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Abstract 
In this paper, we study the viscosity solutions of the Neumann problem  

( ) ( ) ( ) in ,

0 on ,

β ξ η∞∆ + + ⋅ + = Ω

∂

= ∂Ω∂


Nu Du x Du x u g x
u
n

 

in a bounded 2C  domain Ω, where ∞∆
N  is called the normalized infinity 

Laplacian. The normalized infinity Laplacian was first studied by Peres, 
Shramm, Sheffield and Wilson from the point of randomized theory named 
tug-of-war, which has wide applications in optimal mass transportation, fi-
nancial option price problems, digital image processing, physical engineering, 
etc. We give the Lipschitz regularity of the viscosity solutions of the Neu-
mann problem. The method we adopt is to choose suitable auxiliary functions 
as barrier functions and combine the perturbation method and viscosity solu-
tions theory. 
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1. Introduction 

In this paper, we study the Lipschitz regularity of the viscosity solutions of the 
Neumann problem 

( ) ( ) ( ) in ,

0 on ,

β ξ η∞∆ + + ⋅ + = Ω

∂

= ∂Ω∂


Nu Du x Du x u g x
u
n

           (1) 

where Ω is a bounded 2C  domain in  ,   denotes a set of  -dimensional 
Euclidean space, β ∈ , ∂Ω  denotes the boundary of Ω, ( )n x  is the unit 
exterior normal to the domain Ω at ∈∂Ωx , ( ) :ξ Ω→ x , ( ) :η Ω→x   

How to cite this paper: Han, X. and Liu, 
F. (2023) Lipschitz Regularity of Viscosity 
Solutions to the Infinity Laplace Equation. 
Journal of Applied Mathematics and Phys-
ics, 11, 2982-2996. 
https://doi.org/10.4236/jamp.2023.1110197 
 
Received: August 29, 2023 
Accepted: October 22, 2023 
Published: October 25, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2023.1110197
https://www.scirp.org/
https://doi.org/10.4236/jamp.2023.1110197
http://creativecommons.org/licenses/by/4.0/


X. Han, F. Liu 
 

 

DOI: 10.4236/jamp.2023.1110197 2983 Journal of Applied Mathematics and Physics 
 

are continuous in Ω  (the closure of Ω), ( )g x  is a bounded function in Ω  
and 

2 , ,∞∆ =N Du Duu D u
Du Du

                    (2) 

is called the normalized infinity Laplacian. 
The infinity Laplace equation 

2

1 1
0,∞

= =

∂ ∂ ∂
∆ = =

∂ ∂ ∂ ∂∑∑
n n

i j i i j j

u u uu
x x x x

 

is the Euler-Lagrange equation associated with ∞L -variational problem related 
to the absolutely minimizing Lipschitz extensions, which was first studied by 
Aronsson [1] [2] [3] [4]. The infinity Laplacian has attracted more and more 
attention because it is highly degenerate and has no variational structure. It has 
been widely used in the Monge-Kantorovich mass transfer problem in [5], 
digital image processing in [6] [7] and financial mathematics in [8]. 

( )ξ∞∆ + ⋅Nu x Du  is called the infinity Laplacian with a transport term related 
to tug-of-war. López, Navarro and Rossi [9] gave an explanation from the point 
of tug-of-war game. Let us briefly recall the game: let F be the final payoff function 
defined in a narrow strip around the boundary ∂Ω . The tug-of-war game with a 
transport term is played with two stages. First the players toss an unfair coin, 
which has head probability ( )0 1ε< <C  and tail probability ( )1 ε−C . If the 
players have obtained a head, then they toss a new (fair) coin and the winner 
moves the token to any new position ( )1 0

ε∈x B x . But if in the first (unfair) 
coin toss, the players obtain a tail, the token is moved to ( )0 0ξ ε+x x . Note that 
there is no strategies of the players involved if they get a tail in the first coin toss. 
The game continues until the first time the token arrives to \ς ∈ Ωx  and 
then Player I earns ( )ςF x , Player II earns ( )ς−F x , where F is the extension 
of f  from ∂Ω  to a small strip ( ){ }\ : dist ,ε ε ξ

