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Abstract 
In this paper, the estimators of the scale parameter of the exponential distri-
bution obtained by applying four methods, using complete data, are critically 
examined and compared. These methods are the Maximum Likelihood Esti-
mator (MLE), the Square-Error Loss Function (BSE), the Entropy Loss Func-
tion (BEN) and the Composite LINEX Loss Function (BCL). The perfor-
mance of these four methods was compared based on three criteria: the Mean 
Square Error (MSE), the Akaike Information Criterion (AIC), and the Bayesian 
Information Criterion (BIC). Using Monte Carlo simulation based on relevant 
samples, the comparisons in this study suggest that the Bayesian method is 
better than the maximum likelihood estimator with respect to the estimation 
of the parameter that offers the smallest values of MSE, AIC, and BIC. Confi-
dence intervals were then assessed to test the performance of the methods by 
comparing the 95% CI and average lengths (AL) for all estimation methods, 
showing that the Bayesian methods still offer the best performance in terms 
of generating the smallest ALs. 
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1. Introduction 

The exponential distribution is one of the most commonly used continuous 
distributions applied in life data analysis. In particular, it is commonly used for 
systems exhibiting some form of constant failure rate. For a continuous random 
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variable ( )1 2, , , nX X X X=  , the exponential distribution density function, the 
pdf, is thus given by 

( ), e , 0.Xf X Xλλ λ −= ≥                    (1) 

where λ  is the constant failure rate parameter. For more details on exponential 
distribution and its applications, [1] and [2] offer a useful reference. 

Empirical Bayes estimators of exponential distribution parameters have been 
introduced by multiple authors, such as [3] and [4] to support the generation of 
this function. [5] also investigated the use of the power function distribution as a 
conjugate prior to the estimation of the parameters required for the exponential 
distribution, while [6] used a prior drawn from the gamma to assess Bayesian 
estimation of the exponential distribution, applying the maximum likelihood 
estimator and three different loss functions to estimate the parameters of the 
exponential distribution. 

This paper aimed to study the estimation of exponential distribution across a 
variety of loss functions, applying three different criteria-based methods to 
compare the resulting estimators. These were mean square error (MSE), the 
Akaike Information Criterion (AIC), and the Bayesian Information Criterion 
(BIC). 

The remainder of this paper is thus organized as follows. In Section 2, the 
mathematical derivations of the estimation methods are present, while the final 
model selection is explained in Section 3. The Monte Carlo simulation study re-
sults are then used in Section 4 to perform a comparison of the estimation me-
thods, based on applying the appropriate criteria for the mean square error 
(MSE), Akaike Information Criterion (AIC), and Bayesian Information Crite-
rion (BIC), allowing a conclusion based on the results findings to be offered in 
Section 5. 

2. Different Estimators of the λ Parameter 

This section outlines the various estimates of the parameter of the exponential 
distribution, as given in (1). 

2.1. Maximum Likelihood Estimator (MLE) 

The maximum likelihood estimator (MLE) is a technique used for estimating the 
parameters of a given distribution as discussed in [7] [8] and [9]. Suppose that 

( )1 2, , , nX X X X=  ; based on this the exponential distribution is as shown in 
(1), and the likelihood of λ  can be described as 

( ) 1, e .i
n

iXnL X λλ λ =− ∑=  

Taking the natural logarithm of both sides yields 

( )
1

ln , ln
n

i
i

L X n Xλ λ λ
=

= − ∑  

and the MLE estimator of λ  can thus be obtained by solving the following 
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equation: 

( )ln , 0.L X λ
λ
∂

=
∂

 

Hence, 

1
0,

n

i
i

n X
λ =

− =∑  

and the maximum likelihood estimator, MLEλ̂ , is then given by 

E

1

ML
ˆ .n

i i

n
X

λ
=

=
∑

                        (2) 

2.2. Bayesian Estimator 

This section demonstrates the process of deriving Bayesian estimates of the scale 
parameter for the exponential distribution. Three different loss functions are 
used to achieve this, which are the squared error loss function, the entropy loss 
function, and the composite LINEX loss function. 

