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Abstract 
In this paper, an algae-fish harvested model with Allee effect was established 
to further explore the dynamic evolution mechanism under the influence of 
key factors. Mathematical theoretical work not only investigated the existence 
and stability of all possible equilibrium points, but also probed into the oc-
currence of transcritical and Hopf bifurcation. The numerical simulation 
works verified the effectiveness of the theoretical derivation results and dis-
played rich bifurcation dynamical behaviors, which showed that Allee effect 
and harvest have played a vital role in the dynamic relationship between algae 
and fish. In summary, it was expected that these research results would be 
beneficial for promoting the study of bifurcation dynamics in aquatic ecosys-
tems. 
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1. Introduction 

Water is the source of life, but with the rapid development of economy, eutro-
phication of lakes and reservoirs has become one of the universal environmen-
tal problems in the world. One of the most abhorrent performance characte-
ristics of eutrophication in lakes and reservoirs is the appearance of cyanobac-
terial blooms [1]. When cyanobacterial blooms appear in lakes and reservoirs, 
the water surface is covered by a thick layer of bloom, and the cyanobacterial 
population constituting the bloom, breed in large quantities and then die in large 
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quantities. The dead cyanobacteria emit an unbearable fishy odor during the 
decomposition process, and at the same time consume a lot of dissolved oxygen 
in the water, causing a large number of fish, shrimp and other aquatic animals to 
die of suffocation. Cyanobacterial blooms also tend to block the water filtration 
facilities of the waterworks, leading to water supply failures, and greatly increase 
the amount of disinfectant. More seriously, the bloom contains a class of toxins 
called microcystins, which is considered to be a strong cancer-promoting sub-
stance. State Environmental Protection Administration released information 
shows that nearly 1/4 of China’s rivers due to pollution cannot meet the water 
quality requirements of agricultural irrigation water standards, the degree of al-
gae pollution of the China’s natural water bodies deepen year by year, such as 
large-scale outbreaks of cyanobacterial blooms in Tai Lake, Chaohu Lake and 
Dianchi Lake, which are vividly called “ecological cancer” [2]. It seriously affects 
people’s production and life. Therefore, the way to reduce the eutrophication of 
water bodies is one of the research hotspots that many scholars are very con-
cerned about. 

The purification technology of eutrophication water body mainly includes 
physical, chemical and biological method. Compared with the other two me-
thods, biological method not only produces less pollution, but also is cheap and 
easy to operate [3] [4] [5]. Among which there are two most economical, effec-
tive and reasonable ways: one is to grow aquatic plants. However, its disadvan-
tages are large investment, high labor intensity, low economic value, and aquatic 
plants are only suitable for planting and growing in shallow water areas, which 
must be cleaned regularly, otherwise it is easy to cause secondary pollution. The 
other is to put filter-feeding fish. Silver carp and bighead carp are unique to 
China’s ecological water purification fish, which has been introduced to 27 
countries for biological purification of eutrophic water bodies, and have received 
good results. In the field of aquatic ecology, Shapiro et al. (1975) were the first to 
propose the classical biological manipulation theory [6] [7], the main principle 
of which is to adjust the structure of fish populations, protect and develop phy-
tophagous zooplankton, so as to control the overgrowth of algae, and the core of 
which is the use of zooplankton to filter feeding on planktonic algae and increase 
the transparency of the water body [8] [9]. Studies guided by classical biological 
manipulation theory have shown that increasing zooplankton populations can 
effectively reduce phytoplankton populations, increase the transparency of water 
body, and achieve the purpose of improving water quality [7]. However, with the 
emergence of a large number of large carnivorous zooplanktons, small zoop-
lanktons that feed on phytoplankton in the water body, such as rotifers and 
small cladoceras, are subjected to high-intensity attacks and their numbers de-
crease significantly, which reduces predation pressure on phytoplankton and 
results in an inverse elastic mass growth of phytoplankton [10]. Therefore, the 
opposite pathway to classical biological manipulation, the non-classical biologi-
cal control theory of directly controlling phytoplankton populations by stocking 
filter-feeding fish, is now widely used. 
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The non-classical biological manipulation theory was put forward by Chinese 
scholars Liu Jiankang and Xie Ping [11], and the main method is to put phytop-
lankton-eating fish to control algae directly or to reduce the number of aggres-
sive fish to control algae indirectly. Numerous studies have shown that releasing 
silver carp and bighead carp directly to the water surface successfully controlled 
cyanobacterial blooms, reduced phytoplankton and zooplankton biomass, total 
phosphorus (TP), total nitrogen (TN), and COD to varying degrees, and also 
mitigated the degree of eutrophication in the water body and effectively im-
proved water quality [12] [13] [14] [15]. Lake Kasumigaura in Japan in the 1970s, 
by industrial production, overfishing and other factors, the water quality has 
been extensively polluted. In the summer of 1973, the dissolved oxygen in the 
algal bloom area was greatly reduced, resulting in a large number of carp deaths 
and serious eutrophication. After that, the Chinese mixed culture model was 
adopted to release silver carp and bighead carp, and the water quality has been 
greatly improved, and the clear lake has once again become a beautiful tourist 
destination. In the research of cyanobacteria bloom control technology in the 
lake, relevant experts of the Institute of Hydrology have explored and innovated, 
and summarized the biological manipulation method of using filter-feeding fish 
to directly control cyanobacteria blooms, and also uncovered the mystery of the 
disappearance of cyanobacteria bloom in the East Lake of Wuhan for 15 consec-
utive years. The protection and treatment of Dianchi Lake revolve around the six 
major projects of lake pollution interdiction, ecological restoration, river man-
agement, sediment dredging, water source protection, and water diversion in the 
outer basin. In recent years, a large number of silver carp and bighead carp have 
been released to control algae, and certain results have been achieved [1]. 

Silver carp and bighead carp are used to control algae because of their special 
feeding organs. Silver carp have spongy gill rakers, and bighead carp have 
comb-like gill rakers, which are able to filter algae effectively. Furthermore, silver 
carp and bighead carp have long intestinal tract with good digestibility of phy-
toplankton. After filter feeding on algae, the water quality changed from turbid-
ity to freshness [16]. Silver carp and bighead carp are medium-sized fish, which 
have the characteristics of fast growth and easy catching. Therefore, silver carp 
and bighead carp become the main biological tools for algal control through 
atypical biological manipulation. The daily filter feeding of silver carp and big-
head carp could reach 12.5 percent and 9.5 percent of their body weight respec-
tively. Silver carp and bighead carp are natural free-range green foods with high 
protein and low fat. For every kilogram of fish weight gain, 32 grams of nitrogen 
and 4.5 grams of phosphorus in the water are converted into high-quality pro-
tein. Catching a certain amount of fish from the water body is equivalent to 
transferring a large amount of nitrogen, phosphorus and other nutrient elements 
out of the water body, which can greatly reduce the degree of eutrophication of 
the water body. Ecological fishery is one of the most effective means to purify 
water quality of reservoir and maintain ecological balance. Therefore, it is very 
important to make a reasonable plan for releasing and catching of filter-feeding 

https://doi.org/10.4236/jamp.2023.1110195


X. Y. Song et al. 
 

 

DOI: 10.4236/jamp.2023.1110195 2941 Journal of Applied Mathematics and Physics 
 

fish in reservoirs and lakes, and dynamically adjust the stocking ratio of silver 
carp and bighead carp [2], so as to achieve the optimal proportion of plankton in 
the water body of reservoirs and lakes. 

2. Algae-Fish Ecological Model Formulation 

The interactions between populations are important and complex in ecology. It 
is an effective method to study the dynamic behavior of populations by building 
mathematical models close to reality, and scholars have built various types of 
models to study interspecific interactions in biology. The establishment of the 
well-known Lotka-Volterra model solves the key problem of how to express 
population interactions in nature through mathematical models [17] [18]. Ap-
plied mathematicians usually use mathematical model as a tool to study the 
complex dynamic behavior between predator and prey, because the interaction 
between predator and prey is widespread in nature. It plays an important role in 
ecological research, so the study of predator-prey model will continue to play an 
important role in biomathematics [19] [20]. The classic predator-prey model can 
be represented by the following ordinary differential equation:  

 
( )

( )

1

2

d 1 , ,
d
d , ,
d

x xr x g x y y
t k
y r y h x y y y
t

β

  = − −   

 = + −

                    (2.1) 

where ( )x t  and ( )y t  are the population densities of prey and predators, re-
spectively. As we all know, due to the constraints of the same species competi-
tion, environmental factors and other mechanisms, the population in nature can-
not grow indefinitely. Allowing a prey population to grow logically is a common  

modeling method in the form 1 1 xr x
k

 − 
 

, where r1 is the intrinsic growth rate of  

the prey and k is the maximum environmental capacity. The role of the func-
tional response term is to connect the predator and prey, that is, the prey bio-
mass consumed by each predator per unit time, which is described by ( ),g x y , 
while ( ),h x y  is called the functional response of the predator [21], indicating 
the growth rate obtained by the predator through the consumption of prey. 
Common functional responses are generally divided into two categories. Namely, 
predator-dependent functional response and prey-dependent functional response. 