∞
Γ = ∈ Ω ∂Ω <x x  and 

gives the final payoff of the game. López, Navarro and Rossi found a viscosity 
solution to 

, 0 in ,
on ,

ξ∞−∆ − = Ω


= ∂Ω

Nu Du
u f

                    (3) 

where f  is a Lipschitz continuous function. They obtained the existence and 
uniqueness of a viscosity solution by a Lp-approximation procedure when ξ is a 
continous gradient vector field. They also proved the stability of the unique 
solution with respect to ξ. In addition, when ξ is Lipschitz continuous but not 
necessarily a gradient, they proved that the problem (3) has a viscosity solution. 
Some kinds of modified tug-of-war have received a lot of attention, such as 
[10]-[19]. 

β∞∆ +Nu Du  is called the β-biased infinity Laplacian, which was first 
introduced by Peres, Pete and Somersille when modelling the stochastic game 
named biased tug-of-war in [17]. They investigated the random game with a 
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final payoff function and a running payoff function. It’s a zero sum game with 
two players in which the earnings of one of them are the losses of the other. 
Armstrong, Smart and Somersille [20] studied the mixed Dirichlet-Neumann 
boundary value problem 

in ,
on ,

0 on ,

β∞−∆ − = Ω
 = Γ

∂ = Γ∂


N

D

N

u Du g
u f

u
n

 

where Γ ∪Γ = ∂ΩD N  is a partition of ∂Ω  with ΓD  nonempty and closed. 
They obtained existence, uniqueness and stability results for the boundary-value 
problem. Liu and Yang [21] established the existence of the principal Dirichlet 
eigenvalue based on the comparison principle. They also established the Harnack 
inequality and the Lipschitz regularity of a nonnegative viscosity supersolution 
to the β-biased equation 

( ) ( ) ,β λ∞∆ + + =Nu Du a x u g x  

where λ∈  and 0λ ≥ , the weight function ( )a x  is positive in Ω  and 
( ) ( ) ( )∞∈ Ω ∩ Ωa x C L . The key of their method is to choose suitable exponential 

cones as barrier functions. 
For the case 0β = , Lu and Wang [22] [23] studied the inhomogeneous 

infinity Laplace equation 

in .∞∆ = ΩNu g  

They showed existence and uniqueness of the viscosity solutions of the Dirichlet 
problem under the intrinsic condition that g does not change its sign from the 
PDE's methods. Patrizi [24] studied the following Neumann problem 

( ) ( ) 0 in ,

0 on ,

ξ η∞∆ + ⋅ + = Ω

∂

= ∂Ω∂


Nu x Du x u
u
n

 

and showed the Lipschitz regularity in the whole Ω  of the viscosity solutions 
and obtained the existence of the principal eigenvalue. 

Aronsson [25] obtained the specific form of a viscosity solution to the infinity  

Laplace equation ( 0∞∆ =u ) in two-dimensional space: ( )
4 4
3 3

1 2 1 2, = −u x x x x . Thus,  

the regularity of infinity harmonic functions (viscosity solutions to 0∞∆ =u ) is  

at most 
11,
3C . In [26], the 1C  regularity of infinity harmonic functions was  

proved by Savin in dimension two. Later, Evans and Savin [27] established the 
1,αC  regularity of infinity harmonic functions for some 0α >  in dimension 

two. For 3≥ , Evans and Smart [28] [29] proved that infinity harmonic 
functions in   are differentiable everywhere. 

