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Abstract 
A predator-prey model with linear capture term Holling-II functional re-
sponse was studied by using differential equation theory. The existence and 
the stabilities of non-negative equilibrium points of the model were dis-
cussed. The results show that under certain limited conditions, these two 
groups can maintain a balanced position, which provides a theoretical refer-
ence for relevant departments to make decisions on ecological protection. 
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1. Introduction 

Predator-prey system refers to the relationship in which one species is preyed 
upon by another species in a community of organisms. This relationship is an 
important part of the biome and can affect the number, distribution and compo-
sition of species, thereby altering the stability and integrity of the environment. 

The Holling-II model (also known as the Lotka-Volterra model or food chain 
model) is a classic dynamical model used to study predator-prey interactions. 
The model is based on the assumption that as the number of prey increases, so 
does the number of predators; however, as an increase in predators, the likelih-
ood of prey being preyed on increases, leading to a decrease in the number of 
prey. In turn, the decrease in prey populations inhibits the growth of predator 
populations. From the assumption Holling-II model, it can be seen that the 
quantitative relationship between predator and prey is nonlinear. In recent years, 
many researchers have studied predator-prey dynamics model from different 
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angles (see [1]-[11]). In the literature [10], the authors studied a Holling-II pre-
datory functional response in a predator-prey model as follows 
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y bxy d d y
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                       (1) 

They investigated the stabilities of the equilibrium point and the existence of 
limit cycle. In literature [11], the authors considered a Leslie-Gower preda-
tor-prey model with time delay and linear harvesting term 
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where 1 1h x  and 2 2h x  denote the linear capture terms caused by external in-
terference, and 1 0<h  and 2 0<h . They studied the positive steady-state prop-
erties of the model (2) and gave the conditions for Hopf bifurcation near the 
positive equilibrium point. Mainly inspired by literatures [10] and [11], com-
bining models (1) and (2), we propose the following predator-prey model with 
Holling-II type functional response and a linear capture term 
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t u
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                  (3) 

where u and v represent the densities of prey and predator populations at time t 
respectively, a, b, d1 and d2 are positive parameters, and h1 and h2 are negative 
parameters. We use differential equation theory to discuss the existence and the 
stabilities of non-negative equilibrium points of the model (3). The results show 
that under certain limited conditions, these two populations can maintain bal-
ance. 

2. The Equilibria of the System Model 

In view of the practical significance of the system, we only consider the case 
where u and v satisfy ( ){ }, 0, 0= ≥ ≥E u v u v . Define 
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Let 

( ) ( ), 0, , 0= =  Q u v R u v                      (4) 

Then, we have three equilibrium points: 
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( )1 0,0P , ( )2 1,0+P a h , ( )* *
3 ,P u v  

where * *,u v  satisfy 
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We easily know that * 0>u  and * 0>v  when 
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< < +
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3. Stabilities of the Equilibrium Points 

The linear approximation at any point ( )0 0,P u v  of the model (3) is as follows 
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where 
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3.1. Stability of Equilibrium Point ( )P1 0,0  

In this case, we have 

( ) ( ) ( )10,0 0′ ⋅ − = +uQ u a h u , ( ) ( )0,0 0 0′ ⋅ − =vQ v , 

( ) ( )0,0 0 0′ ⋅ − =uR u , ( ) ( ) ( )1 20,0 0′ ⋅ − = − +vR v d h v . 

So the linear approximation Equation (5) is as follows: 

( )

( )

1

2 1

d ,
d
d .
d

 = +

 = −


u a h u
t
v h d v
t

                       (6) 

The coefficient matrix of Equation (5) is 1

2 1

0
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a h
B

h d
. Then the cha-

racteristicroots are 1 1λ = +a h  and 2 2 1λ = −h d . Because 2 0λ < , the following  

conclusion is obvious. 
Theorem 1. If 1 0+ >a h , then ( )1 0,0P  is an unstable saddle point. If 

1 0+ <a h , then ( )1 0,0P  is an asymptotically stable node. 

3.2. Stability of Equilibrium Point ( )P a h2 1 ,0+  

In this case, we have 

https://doi.org/10.4236/jamp.2023.1110188


J. M. Mo et al. 
 

 

DOI: 10.4236/jamp.2023.1110188 2874 Journal of Applied Mathematics and Physics 
 

( ) ( )1 1,0′ + = − +uQ a h a h , ( ) 1
1

1

,0
1

+′ + = −
+ +v
a hQ a h

a h
, 

( )1,0 0′ + =uR a h , ( ) ( )1
1 1 2

1

,0
1

+
′ + = − +

+ +v

b a h
R a h d h

a h
. 