From the perspective of human needs, the sustainable development and har-
vesting of biological resources is necessary [22]. Common harvest terms in dy-
namic systems include constant harvest terms, proportional harvest terms, and 
nonlinear harvest terms [23]-[28]. Chakraborty et al. considered a ratio-dependent 
predator-prey model [29], in which the predator population is harvested at unit 
harvest intensity. It is reasonable and realistic to select the unit of harvest inten-
sity for harvesting [30]. Chakraborty et al.’s research results show that the coex-
istence of predators and prey, which is often observed in nature, is difficult to 
observe in the laboratory. One important reason is lack of higher predators, and 
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harvest plays the role of this higher predator, allowing predator and prey to 
coexist. Therefore, harvest has a great impact on the dynamic behavior of bio-
logical populations [31]. It is also more reasonable to consider harvest terms in 
the model. 

In the population dynamics, the cluster life style of the biological population is 
conducive to the growth of the population, but the excessive cluster density often 
leads to the growth of the biological population due to resource competition. 
The population density is too sparse or too dense, which is not conducive to sur-
vival and development of the population. For each population, there is an inde-
pendent optimal growth and reproductive density, a mechanism called the Allee 
effect [32] [33] [34]. Allee effect is generally divided into strong Allee effect and 
weak Alee effect [35] [36]. When the population has a weak Allee effect, al-
though the population density growth is slow, the population density growth is 
positive. However, when a species with sparse population density is subjected to 
a strong Allee effect, the population will eventually become extinct. In 1931, 
Warder Clyde Allee showed that Allee effect exist during the growth of prey in 
real ecosystems. In fact, not only animals, most organisms have this characteris-
tic, and even the initial population size of the pathogen must be large enough to 
continue to grow, below a certain number will no longer grow or even decline. 
The Allee effect occurs through a variety of mechanisms, including inbreeding 
decline, lack of cooperative feeding, inability to defend against predators, mating 
failure, and time asynchronous reproductive maturation of both sexes [34]. Alee 
effect terms are usually introduced into model by addition and multiplication in 
mathematical model [34] [37] [38] [39] [40]. The study of Allee effect has 
achieved rich results. Sen et al. discussed the effect of Alee effect in the form of 
( )x β−  on the population dynamics of predators in the model of one predator 
and two prey [41], where x is the population density and β  is the diaphragm 
value of the Allee effect. Liu et al. established a host-parasite model with Allee 
effect and found that Allee effect can alleviate dynamic complexity [42]. The 
reaction-diffusion predator-prey model with Allee effect has also been extensively  

studied. Liu et al. found that weak Alee effect in the form of A
x A+

 and time  

delay can control the change of pattern shape [43], where x is the population 
density and A is the threshold of Allee effect. Wang et al. found that in the reac-
tion-diffusion predator-prey model, Allee effect can cause instability and form a 
cavity mode [44]. 

Based on the above analysis, we will construct an algae-fish harvested ecolog-
ical model with Allee effect, which can be described by the following differential 
equations:  

 
( )

1 1

2 2

d 1 1 ,
d
d 1 ,
d

x x xr x mxy q ex
t k n
y r y mxy y q ey
t

δ α β

   = − − − −     

 = + − − −

               (2.2) 
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where all the parameters are positive and ( )0n n k< <  is Allee effect threshold, 
the prey population is doomed to extinction when the prey population density 
or size is below the threshold. r2 is intrinsic growth rate of biological manipula-
tion predator, β  is the mortality rate of biological manipulation predator, δ  
is the energy conversion rate, α  is the assimilated food of catabolic loss during 
the predation period, e is the harvesting effort of fish and ( )1,2iq i =  represents 
the catchability coefficients of algae and fish respectively. The biological signi-
ficance of other parameters in the model (2.1) is consistent. 

In order to simplify the model (2.2), we take the following transformations as  

( ) 1 1 2 21 , , ,e q e e q eµ δ α= − = =  

then the model (2.2) can be rewritten as  

 
1 1

2 2

d 1 1 ,
d
d ,
d

x x xr x mxy e x
t k n
y r y mxy y e y
t

µ β

   = − − − −     

 = + − −

              (2.3) 

according to biology meaning, we just need to explore the model (2.3) within 
( ){ }2 , : 0, 0R x y x y+ = > ≥ . 

The rest of the present paper is organized as follows. In Section 3, we give the 
critical conditions for the existence and stability of each equilibrium, as well as 
the existence of limit cycles. In Section 4, we discuss the local bifurcations of 
model (2.3), such as transcritical bifurcation, and Hopf bifurcation. With the 
help of numerical simulation, the dynamic behaviors of model (2.3) are studied 
when bifurcation occurs in Section 5. Finally, the paper makes a brief summary 
in Section 6. 

3. Results of Mathematical Analysis 

Equilibrium points are the special solutions, which will exhibit rich properties of 
the model (2.3). Therefore, the existence and stability of all possible equilibrium 
points of the model (2.3) will be discussed in this section, and we will also use 
the Poincare-Bendixson theorem to confirm the existence of a limit cycle. 

3.1. Existence of Equilibrium Point 

In order to obtain the equilibria of the model (2.3), we consider the prey nullcline 
and predator nullcline of the model, which are given by:  

 
( )

( )

1 1 1

2 2 2

, 1 1 0,

, 0.

x xF x y r x mxy e x
k n

F x y r y mxy y e yµ β

   = − − − − =   
  

 = + − − =

             (3.1) 

It is obvious that the model (2.3) has one trivial extinction equilibrium point 
( )0 0,0E  and two predator-free equilibrium points ( )1 1,0E x  and ( )2 2 ,0E x . 

The equilibrium point E0 exists unconditionally. Where x1 and x2 are the roots of 
the equation:  
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( ) ( )2
1 1 1 1 0,r x r k n x r e kn− + + + =  

then we can obtain the concrete expressions of x1 and x2 as  

( ) ( )1 1
1 2

1 1

,   ,
2 2

r k n r k n
x x

r r
+ + ∆ + − ∆

= =  

where  

( ) ( )22
1 1 1 14 .r k n r kn r e∆ = + − +  

The analysis shows that when 
( )2

1
1 4

r k n
e

kn
−

= , there is only one boundary 

equilibrium point ,0
2

k n+ 
 
 

, but at this time the model (2.3) does not have an  

internal equilibrium point, the predator population becomes extinct, and the 
model (2.3) does not persist. Therefore, we consider the case when there are two  

boundary equilibrium points, which need to satisfy 
( )2

1
1 4

r k n
e

kn
−

< . 

For the possible positive internal equilibria, we only need consider the positive 
solutions of the following equations:  

1 1

2 2

1 1
,

0,

x xr e
k ny

m
r mx eµ β

   − − −     =


+ − − =

 

then we can obtain the concrete expressions for the internal equilibrium point as  

( )
3 3

1 1
2 2

3 3 3

1 1
, , .

x xr e
e r k nE x y
m m

β
µ

   − − −   + −    = =
 
 
 

 

Considering the biological significance as well as the characteristics of isocline 
lines, we know that the existence of internal equilibrium point is conditional,  

( ) ( )1 1
3

1 12 2
r k n r k n

x
r r

+ − ∆ + + ∆
< <  and 2 2e r β> −  must be satisfied. There-  

fore, we obtain the following conclusions about the existence of internal equili-
brium point. If the internal equilibrium point does not exist, the model (2.3) is 
not persistent. Filterfeeding fish will tend to extinction, which is not conducive 
to ecological balance. So, it is important for us to study complex dynamic cha-
racteristics of the model (2.3). From the above analysis, we have known the exis-
tence condition of equilibrium point, and the following studies the stability of 
the internal equilibrium point when it exists. 

