in mathematics and
physics. It can help us understand many experiments in physics, and can reveal

the laws of motion and the objective nature of physical experiments.

2. Traveling Wave Transformation and First Integral

Introducing the following function transformation
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u(xt)=In(v(xt)), (2.1)

where V(X,t) >0 . Without loss of generality, we only discuss the traveling wave
solutions when V(X,t)>0.
Substituting Equation (2.1) into Equation (1.5), we get

KW, — KW, + W, + K(vf +V2 ) —av,V, + BV + v +n=0. (2.2)
In order to seek traveling wave solutions of Equation (2.2), we assume that
v(xt)=v(&), E=x-—ct, (2.3)

where c is the wave speed. Substituting Equation (2.3) into Equation (2.2), we

get

(c? —K—ac)lv(g)d;véf ) _[dz(éf)] ]+ PN +79(E)+n=0. (4)

dv
Let ﬁ
dg
dimensional singular traveling wave system
dv (&)

?23’(5)’

dy(&) y(f)2 +oclv(§)3 +a,V (&) + g

de v(¢)

B 4= 4 o = n
aC+Kk—-C'k

=y(&), then Equation (2.4) is equivalent to the following two

(2.5)

where o, = 7> & P
aC+Kx—C°k ac+x—Ck

System (2.5) has the following Hamilton function

y? B 2Va, - 2va, —a,

v? v?

H(v,y)= =h, (2.6)

where Ais a real constant.

3. Bifurcation of Parameters and Phase Portraits

Firstly, we study the following associated regular system of system (2.5)

v (¢)
d¢g
dy(¢)

72 y(é’)2 +alv(§)3 +aV($)+a,

where d&=vd{ . System (2.5) and system (3.1) have the same Hamiltonian

=v(£)y(<).
(3.1)

function. Consequently, system (2.5) and system (3.1) have the same dynamic
properties except for the straight line v=0. Near the straight line v=0, the
dynamics of the solutions for system (2.5) usually change abruptly.

Define
a a
f(V)=aV’+av+a, Vv=-|-—2, V,= |-—2.
3oy 3oy
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Discussing the equilibrium points of the system (3.1), we get the following
proposition.
Proposition 3.1

(i) When ¢, =0, there exists a equilibrium point [—ﬁ,OJ on the v-axis.

a,

(ii) When ea, >0, f(Vv) is a monotone function. Therefore there is only
one equilibrium point on the v-axis.

(iii) When eya, <0, f(v,)f(v,)>0, there is one equilibrium point on the
V-axis.

(iv) When ayar, <0, f(V;)f(v,) <0, there exist three different equilibrium
points on the v-axis.

(v) When e, <0 and f(v,)f(v,)=0, there exist two equilibrium points
on the v-axis, one of which is a double equilibrium point.

(vi) When ¢, =0, a,=0, there is a triple equilibrium point (0,0) on the
V-axis.

(vi)) When a, =0, a;#0, there is a equilibrium point [3 —%,OJ on the

1
V-axis.

(vii) When a, <0, there are two equilibrium points (O,im ) on the
y-axis. When a, >0, there is no equilibrium point on the y-axis. When a, =0,
there is a double equilibrium point (0,0) on the y-axis.

Suppose J (v,y) is the Jacobian matrix of the linearized system (3.1) and
defines

J(v,y):{ 4 ! } (3.2)

3oV +a, 2y

From (3.2), we know that

detJ (v,0)= —C%o:lv[v2 + 5—2] ==3aV(V-V)(V-V,).
21

a 27 a
According to the above analysis, the parameter condition —% = _T(_sj
o @,

obtained from f(v)=0, i=12. Let k =% K, =% Thus there are three
o @,

27
bifurcation curves L, :k =0, L,:k,=0 and Lj:k = _Tkzz in the (k,k,)

-parameter plane, as shown in Figure 1. Using the bifurcation theory of diffe-
rential equation [35] [36] [37] [38], we obtain the phase portraits of system (2.5),
as shown in Figure 2.

4. Exact Traveling Wave Solutions of Equation (2.4)

In this section, we will use (2.6) and the Maple software to obtain the bounded

traveling wave solutions of Equation (2.4). According to the relationship between
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Figure 1. The parameter regions partitioned by bifurcation curves

in the (

k. k, ) -plane.
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Figure 2. Bifurcations of phase portraits of system (2.5).
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the solutions of Equation (1.5) and Equation (2.4), we know that

u(x,t) = In(v(X,t)). Thus we can obtain traveling wave solutions of Equation
(1.5). We agree to take only the part of V(X,t) >0 as the solutions of Equation
(2.4), and we will not repeat it.