In this paper, we study the Lipschitz regularity of viscosity solutions of the 
Neumann problem (1). The main result can be summarized as the following 
theorem. 
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Theorem 1  Assume that Ω is a bounded domain of class 2C , β ∈ , 
( ) :ξ Ω→ x , ( ) :η Ω→x  are continuous in Ω , g  is a bounded 

function in Ω . If ( )∈ Ωu C  is a viscosity solution of 

( ) ( ) ( ) in ,

0 on ,

β ξ η∞∆ + + ⋅ + = Ω

∂

= ∂Ω∂


Nu Du x Du x u g x
u
n

           (4) 

then there exists a constant 0C  depending on , ,β
∞

Ω g  and 
∞

u  such that 

( ) ( ) 0 , , .− ≤ − ∀ ∈Ωu x u y C x y x y                    (5) 

2. Definitions of the Viscosity Solutions 

Since the normalized infinity Laplacian ∞∆
N  is singular at the points where the 

gradient vanishes, we give a proper explanation to the operator by the viscosity 
solutions theory according to Crandall, Ishii and Lions [30]. 

We denote ( )S  as the set of symmetric matrices on ×   and define 
X  in ×   by letting { }sup | , 1θ θ θ= ∈ ≤X X . 
Denote ( ):σ → S : 

( ) 2: ,σ ⊗
=

p pp
p

 

where ⊗  denotes the tensor product. 
Then we get 

( )( )2tr ,σ∞∆ =Nu Du D u  

for any ( )2∈ Ωu C . 
It is easy to check that the following properties are valid. 
(1) ( )σ p  is homogeneous of order 0, i.e., for any ∈a  and ∈ p , one 

has 

( ) ( ).σ σ=ap p  

(2) For all ∈ p , one has 

( )0 ,σ≤ ≤ p I  

where I  denotes the identity matrix in ×  . 
(3) ( )σ p  is idempotent, i.e., 

( )( ) ( )2
.σ σ=p p  

Suppose that Ω is a bounded 2C  domain. Obviously, one has the interior 
sphere condition and the uniform exterior sphere condition, i.e., 

(Ω1) For ∀ ∈∂Ωx , there exist 0>R  and ∈Ωy  for which − =x y R  and 
( ) ⊂ ΩRB y . 

(Ω2) For ∀ ∈∂Ωx , there exists 0>r  such that ( )( )+ ∩Ω =∅


rB x rn x . 
From (Ω2), one has 

( ) 21, , , .
2

− ≤ − ∈∂Ω ∈Ω
y x n x y x x y

r
               (6) 
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Due to the 2C -regularity of Ω, we obtain the existence of a neighborhood of 
∂Ω  in Ω  on which the distance to the boundary 

( ) { }: inf , ,= − ∈∂Ω ∈Ωd x x y y x  

is of class 2C . Without loss of generality, we assume that ( ) 1≤Dd x  on Ω . 
The ( )USC Ω  denotes the set of upper semicontinuous functions on Ω  

and the ( )LSC Ω  denotes the set of lower semicontinuous functions on Ω . 
We define :∂Ω× × →  B . Now we give the definitions of the viscosity 
solutions of the Neumann problem according to [30] [31]. 

Definition 1  Any function ( )USC∈ Ωu  (resp., ( )LSC∈ Ωu ) is called a 
viscosity subsolution (resp., viscosity supersolution) of 

( ) ( ) ( )
( )

in ,
, , 0 on ,
β ξ η∞∆ + + ⋅ + = Ω

 = ∂Ω

Nu Du x Du x u g x
B x u Du

            (7) 

if the following conditions hold: 
(1) For every 0 ∈Ωx , for all ( )2ϕ∈ ΩC , such that ϕ−u  has a local strict 

maximum (resp., strict minimum) at 0x  with ( ) ( )0 0ϕ=u x x  and ( )0 0ϕ ≠D x , 
one has 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0resp., .ϕ β ϕ ξ ϕ η∞∆ + + ⋅ + ≥ ≤N x D x x D x x u x g x  

If ≡u k  ( k  is a constant) in a neighborhood of 0x , then 

( ) ( ) ( )0 0resp., .η ≥ ≤x k g x  

(2) For every 0 ∈∂Ωx , for all ( )2ϕ∈ ΩC , such that ϕ−u  has a local 
maximum (resp., minimum) at 0x  with ( ) ( )0 0ϕ=u x x  and ( )0 0ϕ ≠D x , one 
has 

( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )( )}

0 0 0 0 0 0

0 0 0 0

min

, , , 0.