3.2. Stability of Equilibrium Point 

The stability of equilibrium points can be obtained through the signs of the ei-
genvalues of the Jacobian matrix. The Jacobian matrix of the model (2.3) at an 
arbitrary equilibrium point ( ),E x y  is given by  
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( )

( )2
1 1

1 1
,

2 2

2
1 1

,E x y

r x n k r xx xr my e mx
J k n kn

my r mx eµ µ β

 − + +  − − − − + −   =    
 + − − 

 

then we have the following theorems about the stability of equilibrium points. 
Theorem 3.2.1. ( )0 0,0E  is a stable node point when 2 2e r β> − , but E0 is 

an unstable saddle point when 2 2e r β< − . 
Proof: 
The Jacobian matrix at the boundary equilibrium point ( )0 0,0E  can be writ-

ten as:  

( )0

1 1
0,0

2 2

0
.

0E

r e
J

r eβ
− − 

=  − − 
 

Obviously ( )0 0,0EJ  has two eigenroots 1 1 1 0r eλ = − − < , and 2 2 2r eλ β= − − . 
Thereby, if 2 2e r β> − , then 2 0λ < , and E0 is a stable node or focus point; if 

2 2e r β< − , then 2 0λ > , and E0 is an unstable saddle point. This completes the 
proof. 

Theorem 3.2.2. 
( ) ( ) ( )22

1 1 1 1 1
1

1

4
,0

2
r k n r k n r kn r e

E
r

 + + + − + 
  
 

 is a stable node  

point when 2 2 1e r mxβ µ> − + , but E1 is an unstable saddle point when  

2 2 1e r mxβ µ< − + . 
Proof: The expression of the Jacobian matrix around the equilibrium point E1 

is given by:  

( )
1

2
1 1 1 1

1

2 1 2

2
.

0
E

r x n k r x
mxJ kn

r mx eµ β

 − + +
− =  

 + − − 

 

The eigenvalues of 
1EJ  are  

( ) ( )2
11 1 1 1

1
1

2
0

2

r k nr x n k r x
kn r kn

λ
 − + − ∆ ∆− + +  = = < , 2 2 1 2r mx eλ µ β= + − − .  

Thereby, if 2 2 1e r mxβ µ> − + , then 2 0λ < , and E1 is a stable node or focus 
point; if 2 2 1e r mxβ µ< − + , then 2 0λ > , and E1 is an unstable saddle point. 
This completes the proof. 

Theorem 3.2.3. 
( ) ( ) ( )22

1 1 1 1 1
2

1

4
,0

2
r k n r k n r kn r e

E
r

 + − + − + 
  
 

 always exists  

as an unstable equilibrium point. When 2 2 2e r mxβ µ< − + , E2 is an unstable node 
or focus point, otherwise E2 is an unstable saddle point if 2 2 2e r mxβ µ> − + . 

Proof: The Jacobian matrix of the model (2.3) evaluated at E2 is:  

( )
2

2
1 2 1 2

2

2 2 2

2
.

0
E

r x n k r x
mxJ kn

r mx eµ β

 − + +
− =  

 + − − 

 

The eigenvalues of 
2EJ  are  
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( ) ( )2
11 2 1 2

1
1

2
0

2

r k nr x n k r x
kn r kn

λ
 + − ∆ ∆− + +  = = > , 2 2 2 2r mx eλ µ β= + − − .  

Thereby, if 2 2 2e r mxβ µ< − + , then 2 0λ > , and E2 is an unstable node or focus 
point; if 2 2 2e r mxβ µ> − + , then 2 0λ < , and E2 is an unstable saddle point. 
This completes the proof. 

Next we will focus on the stability of the internal equilibrium point, then we 
have the following one theorem. 

Theorem 3.2.4. Suppose ( )3 3 3,E x y  exists, then model (2.3) has a unique 
interal equilibrium point E3. E3 is locally asymptotically stable if ( )3

0ETr J < , 
and unstable if ( )3

0ETr J > . 
Proof: The Jacobian matrix of the model (2.3) evaluated at E3 is given by:  

( )
3

2
1 3 1 3

3

3

2
,

0
E

r x n k r x
mxJ kn

myµ

 − + +
− =  

 
 

 

the expression of characteristic equations of ( )
3 3 3,EJ x y  is  

( )2
1 3 1 32 2

3 3

2
0.

r x n k r x
m x y

kn
λ λ µ

 − + +
− + = 
  

 

And the determinant and the trace of matrix 
3EJ  are given by,  

( ) ( )
3

2
1 3 1 3

1 2

2
,E

r x n k r x
Tr J

kn
λ λ

− + +
= + =  

( )3

2
1 2 3 3.EDet J m x yλ λ µ= =  

It is easy to check that ( )3EDet J  is always positive. Hence, if ( )3
0ETr J < , 

then E3 is locally asymptotically stable; if ( )3
0ETr J > , then E3 is unstable. If we 

substitute the expression of E3 into the trace of the Jacobian matrix, we can’t di-
rectly derive the sign of ( )3ETr J  because of algebraic complexity of the expres-
sion of it. Therefore, we have calculated the values of ( )3ETr J  by using nu-
merical simulation in Section 5. This completes the proof. 

3.3. Existence of Limit Cycle 

In this subsection, E3 is the unique internal equilibrium point, which is unstable. 
As for the model (2.3), we have the following main theorem about the existence 
of limit cycle. 

Theorem 3.3.1. When the condition 2 2r eβ< +  is satisfied, there exists at 
least one limit cycle of the model (2.3). 

Proof: Now we will prove Theorem 3.3.1 by constructing an invariant region 
Ω, which consists of the following line 1 2,L L , and ,x y  axis,  

( ) ( ) ( )22
1 1 1 1 1

1 2
1

4
: 0, : 0.

2
r k n r k n r kn r e yL x L x Q

r µ
+ + + − +

− = + − =  

Then, we have  
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( ) ( ) ( )

( )

( )

22
1 1 1 1 1

1

1
1 1

4
2

2 2 2
1 1

1 1 2

d d 1 1 0,
d d

d d 1 d 1 1
d d d

1 1

r k n r k n r kn r e
x

r

y Q x

L x x xr x mxy e x mxy
t t k n

L r y e yx y x x yr x mxy e x mxy
t t t k n

x xr x e x Q x r
k n

µ

β
µ µ µ µ

β

+ + + − +
=

= −

   = = − − − − = − <      

   = + = − − − − + + − −      

  = − − − + − −  
  

[ ]2 0.e− <

 

From the above equation, we can easily see that when 2 2r eβ< +  and Q is an 
adequately large constant, then ( )[ ]2 2Q x r eβ− − −  is a quite small negative  

number for any specific [ ],x n k∈ , meanwhile 1 11 1x xr x e x
k n

  − − −  
  

 is bounded. 

Thus, It is easy to verify that 2d 0
d
L
t
<  for  

( ) ( ) ( )22
1 1 1 1 1

1

4
0

2
r k n r k n r kn r e

x
r

+ + + − +
< < , which means that the model (2.3) 

exists at least one limit cycle by Poincare-Bendixson Theorem [45] [46]. This 
ends the proof.  

In order to make the results more visualized, we fix the parameters 1 0.6r = , 
0.5n = , 2k = , 0.42857m = , 2 0.2r = , 0.56µ = , 0.5β = , 1 0.2e = , 2 0.2e = , 

then E3 is the unique equilibrium point of the model (2.3), which is unstable. At  

the same time, the condition 2d 0
d
L
t
<  is satisfied when 2Q = , so it is obvious 

to find from Figure 1 that there exists one limit cycle at least. The condition 

1d 0
d
L
t
<  means that the density values of the two populations will tend to the  

 

 
Figure 1. The existence of limit cycle with 1 0.6r = , 0.5n = , 2k = , 0.42857m = , 

2 0.2r = , 0.56µ = , 0.5β = , 1 0.2e = , 2 0.2e = , 2Q = , where E3 is the unique internal 
equilibrium point in the region. 
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left side of the line L1 when the density values lie on the line, 2d 0
d
L
t
<  means  

that the density values of the two populations will tend to the down side of the 
line L2 when the density values lie on the line. Furthermore, the limit cycle de-
scribes such a phenomenon in biology that neither of algae and fish will be ex-
tinct, but reach a state of periodic oscillation and dynamic coexistence. 