From (2.6), we obtain
y> =2V, +hv? - 2va, — a,. (4.1)
Substituting into the first equation of system (2.5), we get

1

E= dv. (4.2)
J\/2V3051 +hv? —2va, —a,

(i) When ¢, =a,=0, @,<0, corresponding to Figure 2(2). When h<0,
there exist a family of periodic orbits defined by H (V, y) =h. From Equation
(4.2), we obtain

J-he = IVJ%

(4.3)

Thus we get the following solutions, as shown in Figure 3 and Figure 4.

v(¢) =\/%sin(ﬂ§), (4.4)

and

u(x,t):In(\/%sin(ﬂ(x—ct))} (4.5)

(i) When o, =a;=0, «, <0, corresponding to Figure 2(4). When h<0,
the curves defined by H (V, y) =h are a family of periodic orbits. From
Equation (4.2), it follows

Figure 3. The 3D plot of (4.5).
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(4.6)

From Equation (4.6), we get the parameter expressions for V(f) and
u(x,t) as follows

V(&) =%+%sin(ﬂ§), (4.7)
and

u(x,t):In(%+%sin(ﬂ(x—ct))]. (4.8)

(iii) When o, =0, a, <0, a;>0, corresponding to Figure 2(8). There

exist a center point (—&,0] on the v-axis. When H [—ﬁ,OJ<h<O, the
a, @,

curves defined by H (V, y): h is a family of periodic orbits surrounding the

center point [—&,Oj. From Equation (4.2), then we get

a,
Jhe={"|—3L g4 (4.9)
=62
where ﬂlzaz+\/hha3+a22, ﬂzzaz—,/hha3+a22 ‘

From Equation (4.9), we get

V(&) =3 (= A)sin(NRE) +2 (4 + 7). (410
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and
u(x,t)= In(%(ﬂ,Z —ﬁJsin(«/ﬁ(x—ct))Jr%(ﬂ1 +ﬂ?)j. (4.11)

(iv) When ¢, <0, a,=0, a;=0, corresponding to Figure 2(10). There
exist a saddle point (0,0) on the v-axis. When h>0, there exist a family of
homoclinic orbits corresponding to a family of bright solitons of Equation (2.4).
From Equation (4.2), we obtain

_h 1
[~20,& = j 2= (s, (4.12)
Y 3 h 2
- s
20
From Equation (4.12), we get the following parameter expressions for V(f)

and U(X,t), as shown in Figure 5 and Figure 6.

2 o
v(&)=- 2he -, (4.13)
oll+e 2 V@

and

u(x,t)=In| - : (4.14)

N
\1\_-‘___
2 4 6
Figure 5. The 2D plot of (4.13).
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Figure 6. The 3D plot of (4.14).

a 4a
(v) When <0, a,=0, >0 or <0, >0, 22> |-—2 or
a, 27,
a 4a a 4a
a,<0, a,>0, 2= [-—2 or <0, a,>0, 0<—=< 2 or
a, 27 a, 27

o, <0, a,<0, a;>0, corresponding to Figure 2(12), Figure 2(21), Figure
2(23), Figure 2(25), Figure 2(34), respectively. There exists a center equilibrium
point (V*,O) on the right of y-axis, respectively. When h>H (v*,O) , there
exists a family of periodic orbits defined by H(Vv,y)=h, respectively. Especially,

when ¢, <0, a,=0, @,>0,then V' = 3/—% . From Equation (4.2), we have
@

200 o 204 (4.15)
—J'l3 ds.
V(i =5)(s-4,)(s-4)
) s h . o, o, .
where A4, >4, > A, and satisfies A°+—A4 ' ——4 -——=0, i=12,3.
2a, o, a,

From (4.15), we get the following solutions for V(cf) and U(X,t), as shown
in Figure 7 and Figure 8.

v(&)=(4 - 4) Jacob|SN[ NETAN/AE J s, (4.16)

and
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Figure 7. The 2D plot of (4.17).

Figure 8. The 3D plot of (4.17).

u(xt)=In (ﬂz—ﬂg)JacobiSN[M(x—ct), /%J +4 | (417)

where JacobiSN (-, ) is an elliptic integral of the first kind.

(vi) When ¢, <0, a,<0, a;=0, corresponding to Figure 2(16). When
he (—00,+00) , there exist a family of periodic orbits defined by H (V, y) =h.We
obtain the parameter expressions for V(§ ) and U (X,t) as follows
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V(&) =4,JacobiCN [%./—20415.//12 -4, /ﬂfjJ , (4.18)

and

u(xt)= In[ﬂ,zJacobiCN (%1/—20411//12 -4 (x—ct), }ﬁ} ] (4.19)
here J, = ~-h+h* +16c, a, = h+./h* +16, a,

4o, 4o,

(vii)) When ¢, >0, a, <0, a; =0, corresponding to Figure 2(17). There are

two saddle points (0,0) and [ —&,Oj, where (0,0) is a degenerate saddle
a

1

point.
)

(a) When h:H( ——=

,OJ , there exists a homoclinic orbit connecting
a

(0,0) and [ % O] From Equation (4.2), we get
o

N j[;ds. (4.20)