ϕ β ϕ ξ ϕ η

ϕ

∞−∆ − − ⋅ −

+ ≤

N x D x x D x x u x

g x B x u x D x
 

(resp., 

( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )( )}

0 0 0 0 0 0

0 0 0 0

max

, , , 0.

ϕ β ϕ ξ ϕ η

ϕ

∞−∆ − − ⋅ −

+ ≥

N x D x x D x x u x

g x B x u x D x
) 

If ≡u k  ( k  is a constant) in a neighborhood of 0x  in Ω , then 

( ) ( ) ( ){ }0 0 0min , , ,0 0.η− + ≤x k g x B x k  

(resp., 

( ) ( ) ( ){ }0 0 0max , , ,0 0.η− + ≥x k g x B x k ) 

We call that u  is a viscosity solution if u  is both a viscosity supersolution 
and a viscosity subsolution. 

The definition of the viscosity solutions can be also given by semijets 
( )2,

0
+J u x  and ( )2,

0
−J u x  according to [32]. 

Definition 2  The second-order superjet of u  at 0x  is defined to be the set 

( ) ( ) ( )( ){ }2, 2 2
0 0, : is and has a local maximum a ,tϕ ϕ ϕ ϕ+ −=J u x D D x C xx u  
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whose closure is defined as 

( ) ( ) ( ) ( ) ( ){
( ) ( )

( )( ) ( )( )}

2,
0

2,

0 0

, : , ,

such that , and

, , , , , , ,

+

+

= ∈ × ∃ ∈Ω× ×

∈

→

 

   n n n

n n n

n n n n

J u x p X S x p X S

p X J u x

x u x p X x u x p X

 

and the second-order subjet of u  at 0x  is defined to be the set 

( ) ( ) ( )( ){ }2, 2 2
0 0, : is and has a local minimum a ,tϕ ϕ ϕ ϕ− −=J u x D D x C xx u  

whose closure is defined as 

( ) ( ) ( ) ( ) ( ){
( ) ( )

( )( ) ( )( )}

2,
0

2,

0 0

, : , ,

such that , and

, , , , , , .

−

−

= ∈ × ∃ ∈Ω× ×

∈

→

 

   n n n

n n n

n n n n

J u x p X S x p X S

p X J u x

x u x p X x u x p X

 

Next we give the definitions of viscosity solutions by semijets. 
Definition 3  Any function ( )USC∈ Ωu  (resp., ( )LSC∈ Ωu ) is called a 

viscosity subsolution (resp., viscosity supersolution) of 

( ) ( ) ( )
( )

in ,
, , 0 on ,
β ξ η∞∆ + + ⋅ + = Ω

 = ∂Ω

Nu Du x Du x u g x
B x u Du

 

if the following conditions hold: 
(1) For every 0 ∈Ωx , ( ) ( )2,

0, +∀ ∈p X J u x  (resp., ( ) ( )2,
0, −∈p X J u x ) and 

0≠p , one has 

( ) ( ) ( ) ( ) ( )0 02 0 0
1 , resp., .β ξ η+ + + ≥ ≤⋅Xp p p x xp u gx x
p

 

If ≡u k  ( k  is a constant) in a neighborhood of 0x , then 

( ) ( ) ( )0 0resp., .η ≥ ≤x k g x  

(2) For every 0 ∈∂Ωx , ( ) ( )2,
0, +∀ ∈p X J u x  (resp., ( ) ( )2,

0, −∈p X J u x ) 
and 0≠p , one has 

( ) ( ) ( ) ( ) ( )( )02 0 0 0 0 0
1min , , , , 0.β ξ η− − − − +

  ⋅ 

≤


Xp p p p u g B xx x ux x x p

p
 

(resp., 

( ) ( ) ( ) ( ) ( )( )02 0 0 0 0 0
1max , , , , 0.β ξ η− − − − +

  ⋅ ≥ 
  

Xp p p p u g B xx x ux x x p
p

) 