4. Bifurcation Analysis 

In this section, we will discuss possible bifurcation problems in model (2.3). The 
conditions for transcritical bifurcations and hopf bifurcations will be expressed 
mathematically and analyzed numerically. 

4.1. Transcritical Bifurcation 

Transcritical bifurcation usually occurs at the boundary equilibrium point. From 
Theorem 3.2.2, the boundary equilibrium point E1 loses stability at  

2 2 1e r mxµ β= + −  and one eigenvalue of 
1EJ  is zero, indicating that the equi-

librium point E1 becomes non-hyperbolic. As the parameters change, it is possi-
ble for the model to occur transcritical bifurcation near E1. In this subsection, we 
will show that the model (2.3) undergoes a transcritical bifurcation at E1. 

Theorem 4.1.1. The model (2.3) undergoes a transcritical bifurcation when 

2 2TCe e= , where 2 2 1TCe r mxµ β= + − . 
Proof: We use Sotomayor’s theorem [47] [48] to prove that the model (2.3) 

undergoes a transcritical bifurcation. We consider e2 as bifurcation parameter. 
As e2 crosses e2TC from left to right, E1 will change from an unstable point to an 
stable point. When 2 2TCe e= , the Jacobian matrix at E1 can be expressed as  

( )

( )
1

2
1 1 1 1

1
,

2
.

0 0
TCE w

r x n k r x
mxJ kn

 − + +
− =  

 
 

 

It is known that when 2 2TCe e= , then ( )1
0EDet J = . That means the Jacobian 

matrix 
1EJ  has at least one zero eigenvalue. Now, let V and W be the eigen-

vectors corresponding to the zero eigenvalue of 
1EJ  and 

1

T
EJ  respectively. Af-

ter a simple calculation they can be given by  

1 1

T0 , 0 ,E EJ V V J W W⋅ = ⋅ ⋅ = ⋅  

We can set,  

1 1
1 1 1

2 2

0 0
,   ,2 ( ) 1

v w
V Wr x n k rv w

kn

       = = = =− + +             

 

Due to  

( )
( )

2

2
2 1 2

1
1 2

12 ,

0 0
, ,

0
TC

e
e TC

e E e

F
F E e

yF
     

= = =       −    
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( )

( )
( )

( )

2 2

2
2 2

1 2

1 1 1
1 2

22 2

1 1 1
,

1 1 1

,

0 0
20 1

0
,2

TC

e x e y
e TC

e x e y

E e

F F v
DF E e V

vF F

m
r x n k r

kn

r x n k r
ukn

  
=      

 
   = − + +   −   

 
 
 = − +  
 

 

( )( )
( )

( )
( )

( )

( )

( )

1 2

1 1

1 1 1 1 1 22
1 2

2 2 2 2 2 1,

2 2

2

1 1

1 1

1 1

2 2
1 1

2 2

2
1

, ,

2
4

0
2

0 0

2

TC

xx xy yx yy
TC

xx xy yx yy E e

v v
F F F F v v

D F E e V V
F F F F v v

v v

m
x n k r m

x n k r knm m
x n k r mkn

m m kn
x n k r

k n
n k r m

kn
m

µ µ

µ

 
    =       
 
 
 
− + + 

  − + +
 − − = − + +      
 − + +
 
 

− +

=
( )2

1 1

.
4 2r x n k

kn

 
 
 
  − + +  
 

 

Furthermore, we can obtain  

( ) ( )
2

T
1 2

0
, 0 1 0,

0e TCW F E e  
⋅ = = 

 
 

( ) ( ) ( )

( ) ( )

2

T
1 2 1 1 1

2
1 1 1 1

1

0
, 0 1 2

2
0,

2

e TCW DF E e V r x n k r
kn

r x n k r r k n
kn r kn

 
   = − +    
 

− + + ∆ + ∆
= = ≠

 

( )( ) ( )

( )

( )

( )

2
1

T 2
1 2 2

1 1

2
1 1

, , 0 1
4 2 2

2 2
0.

TC

n k r m
knW D F E e V V

r m x n k
kn

r m x n k
kn

µ

µ

 − +
 
   =   − + +
 
 
− + +

= ≠

 

Thus, from Sotomayor’s theorem we can deduce that the model (2.3) under-
goes a transcritical bifurcation as e2 passes through threshold 2 2TCe e= . This 
completes the proof. 

Similar to the above theorem, the following two theorems can be obtained. 
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Theorem 4.1.2. The model (2.3) undergoes a transcritical bifurcation when  

1 1TCe e= , where 
( ) ( ) ( )22

1 1 1 1 1
2 2

1

4
0

2
TCr k n r k n r kn r e

r m e
r

µ β
 + + + − + + − − =  
 

. 

Theorem 4.1.3. The model (2.3) undergoes a transcritical bifurcation when 

TCm m= , where 2 2

1
TC

e rm
x
β
µ
+ −

= . 

4.2. Hopf Bifurcation 

The equilibrium point ( )3 3 3,E x y  has different stability under different restric-
tions of parameters, which may caused by Hopf bifurcation. In order to figure 
out how harvesting effort, the proportion of prey captured by predators and Al-
lee effect influence the dynamic behavior of the model (2.3), e2, m and n are 
chosen as the control parameter of Hopf bifurcation respectively, then we have 
the following three Theorems. Next, we discuss the Hopf bifurcation of the 
model (2.3) at the positive equilibrium point ( )3 3 3,E x y= , where  

3 3
1 1

2 2
3 3

1 1
, .

x xr e
e r k nx y
m m

β
µ

  − − −  + −   = =  

Theorem 4.2.1. Based on the Theorem 3.2.4, the model (2.3) undergoes a 
Hopf bifurcation around E3 at 2 2Hpe e= . 

Proof: As for matrix 
3EJ , the characteristic equation of it can be written as 

( ) ( )3 3

2 0E ETr J Det Jλ λ− + = , then Hopf bifurcation takes place when 2 2Hpe e=  
such that 

1) ( )3
0ETr J = , 

2) ( )3
0EDet J > , 

3) ( )3

2 22

d 0
d

Hp

E
e e

Tr J
e

=

≠ . 

We’ve already proved ( )3
0EDet J > . And when 2 2Hpe e= , ( )3

0ETr J =  is set 
up. Therefore, the characteristic equation of E3 has two pure imaginary roots 

( ) ( ) ( )2 21,2 HP HPe i eλ ω= ± . So we only need to certify the transersality condition (3) 
to guarantee the changes of stability of E3 through Hopf bifurcation. 

( ) ( )

( )

3

2 2 2 2

2 2

1 3 1 3

2 2

1 2 2
2 2

4 dd
d d

4 4 4
.

Hp Hp

Hp

E
e e e e

e e

r x n k r xTr J
e kn e

r e r n m k m
kn m

β µ µ
µ

= =

=

 − + +
=  
 

 − − + + +
=  
 

 

The condition (3) is satisfied through our numerical simulation, then Hopf 
bifurcation takes place in the model (2.3) at 2 2Hpe e= . 