So the linear approximation Equation (5) is: 
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The coefficient matrix of Equation (7) is 
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The characteristic roots are 
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Therefore, the following conclusion is obtained: 
Theorem 2. If ( )( ) ( )1 1 2 1 2+ − + > −a h b d h d h , then 2 0λ > , so ( )2 1,0+P a h  

is an unstable saddle point. If ( )( ) ( )1 1 2 1 2+ − + < −a h b d h d h , then 2 0λ < , so 
( )2 1,0+P a h  is an asymptotically stable node. 

3.3. Stability of Plane Equilibrium Point ( )P u v3 ,∗ ∗  
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and its characteristic equation is 
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then we have 
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Then the characteristic roots of Equation (9) satisfy 
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From (8) and (10), we have 
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Define 

( ) ( )2
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then, its discriminant is 
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Obviously, we have 
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Therefore, we can get 

(i) as *
20 < <u s , we have ( )* 0<f u , which implies 0<p ; 

(ii) as *
2>u s , we have ( )* 0>f u , which implies 0>p ; 

(iii) as *
2=u s , we have ( )* 0=f u , which implies 0=p . 

From (8) and (10), we also have 

( )
( ) ( )( ) ( )(

( )( ) )

*
*2 *

1 2 1 1 2 1 22*

1 1 2 1 2

2 3
1

.

 = − − + − + + − + − − − 
+

+ + − + − +    

uq b d h u a h b d h d h u
u

a h d h b d h

 

Define 

https://doi.org/10.4236/jamp.2023.1110188


J. M. Mo et al. 
 

 

DOI: 10.4236/jamp.2023.1110188 2876 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( )( ) ( )
( )( )

2
1 2 1 1 2 1 2

1 1 2 1 2

2 3

.

 = − − + − + + − + − − − 
+ + − + − +

g s b d h s a h b d h d h s

a h d h b d h
 

then, its discriminant is 
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Therefore, the following relationships between q and 2∆  hold, 
(a) If 2 0∆ < , then ( ) 0>g s  for all ∈s R , and thus 0>q ; 
(b) If 2 0∆ = , then ( ) 0=g s  has two equal roots: 
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Therefore, ( ) 0>g s  for either 30 < <s s  or 3>s s , and thus 0>q ; 
(c) If 2 0∆ > , Then ( ) 0=g s  has two real roots: 
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and 

5 0>s , 6 0>s . 

Therefore, as *
5 6< <s u s , we have ( )* 0<g u , which implies 0<q ; as 

*
50 < <u s  or *

6 <s u , we have ( )* 0>g u , which implies 0>q . 
We give some assumptions as the follows. 
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Theorem 3. Suppose conditions (H1) and *
5 6< <s u s  hold, then ( )* *

3 ,P u v  
is an unstable saddle point. 

Proof If condition (H1) holds, we know 2 0∆ > . Combined with condition 
*

5 6< <s u s  and above discussion, we get 0<q . It implies that Equation (9) has 
two real roots which have different signs, thus ( )* *

3 ,P u v  is an unstable saddle 
point. 

Theorem 4. Suppose conditions (H1) holds, we have 
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(A) if { }*
2 5min ,<u s s  or *

6 2< <s u s , then ( )* *
3 ,P u v  is an unstable node 

or unstable focus; 
(B) if *

2 5< <s u s  or { } *
2 6max , <s s u , then ( )* *

3 ,P u v  is a stable node or 
stable focus; 

(C) if *
2=u s , then ( )* *

3 ,P u v  is a center. 
Theorem 5. Suppose conditions (H2) holds, we have 

(A) if *
2<u s  and *

3≠u s , then ( )* *
3 ,P u v  is an unstable node or unstable 

focus; 
(B) if *

2>u s  and *
3≠u s , then ( )* *

3 ,P u v  is a stable node or stable focus; 
(C) if *

2=u s , then ( )* *
3 ,P u v  is a center. 

Theorem 6.  Suppose conditions (H3) holds, we have 

(A) if *
2<u s , then ( )* *

3 ,P u v  is an unstable node or unstable focus; 

(B) if *
2>u s , then ( )* *

3 ,P u v  is a stable node or stable focus; 

(C) if *
2=u s , then ( )* *

3 ,P u v  is a center. 

4. Conclusion 

This paper investigates a Holling-II functional response predator-prey model 
with linear capture terms. The existence of non-negative equilibrium point of 
the model was discussed, and the stability of the equilibrium point was analyzed. 
It is clear from this paper that human capture intensity can maintain an equili-
brium position for both populations under certain constraints. However, when 
the intensity of human capture exceeds a certain limit, the two populations will 
lose equilibrium, which will have a negative impact on species diversity and en-
vironmental stability. In other words, human capture behavior, within certain 
limits, can not only maintain human needs but also achieve sustainable devel-
opment of ecological resources. This paper provides a theoretical reference for 
the decision-making of relevant departments. 
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