If ≡u k  ( k  is a constant) in a neighborhood of 0x  in Ω , then 

( ) ( ) ( ){ }0 0 0min , , ,0 0.η− + ≤x k g x B x k  

(resp., 

( ) ( ) ( ){ }0 0 0max , , ,0 0.η− + ≥x k g x B x k ) 

We call that u  is a viscosity solution if u  is both a viscosity supersolution 
and a viscosity subsolution. 
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3. Lipschitz Regularity of Viscosity Solutions 

In this section, we show the Lipschitz regularity of the viscosity solutions of the 
Neumann problem (1). 

Theorem 2  Assume that Ω is a bounded domain of class 2C , β ∈ , 
( ) :ξ Ω→ x , ( ) :η Ω→x  are continuous in Ω , g  and h  are bounded 

functions in Ω . Let ( )USC∈ Ωu  be a viscosity subsolution of 

( ) ( ) ( ) in ,

0 on ,

β ξ η∞∆ + + ⋅ + = Ω

∂

= ∂Ω∂


Nu Du x Du x u g x
u
n

 

and ( )LSC∈ Ωv  be a viscosity supersolution of 

( ) ( ) ( ) in ,

0 on ,

β ξ η∞∆ + + ⋅ + = Ω

∂

= ∂Ω∂


N v Dv x Dv x v h x
v
n

 

with u  and v  bounded, or 0≥v  and v  bounded. If ( )max 0Ω= − ≥m u v , 
then there exists 0 0>C  such that 

( ) ( ) 0 , , ,− ≤ + − ∀ ∈Ωu x v y m C x y x y               (8) 

where 0C  depends on , , , , , , , ,β ξ η
∞ ∞ ∞ ∞ ∞

Ω  g h v m  and 
∞

u  or 
supΩ u . 

Proof. We set 

( ) ( )2
,Ψ = −x PQ x P Q x  

and 

( ) ( ) ( ) ( )( ) ( )1, e ,βψ − + += + Ψ −M d x d yx y m x y  

where M  is a fixed constant, P  and Q  are two positive constants to be 
chosen later. 

If 1
4

≤Q x , then 

( ) 3 .
4

Ψ ≥x PQ x                          (9) 

Define 

( ) 1: , : .
4

 
∆ = ∈ × − ≤ 

 
  Q x y x y

Q
 

Fix P  such that 

( ) ( )( ) ( ) 0

2

2 1max e ,
8

β− +

Ω
− ≤ + MdPu x v y m               (10) 

where ( )0 max ∈Ω= xd d x . If we take Q  large enough, there holds 

( ) ( ) ( ) ( ) 2, 0, , .ψ− − ≤ ∈∆ ∩ΩQu x v y x y x y  

Step 1. Suppose by contradiction that for each Q  there exists a point  
( ) 2, ∈∆ ∩ΩQx y  such that 
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( ) ( ) ( ) ( ) ( ) ( )( )
2

, max , 0.ψ ψ
∆ ∩Ω

− − = − − >
Q

u x v y x y u x v y x y  

Here we have dropped the dependence of ,x y  on Q  for simplicity of 
notations. 

If 0≥v , we obtain that ( )Ψ −x y  is non-negative in ∆Q  and 0≥m  by 
the inequality (9). Then ( ) 0>u x . 

Clearly ≠x y . For any , ∈Ωx y  with 1
4

− =x y
Q

, we get 

( ) ( ) ( )

( ) ( ) ( )( )

( )

02 1

1

e
8

e
2
, .