To find out the stability of the limit cycle brought by Hopf bifurcation, the 
first Lyapunov number 1l  at the equilibrium point E3 is going to be computed 
following. The fixed parameter e2 is at its critical value e2Hp, when the coordi-
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nates of the internal equilibrium point E3 are ( )2 2 2 23 3,
Hp Hpe e e ex y

= =
. Doing varia-

ble transformation 

2 2 2

2 2 2

3

3

,

,
Hp

Hp

e e e

e e e

x x x

y y y
=

=

 = +


= +
 

and for Taylor to expand, then the model (2.3) can be rewritten as  

( )

( )

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 3
10 01 20 11 02 30

2 2 3
21 12 03

2 2 3
10 01 20 11 02 30

2 2 3
21 12 03

, ,

, ,

e e e e e e e e

e e e e e e e

e e e e e e e e

e e e e e e e

x x y x x y y x

x y x y y P x y

y x y x x y y x

x y x y y R x y

α α α α α α

α α α

β β β β β β

β β β

 = + + + + +

 + + + +


= + + + + +


+ + + +





 

where  

( ) ( )2
1 3 1 3 1 3 1 1

10 20 30

01 3 11 02 03 21 12

2 4 4, , ,

, , 0,

r x n k r x r x n k r r
kn kn kn

mx m

α α α

α α α α α α

− + + − + + −
= = =

= − = − = = = =
 

and  

10 3 01 2 3 2 11

02 20 30 03 21 12

, , ,
0,

my r mx e mβ µ β µ β β µ
β β β β β β

= = + − − =

= = = = = =
 

and ( ) ( )2 2 2 2
, , ,e e e eP x y R x y  are power series with terms ( )

2 2
4i j

e ex y i j+ ≥ . 
The expression of the first Lyapunov number can be expressed by the formula:  

( ){ ( )

( ) ( ) ( )
( ) ( )( ) ( )

2 2
1 10 10 11 11 02 02 11 10 01 11 20 11 11 02

01

2 2 2
10 11 02 02 02 10 10 02 20 02 10 01 20 20 02

2 2 2
01 20 20 11 20 01 10 10 11 02 11 20 1

3

0 01

2

10

3
2

      2 2 2

      2 2

      3

l α β α α β α β α α β α β α β
α

β α α α β α β β α α α α α β β

α α β β β α β α β β α α α α β

− = + + + + +∆

+ + − − − −

− + + − −

π

− +

× ( ) ( ) ( ) }10 03 01 30 10 21 12 10 12 01 212β β α α α α β β α α β − + + + − 

 

where  

10 01 01 10 0.α β α β∆ = − >  

If 1 0l < , the limit cycle is stable; if 1 0l > , the limit cycle is unstable. However, 
the expression for Lyapunov number 1l  is rather cumbersome, we cannot di-
rectly judge the sign of it, so we will give some numerical simulation results in 
Section 5. 

Similar to the above theorem, the following two theorems can be obtained. 
Theorem 4.2.2. Based on the Theorem 3.2.4, the model (2.3) undergoes a 

Hopf bifurcation around E3 at Hpm m= . 
Theorem 4.2.3. Based on the Theorem 3.2.4, the model (2.3) undergoes a 

Hopf bifurcation around E3 at Hpn n= . 

5. Numerical Simulations 

In Sections 2, 3 of the article, we have obtained some theoretical results of the 
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model (2.3) through analysis and mathematical proofs, but due to the complexi-
ty of some expressions in the theoretical derivation process, in order to verify the 
feasibility and validity of the theoretical results, and to more intuitively under-
stand the dynamic behavior of the model (2.3). So as to explore how harvesting 
term, Allee effect, and predator capture rate affect the dynamics between algae 
and fish, we will perform some precise numerical simulations in this section. In 
the numerical simulations, we consider a set of hypothetical values of 1 0.6r = , 

2k = , 2 0.2r = , 0.56µ = , and 0.5β =  based on the biological significance of 
parameters in the model (2.3). 

In order to better investigate the effects of harvesting term and predator cap-
ture rate on model (2.3), we let the parameters e2 and m vary within a certain 
range, respectively, under the premise of fixing the other parameters above, and 
obtain the phase and bifurcation diagrams when e2 and m are varied, as shown 
in Figure 2. It is obvious from the two diagrams in Figure 2 that the model (2.3) 
has rich dynamic properties. When 2 2 0.11Hpe e= = , 0.428571428Hpm m= = , 
the model (2.3) occurs Hopf bifurcation; when 2 2 0.1904TCe e= = ,  

0.309891875TCm m= = , the model (2.3) occurs transcritical bifurcation. The 
two vertical lines in Figure 2 are the Hopf bifurcation line and the transcritical 
bifurcation line, representing Hp and TC, respectively. 

First, the model (2.3) has an internal positive equilibrium point E3 when  

2 20.109 0.11Hpe e= < = . Since ( )3
0ETr J > , ( )3

0EDet J > , the Jacobian matrix 
corresponding to the equilibrium point E3 has two eigenvalues greater than 0, 
hence E3 is an unstable focus point. Moreover, from Figure 3(a), we can observe 
that there is a limit cycle in the small neighborhood containing E3, which is caused  
 

 
Figure 2. Bifurcation diagram of the model (2.3) by taking e2 and m as bifurcation parameter respectively. Here, Bifurcation dia-
gram with respect to parameter 2 0.11HPe = , 2 0.1904TCe =  and 0.428571428HPm = , 0.309891875TCm = . Moreover, the vertic-
al lines with labels “Hp” and “TC” indicate that the model (2.3) undergoes Hopf and transcritical bifurcation here respectively. 
The red curves represent the internal equilibrium point E3. Equilibrium point presented as solid curves are stable, dotted curves 
are unstable. In addition, blue asterisks denote the bifurcation points of Hopf bifurcation and transcritical bifurcation, respectively. 
This paper makes a detailed analysis of it. 
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Figure 3. The phase portraits of the model (2.3) where E3 has different dynamics (varying with parameter e2). (a) When 

2 20.109 HPe e= < , E3 is an unstable focus or node point. (b) When 2 20.11 HPe e= = , E3 yields a periodic solution via Hopf bifurca-

tion. (c) Local enlargement of (b), where ( ) [ ] [ ], 1.245,0.45 1.255,0.5x y ∈ × . (d) Through Hopf bifurcation with 2 20.111 HPe e= > , 

there exists a stable periodic orbits around the stable focus point E3. (e) Hopf bifurcation diagram representing stable E3 and stable 
limit cycles with various values of e2. 

 
by the unstable trajectory of the saddle point E1. At the same time, we can com-
pute the first Lyapunov number 

2
52.9641 0el = − π < , which implies that the 

limit cycle is stable. Therefore, the model (2.3) has an internal equilibrium point 
E3 when the value of e2 becomes larger and larger, reaching 2 0.11Hpe = .  

( )3
0ETr J = , ( )3

0EDet J > , E3 becomes the center from the unstable focus point, 
a stable limit cycle appears. The supercritical Hopf bifurcation occurs, whereby 
the population densities are in a certain range and the algal-fish coexist in the 
equilibrium point E3. When 2 20.111 0.11Hpe e= > = , the model (2.3) has an in-
ternal equilibrium point E3. Since ( )3

0ETr J < , ( )3
0EDet J > , so that the Jaco-

bian matrix corresponding to E3 has two eigenvalues less than 0. At this point, E3 
is a stable focus point. There will be a gradual formation of coexistence mode of 
cyclic oscillations between algae and fish. Within a certain small range, the larger 
the value of e2, the more favorable the coexistence of periodic oscillation between 
algae and fish. Meanwhile, the boundary equilibrium points E1 and E2 are always 
unstable saddle points, and the extinction equilibrium point E0 is always a stable 
node point. In addition, from the numerical simulation results, we found that 
the value of the harvesting parameter e2 seriously affects the dynamic behavior of 
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the model (2.3). The detailed dynamic evolution of the Hopf bifurcation with e2 
as the parameter is shown in Figure 3. 

Previously, we analyzed the effect of the harvesting parameter e2 on the Hopf 
bifurcation in the model (2.3). In the following we will discuss the effect of the 
predator capture rate parameter m on the Hopf bifurcation in the model (2.3). 
When 0.426 0.428571428Hpm m= < = , the model (2.3) has an internal positive 
equilibrium point E3. Since ( )3

0ETr J < , ( )3
0EDet J > , the Jacobian matrix 

corresponding to the equilibrium point E3 has two eigenvalues less than 0, so E3 
is a stable focus point. However, when the value of m becomes larger and larger 
and reaches 0.428571428Hpm = , at this time E3 changes from a stable focus to a 
center, and there is a stable limit cycle. At the same time, we can calculate that 
the first Lyapunov number 44.3129 0ml = − π < , which implies that the limit 
cycle is stable. However, when 0.43 0.428571428Hpm m= > = , at this point 

( )3
0ETr J > , ( )3

0EDet J > , E3 is an unstable focus point. From Figure 4(c), we 
can observe that there exists a limit cycle in the small neighborhood containing 
E3, which is caused by the unstable trajectory of the saddle point E1. From Figure 
4(d), it can be observed that the coexistence mode of periodic oscillation in algae  
 

 
Figure 4. The phase portraits of the model (2.3) where E3 has different dynamics (varying with parameter m). (a) When 

0.426 HPm m= < , there exists a stable periodic orbits around the stable focus point E3. (b) When 0.428571428 HPm m= = , E3 yields 

a periodic solution via Hopf bifurcation. (c) Local enlargement of (c), where ( ) [ ] [ ], 1.245,0.31 1.255,0.33x y ∈ × . (d) Through 

Hopf bifurcation with 0.43 HPm m= > , E3 is an unstable focus or node point. (e) Hopf bifurcation diagram representing stable E3 
and stable limit cycles with various values of m. 
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and fish at this time is formed. It is also worth emphasizing that the amplitude of 
the limit cycles decreases with increasing values of m. Which implies that the 
smaller the effect of the predator capture rate on the algae and fish, the wider the 
area in which the periodic oscillations between algae and fish coexist. Over time, 
filter-feeding fish and algae eventually reach a state of coexistence within a small 
range of Hpm m< . 