From Equation (4.20), we get the parameter expressions for V(f) and
u(x,t) as follows

v(¢)=1- \/jtanh( «/_\/_@J:J (4.21)
u(x,t):ln{l—\/%tanh(x_;t «/5\/;14{/%] ] (4.22)

(b) When h<H [ f—&, 0] , there exist a family of periodic orbits passing the
o

and

saddle point (0,0). The parameter expressions for V(&) and U(X,t) as follows

2,2,JacobiSN (\/25\/0715\/2 , \/gj Sy

v(¢)= > (4.23)
2, JacobiSN [\/25\/0715\/2\/2] -
and
2,4, JacobisN (ﬁ();_Ct)\/oZ\/Z\/Zj Y
u(x,t)=In e (4.24)

[ V2(x-ct) i
A,JacobiSN [2\/071\/2\/2] -
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here 4, h+/h? +16c, @, A ~h+4h*+160, a2,
where /4, = , A= .
4o, 4o,

(viii) When ¢, <0, a,>0, a;=0, corresponding to Figure 2(18). There
exist a center point [ —&,OJ on v-axis. When h>H { —ﬂ,O], there exist
o [24]

a family of periodic orbits defined by H(v,y)=h. We obtain v(¢£) and
u(x,t) asfollows

v(&)=(4—4,)JacobisSN (%1/—2%5\/2, Z%J + 1, (4.25)

and

u(xt)= In[(ﬂ.l — A, JacobiSN (#(x —ct), %J + /IQJ (4.26)

where jiz—h+\/h2+16051052 A?:_h+\lh2+16ala2

4o, 4o,

(ix) When ¢, <0, a,>0, - _da <% <o, corresponding to Figure
210y
2(27). There exist two saddle points (v;,0), (V,,0) and a center point (v3,0),

where v, <0<V, <v;,.
(a) When h=H (VZ,O) , there exists a homoclinic orbit connecting the point
(VZ,O) . From Equation (4.2), we have

1 1
20, & = dv = dv, (4.27)
| J‘\/—Va—hvz+\m‘2+0’3 I(V_VZ)\/V“_V

200 o 2o

where v, >v,.From (4.27), we obtain
1 2
V(E)=v, +(v, -V, )tan (?/—Z(le,/v2 —v@j , (4.28)

and
u(xt)= In[v4 +(v, -V, )tan (% 20, (v, -V, ) (x— ct)jzj. (4.29)

(b) When H(v;,0)<h<H(v,,0), there exists a family of periodic orbits
defined by H (v,y):h. The parameter expressions of V(f) and U(X,t) are
the same as Equation (4.16) and Equation (4.17).
ba, «a

(x) When ¢, >0, a,<0, — |- <—=2<0, corresponding to Figure
210 «a,
2(28). There exist two center points (V;,0), (V,,0) and a saddle point (V,,0),

where v, <0<V, <v;,.
(a) When h=H (V3,0) , there exists a homoclinic orbit connecting the point
(V3,0) . From Equation (4.2), we have
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where 0<v, <v,.From (4.30), we get V(f) and U (X,t) , as shown in Figure 9
and Figure 10.

2
1
V(5)2V4+(V4_Vs)tan(g\/g\/%f\jvn._vs) , (4.31)
and
u (€)
-10 -5 0 5 10
-0.4
Figure 9. The 2D plot of (4.32).
Figure 10. The 3D plot of (4.32).
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u(x,t):ln[v4 (v, =V, tan( ffgﬂj} (4.32)

where V(f ) is a bright soliton and U (X,t) is a dark soliton.
(b) When H(Vv,,0)<h<H(v;,0), there exists a family of periodic orbits
defined by H (V, y) =h. From Equation (4.2), it follows

A 1 A 1
2aé=|" =" ds. (4.33)
i), \/v3 LV va, v=l J(A=9)(A —s)(s—4)

where A, > A4, >/, , and satisfies /1,3+L/l,2 Y- %_0, i=1,23.
o o 20,

From (4.33), then we get the periodic wave solutions as follows

/13(/12—ﬂi)JacobiSN[Vzal(jS_ﬂl)f, /2:2] ~ 2 (%

v(¢)= - . (4.34)

(%—A)JacobiSN[Wé, /j::il] —ly+ Ay

u(x,t)

20 (45— )
2

(x-ct), HJ (A 4)

23(A, — 2,) JacohiSN [

=In

(4, — 4,) JacobiSN (W(x—ct), jz:jj — A+

5. Conclusion

To summarize, with the help of differential equation dynamical systems theory
and methods, we obtain all bifurcation phase diagrams with directional fields.
These directional fields can help us better grasp its dynamic behavior. By the
same energy value of the Hamiltonian function corresponding to the same orbit,

we get a lot of periodic wave solutions and bright soliton, dark soliton solutions.
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