β

β

ψ

− +

− + +

− ≤ +

≤ −+

≤

Md

M d x d y

Pu x v y m

P x ym Q

x y

 

Thus, ( ) ( ) 2, int∈ ∆ ∩ΩQx y . 
Next we compute the derivatives of ψ  at ( ),x y , 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )

1, e 1 1

1 2 ,

βψ β− + + 
= − + − − −


− + − − 

− 

M d x d y
xD x y PQ M x y Q x y Dd x

x yQ x y
x y

 

and 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )

1, e 1 1

1 2 .

βψ β− + + 
= − + − − −


− − − − − 

M d x d y
yD x y PQ M x y Q x y Dd y

x yQ x y
x y

 

For large Q , one has 

( ) ( ) ( )( ) ( ) ( )1 10 1e 2 ,,
2

β ψβ− + +  < − ≤ ≤


+ − 


M d x y
x

d PQ M x yDy PQx    (11) 

and 

( ) ( ) ( )( ) ( ) ( )1 10 1e 2 .,
2

β ψβ− + +  < − ≤ ≤


+ − 


M d x y
y

d PQ M x yDy PQx    (12) 

By the inequality (6), if ∈∂Ωx , one has 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1

, ,

e 1 1

1 2 ,

3e 1 1 2
4 2

1 3 1e 1 0,
2 2

β

β

β

ψ

β

β

β

− +

− +

− +


= + − − −


− + − − 

− 
 −  ≥ + − − − − 
  

 ≥ − + − > 
 





x

Md y

Md y

Md y

D x y n x

PQ M x y Q x y

x yQ x y n x
x y

x y
PQ M x y Q x y

r

PQ x y M
r
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where r  is the radius in the uniform exterior sphere condition (Ω2) and we  

have chosen 
( )1

2
3 β

>
+

M
r

. 

Similarly, if ∈∂Ωy , one has 

( ) ( ) ( ) ( ) ( )11 3 1, e 0
2

1 .,
2

βψ β− +  − −≤ − + < 
 

+
 M

y
xdD n PQ M

r
x y y x y  

Since u  is a viscosity subsolution and v  is a viscosity supersolution, we 
obtain 

( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )2,

tr , , , ,

if , , ,

σ ψ β ψ ξ ψ η

ψ +

+ + ⋅ + ≥

∈

x x x

x

D x y X D x y x D x y x u x g x

D x y X J u x
 

and 

( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )2,

tr , , , ,

if , , .

σ ψ β ψ ξ ψ η

ψ −

+ − ⋅ + ≤

− ∈

y y y

y

D x y Y D x y y D x y y v y h y

D x y Y J v y
 

Then the inequalities (11) and (12) hold for any maximum point  
( ) 2, ∈∆ ∩ΩQx y , provided Q  is large enough. 

Step 2. For every 0ε > , there exist ( ), ∈ X Y S  such that  
( )( ) ( )2,, ,ψ +∈xD X Jx y u x , ( )( ) ( )2,, ,ψ −− ∈yD Y Jx y v y  and 

( ) ( )( )22 20
.

0
, ,ψ ε ψ

 
≤ + − 

x y x
X

D yD
Y

               (13) 

Next we estimate the right-hand side of the inequality (13): 

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( )( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( )( )

1 12 2

1

1 2

, e e

e

e .

β β

β

β

ψ − + + − + +

− + +

− + +

= Ψ − +

⊗ Ψ − + Ψ − ⊗

+ Ψ −

M d x d y M d x d y

M d x d y

M d x d y

D x y x y D D

D x y D x y D

D x y

 

We denote 

( ) ( ) ( ) ( )( )( )12
1 : e ,β− + += Ψ − M d x d yA x y D  

( ) ( ) ( )( )( ) ( )( )

( )( ) ( ) ( ) ( )( )( )
1

2

1

: e

e ,

β

β

− + +

− + +

= ⊗ Ψ −

+ Ψ − ⊗

M d x d y

M d x d y

A D D x y

D x y D
 

( ) ( ) ( )( ) ( )( )1 2
3 : e .β− + += Ψ −M d x d yA D x y  

One has 

1

0
0

,
 

−  
 

≤ 



I
A CQ

I
x y                   (14) 

and 

2

0
.