In order to investigate the effect of Allee effect in the model (2.3), we chose 
Allee effect parameter n for Hopf bifurcation. After numerical simulations, we 
found that the effect of Allee effect in the model is similar to that of the predator 
capture rate m on the prey. When 0.14 0.14285714Hpn n= < = , E3 is a stable 
focus point, the algae and fish form a coexistence mode of periodic oscillations. 
However, when the value of n becomes larger and larger and reaches nHp, then E3 
changes from a stable focus to a center. There is a stable limit cycle, and super-
critical Hopf bifurcation occurs. At the same time, we can calculate the first 
Lyapunov number 45.3149 0nl = − π < , which means that the limit cycle is stable. 
However, when 0.148 0.14285714Hpn n= > = , E3 is an unstable focus point. 
From Figure 5(c), we can observe that there exists a limit cycle in the small  
 

 
Figure 5. The phase portraits of the model (2.3) where E3 has different dynamics (varying with parameter n). (a) When 

0.14 HPn n= < , there exists a stable periodic orbits around the stable focus point E3. (b) When 0.14285714 HPn n= = , E3 yields a 

periodic solution via Hopf bifurcation. (c) Local enlargement of (c), where ( ) [ ] [ ], 1.01,3.2 1.1,3.3x y ∈ × . (d) Through Hopf bifur-

cation with 0.148 HPn n= > , E3 is an unstable focus or node point. (e) Hopf bifurcation diagram representing stable E3 and stable 
limit cycles with various values of m. 
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neighborhood containing E3, which is caused by the unstable trajectory of the 
saddle point E1. In addition, it is worth emphasizing that the amplitude of the 
limit cycle decreases with the increase of the n value, which means that the less 
Allee effect affects algae and fish in a certain range, the wider the area of coexis-
tence of periodic oscillations between algae and fish. 

The stability switching across the transcritical bifurcation can be better ex-
plained by the phase diagrams in Figures 6-8. When the model (2.3) undergoes 
a transcritical bifurcation, harvesting parameters e2 and e1 have the same dy-
namic effects on it. When 2 20.16 TCe e= <  and 1 10.13 TCe e= < , the system (2.3) 
has an internal positive equilibrium point E3 which is a stable focus since 

( )3
0ETr J < , ( )3

0EDet J > . And the equilibrium point ( )1 1.7286,0E  is an un-
stable saddle point. The Jacobian matrix corresponding to the equilibrium point 
E3 has two eigenvalues less than zero. When e2 and e1 increase to 2 0.1904TCe =  
and 1 0.1653TCe = , respectively, there is a transcritical bifurcation occurs when 
the E1 and E3 vector fields overlap and E1 collides with E3, prompting saddle 
point E1 to regain stability and return to the node. When 2 20.2 TCe e= >  and  
 

 
Figure 6. The phase portraits of the model (2.3) where E3 has different dynamics (varying with parameter e2). (a) When 

2 20.16 TCe e= < , E3 is a node point, and E1 is a saddle point. (b) The vector field graph for 2 20.1904 TCe e= =  with point E1 and 
point E3 that coincide. (c) When 2 20.2 TCe e= > , E3 does not exist, and E1 is a node point. 

 

 
Figure 7. The phase portraits of the model (2.3) where E3 has different dynamics (varying with parameter e1). (a) When 

1 10.13 TCe e= < , E3 is a node point, and E1 is a saddle point. (b) The vector field graph for 1 10.165306122 TCe e= =  with point E1 
and point E3 that coincide. (c) When 1 10.19 TCe e= > , E3 does not exist, and E1 is a node point. 
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Figure 8. The phase portraits of the model (2.3) where E3 has different dynamics (varying with parameter m). (a) When 

0.28 TCm m= < , E1 is a node point and E3 does not exist. (b) The vector field graph for 0.309891875 TCm m= =  with point E1 and 
point E3 that coincide. (c) When 0.33 TCm m= > , the boundary equilibrium E1 separates the internal equilibrium E3, E3 is a node 
point and E1 is a saddle point. 

 

1 10.19 TCe e= > , the system (2.3) has no internal equilibrium point and the 
boundary equilibrium point E1 remains stable. This suggests that filter-feeding 
fish become extinct when the initial density of algae exceeds a critical threshold. 
However, when the densities of algae and filter-feeding fish are within a certain 
range, they can coexist in a stable equilibrium point. 

The effect of predator capture rate on the dynamical properties of model (2.3) 
is different from the harvesting parameters e2 and e1. It can be observed from the 
phase diagram in Figure 8 that when 0.28 0.309891875TCm m= < = , the model 
has no internal equilibrium point at this point and the boundary equilibrium 
point E1 is a stable node. When m increases to mTC, the transcritical bifurcation 
occurs, which can prompt the node E1 to become unstable as a saddle point and 
E1 overlaps with the E3 vector field. When 0.33 TCm m= > , the model (2.3) has a 
stable internal equilibrium point E3 and the boundary equilibrium point E1 re-
mains unstable. This suggests that algae and fish can coexist in a stable equili-
brium point when the predator capture rate of the prey reaches a certain thre-
shold. 

From the above numerical simulation analysis, it can be seen that the values of 
the key parameters e2, e1, n and m have an important influence on the dynamic 
behavior of the model (2.3). Which can not only change the dynamic characte-
ristics essentially, but also affect the survival and extinction of algae and fish. 
From Figures 2-5, it can be seen that the values of the key parameters e2, n and 
m are very important for the occurrence of the Hopf bifurcation. Which not on-
ly relates to the long-term survival of algae and fish, but also leads to the forma-
tion of a stable coexistence mode of cyclic oscillations between algae and fish. It 
is clear from Figures 6-8 that the values of the key parameters e2, e1, and m can 
lead to transcritical bifurcations, which are related to the range of densities at 
which algae and fish coexist and the critical threshold for extinction of fish. In 
summary, the harvesting term and Allee effect need to be considered when mod-
eling aquatic ecology to further determine the dynamics between algae and fish. 
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6. Conclusions 

In this paper, we propose an algae and fish ecological model with two harvesting 
terms and Allee effect based on the classical predator-prey model. Firstly, the ex-
istence of the equilibrium point is determined by analyzing the model (2.3). Se-
condly, the properties of the roots of the characteristic equation of the Jacobian 
matrix corresponding to the equilibrium point are analyzed, and the local stabil-
ity of the equilibrium point is discussed, which also provides a theoretical basis 
for the subsequent discussion of the bifurcation dynamics. The results show that 
the internal equilibrium point can be a saddle point, a stable node or an unstable 
node when the model (2.3) takes different parameter values. Thirdly, the har-
vesting parameters e2 and e1, the predator capture rate m and Allee effect para-
meter n are selected as the bifurcation parameters, in order to theoretically de-
rive the key threshold conditions that allow the model (2.3) to undergo tran-
scritical bifurcation and Hopf bifurcation. At the same time, a rigorous mathe-
matical proof of the existence of transcritical bifurcation is given using Soto-
mayor’s theorem. Finally, the stability of the limit cycle of Hopf bifurcation is 
determined by calculating the first Lyapunov number, and a numerical simula-
tion result is given. 

In the numerical simulation part, the bifurcation theory analysis of the model 
(2.3) is further enriched by specific numerical examples and corresponding bio-
logical explanations. It is found that human harvesting effort on algae and fish 
has a significant effect on the dynamic survival mode of algae and fish popula-
tions. In addition, we found that fish eventually become extinct when harvesting 
effort is too high and exceeds a certain threshold, implying that aquatic ecologi-
cal resource managers need to develop rational harvesting strategies. Only by 
adopting appropriate intensity of harvesting effort can the development of both 
populations be promoted to achieve the desired goal. Meanwhile, we observed 
that filter-feeding fish were extinct when their capture rate of algae was too low. 
And filter-feeding fish could coexist with algae only when the capture rate ex-
ceeded a certain threshold. The result suggests that in the early stage of algae 
population growth, a certain number of fish need to be released to effectively 
control algal blooms. 