0
−   

   −  
≤ +


  

  

I I I
A CQ CQ

I I I
            (15) 
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Indeed, for ,ρ τ ∈  , we have 

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( ){
( ) ( )( ) }

( )
( )

2

1

2 2 2

, , ,

2 1 e ,

,

|

,

β

ρ τ ρ τ

β τ ρ ρ

τ ρ τ

ρ τ τ ρ

ρ τ τ ρ

− + += + ⊗ Ψ − −

+ ⊗ Ψ − −

≤ + −

≤ + + −

M d x d y

A

M Dd x D x y

Dd y D x y

CQ

CQ CQ

 

where C  denotes various positive constants independent of Q . 
Now we are ready to estimate A3. For ( )( )2 −ΨD x y , one has 

( )( ) ( ) ( )
( ) ( )

2 2
2

2 2 ,
 Ψ − Ψ

Ψ =   − Ψ
− −

−
−Ψ −

D D
D

D
x y x y
x y xD

x y
y

 

and the Hessian matrix of ( )xΨ  is 

( )2 2
2 2 .

 ⊗ Ψ = − −
 
 

 
PQ x xD x I PQ I
x x

             (16) 

Denoting 

( ) ( ) ( )( )1
,

2 e β
ε

− + +

−
=

M d x d y

x y

PQ
                  (17) 

we obtain 

( )
( ) ( )

32 2
1 2 2 2

2
1 2 2 1 2

1 3 3 1 2 2 3 3 2 2

, ,

,

, ,

ε ε

ε

ε ε

− −

−

≤ ≤

+ ≤

+ ≤ + ≤−

 



 

A CQ I A CQ I

A A A A CQ I

A A A A CQ I A A A A CQ

x y x y

x y

x Iy

       (18) 

where 

2

0
.

0
 

=  
 






I
I

I
 

By the inequalities (14), (15), (18) and 

( )( )( )
( )( ) ( )( )
( )( ) ( )( )

2 22 2
22

2 22 2

2 2
,

2 2

x y x y
x y

D D

x y x y
D

D D

 Ψ − Ψ Ψ =   − Ψ Ψ

−



−
−

− −
 

one obtains 

( )
00

,
00

−    
≤ +    − −    





IX B B
O Q

IY B B
              (19) 

where 

( ) ( ) ( )( ) ( ) ( )( )221 2e .β− + + −
−

 
= + Ψ + Ψ 

 
−

M d x d yB CQI D D
P

x y
Q

x y
x y  

Thus, we can rewrite the inequality (19) as 

0
,

0
−   

≤   −−   





B BX
B BY

                     (20) 
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where ( )= −


X X O Q I , ( )= +


Y Y O Q I . 
Multiplying on the left of the inequality (20) by the non-negative symmetric 

matrix 

( )( )
( )( )

,
0 ,

0,σ ψ

σ ψ

 
 
 
 

x

y

x y

x y

D

D
 

one has 

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

tr , tr ,

tr , tr , .

σ ψ σ ψ

σ ψ σ ψ

−

≤ +

 

x y

x y

D x y X D x y Y

D x y B D x y B
           (21) 

We aim to get the estimate on the right side of the inequality (21). Next we 
define 

( ) ( )
20 : ,

− −

−

⊗
≤ = ≤



x y

y
H

x
I

x y
 

and compute ( )tr HB . Since 2
⊗x x
x

 is idempotent, one has 

( )( ) ( )
2 222 2 4

2 21 4 4 .
 ⊗ Ψ = − − +
 
 

 
P Q x xD x Q x I P Q I

x x
 

For large Q , since tr 1=H  and 4 1≤−Q x y , we get 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

1 2 3

1 2 2

tr e 2 4

e .