In subsequent research work, we need to make further modifications to the 
model to make it more suitable in real ecosystems. In fact, from several perspec-
tives, including biological and economic, nonlinear harvesting is more relevant 
than constant and linear harvesting, due to the fact that harvesting does not al-
ways occur at constant yield or constant effort, and thus it is essential to consider 
nonlinear harvesting in algae and fish model, and we will continue to deepen it 
in our subsequent research. 

Acknowledgements 

This work was supported by the key International Cooperation Projects of China 
(Grant No: 2018YFE0103700), the National Natural Science Foundation of Chi-

https://doi.org/10.4236/jamp.2023.1110195


X. Y. Song et al. 
 

 

DOI: 10.4236/jamp.2023.1110195 2959 Journal of Applied Mathematics and Physics 
 

na (Grant No: 61871293, 61901303), by the Science and Technology program of 
Cangnan, China (Grant No: 2018ZG29), by Science and Technology Major Pro-
gram of Wenzhou, China (Grant No: 2018ZG002). 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Jia, Y., Schmid, C., et al. (2019) Toxicological and Ecotoxicological Evaluation of the 

Water Quality in a Large and Eutrophic Freshwater Lake of China. Science of the 
Total Environment, 667, 809-820.  

[2] Zhan, X.S. and Wang, L.P. (2019) The Study on Purification of Large Water Surface 
Water by Filter-feeding Fish. Henan Fisheries, 4, 37-39. 

[3] Song, H.L., Lu, X.W. and Inamori, Y. (2004) Pilot Investigation on Aquatic-Plant 
bed System Pre-Treating Eutrophicated Source Water. Water & Wastewater Engi-
neering, 30, 8-12.  

[4] Li, R.H., Guan, Y.T., He, M., Hu, H.Y. and Jiang, Z.P. (2006) Pilot-Scale Study on 
Riparian Phragmites Communis, Zizania latifolia and Typha angustifolia L. Zones 
Treating Polluted River Water. Environmental Science, 27, 493-497.  

[5] Zhang, R.S., Li, G.H., Qi, Z. and Xu, Z. (2005) Effects of Plants on Nitrogen/Phosphorus 
Removal in Subsurface Constructed Wetlands. Enviromental Science, 26, 83-86.  

[6] Shapiro, J., Lamarra, V. and Lynch, M. (1975) Biomanipulation: An Ecosystem Ap-
proach to Lake Restoration. In: Brezonik P. and Fox, L., Eds., Proceedings of a 
Symposium on Water Quality Management through Biological Control, University 
Press of Florida, Gainesville, 85-96.  

[7] Hansson, L., Annadotter, H., Bergman, E., et al. (1998) Biomanipulation as an Ap-
plication of Food Chain Theory Constraints, Synthesis, and Recommendations for 
Temperate Lakes. Ecosystems, 1, 558-574. https://doi.org/10.1007/s100219900051 

[8] Ke, N. (2006) The Basic Concepts of Bio-Manipulation Technology. Modern Fishe-
ries Information, 21, 30.  

[9] Perrow, M.R., Meijer, M., Dawidowicz, P., et al. (l997) Bio-Manipulation in Shallow 
Lake: State of the Art. Hydrobiologia, 342, 355-356.  
https://doi.org/10.1023/A:1017092802529 

[10] Liu, J.K. and Xie, P. (2003) Direct Control of Microcystis Bloom through the Use of 
Planktivorous Carp-Closure Experiments and Lake Fishery Practice. Ecologic Science, 
22, 193-196.  

[11] Liu, J.K. (1999) Unraveling the Enigma of the Disappearance of Water Bloom from 
the East Lake (Lake Donghu) of Wuhan. Resour Environ Yangtze Basin, 8, 312-319.  

[12] Ke, Z., Xie, P. and Guo, L. (2008) In Situ Study on Effect of Food Competition on 
Diet Shifts and Growth of Silver and Bighead Carps in Large Biomanipulation Fish 
Pens in Meiliang Bay, Lake Taihu. Journal of Applied Ichthyology, 24, 263-268.  
https://doi.org/10.1111/j.1439-0426.2008.01060.x 

[13] Guo, L.G., Wang, Q., Xie, P., et al. (2015) A Non-Classical Biomanipulation Expe-
riment in Gonghu Bay of Lake Taihu: Control of Microcystis Blooms Using Silver 
and Bighead Carp. Aquaculture Research, 46, 2211-2224.  
https://doi.org/10.1111/are.12375 

https://doi.org/10.4236/jamp.2023.1110195
https://doi.org/10.1007/s100219900051
https://doi.org/10.1023/A:1017092802529
https://doi.org/10.1111/j.1439-0426.2008.01060.x
https://doi.org/10.1111/are.12375


X. Y. Song et al. 
 

 

DOI: 10.4236/jamp.2023.1110195 2960 Journal of Applied Mathematics and Physics 
 

[14] Zhang, X., Xie, P., Hao, L., et al. (2006) Effects of the Phytoplanktivorous Silver 
Carp (Hypophthalmichthys molitrixon) on Plankton and the Hepatotoxic Micro-
cystins in an Enclosure Experiment in a Eutrophic Lake, Lake Shichahai in Beijing. 
Aquaculture, 257, 173-186. https://doi.org/10.1016/j.aquaculture.2006.03.018 

[15] Starling, F. (1993) Control of Eutrophication by Silver Carp (Hypophthalmichthys 
molitrix) in the Tropical ParanoA Reservoir (Brasilia, Brazil): A Mesocosm Experi-
ment. Hydrobiologia, 257, 43-152. https://doi.org/10.1007/BF00765007 

[16] Li, D.S. and Dong, S.L. (1996) The Structure and Function of the Filtering Appara-
tus of Silver Carp and Bighead Carp. Acta Zoologica Sinica, 42, 10-14.  

[17] Volterra, V. (1926) Fluctuations in the Abundance of a Species Considered Mathe-
matically. Nature, 118, 558-560. https://doi.org/10.1038/118558a0 

[18] Lotka, A.J. (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore. 

[19] Baurmanna, M., Gross, T. and Feudel, U. (2007) Instabilities in Spatially Extended 
Predator-Prey Systems: Spatio-Temporal Patterns in the Neighborhood of Tur-
ing-Hopf bifurcations. Journal of Theoretical Biology, 245, 220-229.  
https://doi.org/10.1016/j.jtbi.2006.09.036 

[20] Freedman, H. (1980) Deterministic Mathematical Models in Population Ecology. 
Marcel Dekker, New York.  

[21] Turchin, P. (2013) Complex Population Dynamics. Princeton University Press, 
Princeton.  

[22] Xiao, M. and Cao, J. D. (2009) Hopf Bifurcation and Non-Hyperbolic Equilibrium 
in a Ratiodependent Predator-Prey Model with Linear Harvesting Rate: Analysis 
and Computation. Mathematical and Computer Modelling, 50, 360-379.  
https://doi.org/10.1016/j.mcm.2009.04.018 

[23] Zhang, L., Wang, W.J. and Xue, Y.K. (2009) Spatiotemporal Complexity of a Preda-
tor-Prey System with Constant Harvest Rate. Chaos Solitons & Fractals, 41, 38-46.  
https://doi.org/10.1016/j.chaos.2007.11.009 

[24] Chang, X.Y. and Wei, J.J. (2012) Hopf Bifurcation and Optimal Control in a Diffu-
sive Predator-Prey System with Time Delay and Prey Harvesting. Nonlinear Analy-
sis-Modelling and Control, 17, 379-409.  

[25] Kar, T. (2006) Modelling and Analysis of a Harvested Prey-Predator System Incor-
porating a Prey Refuge. Journal of Computational and Applied Mathematics, 185, 
19-33. https://doi.org/10.1016/j.cam.2005.01.035 

[26] Lenzini, P. and Rebaza, J. (2010) Non-Constant Predator Harvesting on Ra-
tio-Dependent Predator-Prey Models. Advances and Applications in Mathematical 
Sciences, 4, 791-803.  