β

β

− + +

− + +

= + − + −

≤ − ≤ −

M d x d y

M d x d y

HB CQ PQ PQ x y

CQ PQ CQ
 

Thus, we can write ( ),ψxD x y  as 

( ) ( ) ( ) ( )( ) ( )1 2
1e, ,βψ − + += +M d

x
x d yD PQ v vx y  

where 

( ) ( ) ( )1 1 1 ,β += − −− −x y Q xv yM Dd x  

and 

( )2 1 2 .−
−= −

−
x yv Q x y
x y

 

Therefore, 

( )( ) 1 1 1 2 2 1 2 2
2 2 2

1 2 1 2 1 2

.,σ ψ
⊗ ⊗ + ⊗ ⊗

= + +
+ + +

x
v v v v v v v vD
v v v v v

x
v

y  

Since 1
4

≤−Q x y , for large Q , one has 

2 1 1 2 1 2
1 1 1 2,
4 2 4
= − ≤ − ≤ + ≤ + ≤v v v v v v  

and 
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.
−

≤
CQB

x y
 

Then 

21 1
2

1 2

tr ,
 ⊗  ≤ ≤



−


−
+

v v B C B CQx y x
v

y
v

 

1 2 2 1
2

1 2

tr ,
 ⊗ + ⊗  ≤

+ 
− ≤

 


v v v v B xC y B CQ
v v

 

and 

( ) 22 2
2 2

1 2 1 2

tr
tr .
 ⊗  = ≤ −
 + + 

HBv v B CQ
v v v v

 

We conclude that 

( )( )( ) ( ) 2r .,t σ ψ ≤ −xD B O Q CQx y  

Similarly, we can get the following estimate 

( )( )( ) ( ) 2r .,t σ ψ ≤ −yD B O Q CQx y  

Therefore, by the inequality (21) one has 

( )( )( ) ( )( )( ) ( ) 2tr tr ., ,σ ψ σ ψ− ≤ − 

x yD X Dx y x Y O Q CQy  

Step 3. By the definition of X  and Y  and the fact that u , v  are 
respectively viscosity subsolution and viscosity supersolution, one has 

( ) ( ) ( ) ( )( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

2

2

tr

tr

tr

.

η σ ψ β ψ ξ ψ

σ ψ β ψ ξ ψ

σ ψ β ψ ξ ψ

β ψ ξ ψ η

β ψ ξ ψ

− ≤ + + ⋅

≤ + + + ⋅

≤ + − + + ⋅

≤ − + ⋅ − + +

− + + ⋅



x x x

x x x

y x x

y y

x x

g x x u x D X D x D

D X O Q D x D

D Y O Q CQ D x D

D y D y v y h y O Q

CQ D x D

 

According to the inequalities (11) and (12), one gets 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.η η− − + ≤ −g x h y x u x y v y O Q CQ            (22) 

If u  and v  are both bounded, the left-hand side of the inequality (22) is 
bounded from below by ( )η

∞ ∞ ∞ ∞ ∞
− − − +g h u v . Otherwise, if v  is 

non-negative and bounded, then ( ) 0≥u x  and that quantity is greater than 

( )supη
∞ ∞ ∞ ∞

− − − +g h u v . On the other hand, the right-hand side of the 
inequality (22) goes to −∞  as →+∞Q . Hence, taking Q  large enough, we 
can obtain a contradiction and this concludes the proof. 

Theorem 1 is an immediate consequence of Theorem 2. 
Proof of Theorem 1. Since ( ) ( )∈ Ωu x C  is a viscosity solution of the problem 

(4), ( )u x  is both a viscosity subsolution and a viscosity supersolution of the 
problem (4). Thus, we have 0=m . Since u  is bounded, by Theorem 2, we can 
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get immediately the Lipschizt estimate (5). 

4. Conclusion 

In this paper, we establish the Lipschitz regularity of the problem (1) arsing from 
the generalized random tug-of-war game. The Lipschitz regularity is an indis-
pensable part and an important issue in the study of PDEs. The Lipschitz regu-
larity also plays a vital role in applications, such as image processing, financial 
problems and physical engineering. 
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