[27] Feng, P. (2014) On a Diffusive Predator-Prey Model with Nonlinear Harvesting. 
Mathematical Biosciences and Engineering, 11, 807-821.  
https://doi.org/10.3934/mbe.2014.11.807 

[28] Li, Y. and Wang, M. (2015) Dynamics of a Diffusive Predator-Prey Model with 
Modified Leslie-Gower Term and Michaelis-Menten Type Prey Harvesting. Acta 
Applicandae Mathematicae, 140, 398-410.  
https://doi.org/10.1007/s10440-014-9983-z 

[29] Chakraborty, S., Pal, S. and Bairagi, N. (2012) Predator-Prey Interaction with Har-
vesting: Mathematical Study with Biological Ramifcations. Applied Mathematical 
Modelling, 36, 4044-4059. https://doi.org/10.1016/j.apm.2011.11.029 

[30] Clark, C.W. (2010) Mathematical Bioeconomics: The Mathematics of Conservation. 
John Wiley and Sons, New Jersey. 

https://doi.org/10.4236/jamp.2023.1110195
https://doi.org/10.1016/j.aquaculture.2006.03.018
https://doi.org/10.1007/BF00765007
https://doi.org/10.1038/118558a0
https://doi.org/10.1016/j.jtbi.2006.09.036
https://doi.org/10.1016/j.mcm.2009.04.018
https://doi.org/10.1016/j.chaos.2007.11.009
https://doi.org/10.1016/j.cam.2005.01.035
https://doi.org/10.3934/mbe.2014.11.807
https://doi.org/10.1007/s10440-014-9983-z
https://doi.org/10.1016/j.apm.2011.11.029


X. Y. Song et al. 
 

 

DOI: 10.4236/jamp.2023.1110195 2961 Journal of Applied Mathematics and Physics 
 

[31] Martin, A. and Ruan, S. (2001) Predator-Prey Models with Delay and Prey Har-
vesting. Journal of Mathematical Biology, 43, 247-267.  
https://doi.org/10.1007/s002850100095 

[32] Courchamp, F., Clutton-Brock, T. and Grenfell, B. (1999) Inverse Density Depen-
dence and the Allee Effect. Trends in Ecology & Evolution, 14,405-410.  
https://doi.org/10.1016/S0169-5347(99)01683-3 

[33] Stephens, P.A., Sutherland, W.J. and Freckleton, R.P. (1999) What Is the Allee Ef-
fect. Oikos, 87, 185-190. https://doi.org/10.2307/3547011 

[34] Stephens, P.A. and Sutherland, W.J. (1999) Consequences of the Allee Effect for 
Behaviour, Ecology and Conservation. Trends in Ecology & Evolution, 14, 401-405.  
https://doi.org/10.1016/S0169-5347(99)01684-5 

[35] Deredec, A. and Courchamp, F. (2003) Extinction Thresholds in Host-Parasite Dy-
namics. Annales Zoologici Fennici, 40, 115-130.  

[36] Wang, M.H. and Kot, M. (2001) Speeds of Invasion in a Model with Strong or Weak 
Allee effects. Mathematical Biosciences, 171, 83-97.  
https://doi.org/10.1016/S0025-5564(01)00048-7 

[37] Aguirre, P., González-Olivares, E. and Sáez, E. (2009) Two Limit Cycles in a Les-
lie-Gower Predator-Prey Model with Additive Allee Effect. Nonlinear Analysis: Real 
World Applications, 10, 1401-1416. https://doi.org/10.1016/j.nonrwa.2008.01.022 

[38] Aguirre, P., González-Olivares, E. and Sáez, E. (2009) Three Limit Cycles in a Les-
lie-Gower Predator-Prey Model with Additive Allee effect. SIAM Journal on Ap-
plied Mathematics, 69, 1244-1262. https://doi.org/10.1137/070705210 

[39] Sen, M., Banerjee, M. and Morozov, A. (2012) Bifurcation Analysis of a Ra-
tio-Dependent Prey-Predator Model with the Allee Effect. Ecological Complexity, 
11, 12-27. https://doi.org/10.1016/j.ecocom.2012.01.002 

[40] Wang, J., Shi, J. and Wei, J. (2011) Predator-Prey System with Strong Allee Effect in 
prey. Journal of Mathematical Biology, 62, 291-331.  
https://doi.org/10.1007/s00285-010-0332-1 

[41] Sen, M., Banerjee, M. and Takeuchi, Y. (2018) Influence of Allee effect in Prey Pop-
ulations on the Dynamics of Two-Prey-One-Predator Model. Mathematical Bios-
ciences and Engineering, 15, 883-904. https://doi.org/10.3934/mbe.2018040 

[42] Liu, H., Li, Z., Gao, M., Dai, H. and Liu, Z. (2009) Dynamics of a Host-Parasitoid 
model with Allee Effect for the Host and Parasitoid Aggregation. Ecological Com-
plexity, 6, 337-345. https://doi.org/10.1016/j.ecocom.2009.01.003 

[43] Liu, H., Ye, Y., Wei, Y., Ma, M. and Zhang, K. (2019) Pattern Formation in a Reac-
tion-Diffusion Predator-Prey Model with Weak Allee Effect and Delay. Complexity, 
2019, Article ID: 6282958. https://doi.org/10.1155/2019/6282958 

[44] Wang, W., Zhu, Y.N. and Cai, Y. Wang, W. (2014) Dynamical Complexity Induced 
by Allee Effect in a Predator-Prey Model. Nonlinear Analysis: Real World Applica-
tions. 16, 103-119. https://doi.org/10.1016/j.nonrwa.2013.09.010 

[45] Perko, L. (2001) Differential Equations and Dynamical Systems Differential Equa-
tions and Dynamical Systems. In: Bloch A., Epstein, C.L., Goriely, A. and Green-
gard, L., Eds., Texts in Applied Mathematics, Springer, Berlin, I-XIV.  
https://doi.org/10.1007/978-1-4613-0003-8 

[46] Zhang, Z.F., Huang, W.Z. and Dong, Z.X. (1992) Qualitative Theory of Differential 
Equation. Science Press, Beijing.  

[47] Cooke, K.L. and Grossman, Z. (1982) Discrete Delay, Distributed Delay and Stabili-
ty Switches. Journal of Mathematical Analysis Applications, 86, 592-627.  

https://doi.org/10.4236/jamp.2023.1110195
https://doi.org/10.1007/s002850100095
https://doi.org/10.1016/S0169-5347(99)01683-3
https://doi.org/10.2307/3547011
https://doi.org/10.1016/S0169-5347(99)01684-5
https://doi.org/10.1016/S0025-5564(01)00048-7
https://doi.org/10.1016/j.nonrwa.2008.01.022
https://doi.org/10.1137/070705210
https://doi.org/10.1016/j.ecocom.2012.01.002
https://doi.org/10.1007/s00285-010-0332-1
https://doi.org/10.3934/mbe.2018040
https://doi.org/10.1016/j.ecocom.2009.01.003
https://doi.org/10.1155/2019/6282958
https://doi.org/10.1016/j.nonrwa.2013.09.010
https://doi.org/10.1007/978-1-4613-0003-8


X. Y. Song et al. 
 

 

DOI: 10.4236/jamp.2023.1110195 2962 Journal of Applied Mathematics and Physics 
 

https://doi.org/10.1016/0022-247X(82)90243-8 

[48] Hu, D.P. and Cao, H.J. (2017) Stability and Bifurcation Analysis in a Predator-Prey 
System with Michaelis-Menten Type Predator Harvesting. Nonlinear Analysis: Real 
World Applications, 33, 58-82. https://doi.org/10.1016/j.nonrwa.2016.05.010 

 
 

https://doi.org/10.4236/jamp.2023.1110195
https://doi.org/10.1016/0022-247X(82)90243-8
https://doi.org/10.1016/j.nonrwa.2016.05.010

	Dynamic Analysis of an Algae-Fish Harvested Model with Allee Effect
	Abstract
	Keywords
	1. Introduction
	2. Algae-Fish Ecological Model Formulation
	3. Results of Mathematical Analysis
	3.1. Existence of Equilibrium Point
	3.2. Stability of Equilibrium Point
	3.3. Existence of Limit Cycle

	4. Bifurcation Analysis
	4.1. Transcritical Bifurcation
	4.2. Hopf Bifurcation

	5. Numerical Simulations
	6. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