The gamma ( ),α β  can be considered as a conjugate prior of λ  with its 
density function written in the form 

( ) ( )
1, , e , , , 0,h

α
α βλβλ α β λ λ α β

α
− −= >

Γ
 

where α  and β  are the shape parameter and scale parameter, respectively. 
The posterior density function of λ  for the given random sample  
( )1 2, , , nX X X X=   is thus obtained as 

( ) ( ) ( )
( ) ( )
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This in turn implies that the posterior distribution can be written as 

( )
( ) ( )

( )

11
1e

, ,
i
n

i
nX nn

i iX
X

n

αβ λαλ β
π λ

α

=
+− ++ −

=

∑
+

=
Γ +

∑
 

which, as can be plainly observed, is a gamma distribution with parameters  

( )n α+  and ( )1
n

ii X β
=

+∑ . 

The three different loss functions used to develop a Bayes estimate for the 
parameter λ  are discussed below. 

2.2.1. Squared-Error Loss Function (SE) 
The SE as discussed by [10] and [11], can be defined as 
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( ) ( )2ˆ ˆ, .L λ λ λ λ= −  

The Bayesian estimator of λ  under the squared error loss function is the 
mean of the posterior density function. The Bayes estimator of λ  under the 
squared error loss function is then denoted as SEλ̂  which can be written as 

( ) ( )
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Such that, 

E

1

Ŝ ,n
ii

n
X
αλ

β
=

+
=

+∑
                       (3) 

where ( ).E  indicates the posterior expectation. 

2.2.2. Entropy Loss Function 
The entropy loss function, as discussed by [12], can be obtained in the form 

( )
ˆ ˆˆ, ln 1 .L K λ λλ λ
λ λ

  
= − −      

 

The Bayes estimator of λ  based on the entropy loss function, denoted by 

BENλ̂ , is then given as 

( )( ) 11
BEN

ˆ .Eλ λ
−

−=  

From this, it is possible to derive ( )1E λ−  as follows: 
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The Bayesian estimation of λ  based on the entropy loss function is therefore 
written as 

N

1

BE
1ˆ .

i
n

i

n
X
αλ

β
=

+ −
=

+∑
                       (4) 
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2.2.3. Composite LINEX Loss Function 
The composite LINEX loss function is defined by [13] and is given as 

( ) ( ) ( )ˆ ˆ, ,ˆ, e e 2, 0.C CL Cλ λ λ λλ λ −
= + − >  

The Bayes estimator of λ  based on composite LINEX loss function is 
denoted as BCLλ̂  and can be expressed as 

( )

( )

|

BCL |

1 eˆ ln .
2 e

C X

C X

E
C E
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λ
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=   

 
 

To find ( )( )|e C XE λ , 
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Here, in a similar manner, ( )( )|e C XE λ−  where 
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The Bayesian estimation of λ  based on the composite LINEX loss function 
can thus be expressed as 

1

1

BCL
ˆ ln .

2
i

i

n
i

n
i

X Cn
C X C

βαλ
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=

=

 + ++  =
 + − 

∑
∑

                 (5) 

3. Model Selection Criterion 

To compare the efficiency of MLE, SE, BEN, and BCL, estimators the mean 
square error, Akaike information criterion, and Bayesian information criterion 
methods were used to test their accuracy. 

3.1. Mean Square Error (MSE) 

The mean square error references the mean squared distance between observed 
and predicted values. 

The MSE is thus calculated as 

( )2

1
ˆ

MSE = ,
n

i ii

n

λ λ
=

−∑
                     (6) 

where λ̂  is the estimator of the parameter λ  on the ith run and n is the 
sample size. 

Estimates values with the lowest rates of MSE are preferred, as this means that 
λ̂  is closer to the actual values of λ . 
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3.2. Akaike Information Criterion (AIC) 

The Akaike information criterion (AIC) is defined by the equation 

( )ˆAIC 2 2log ,K L λ= −                         (7) 

where K is the number of estimated parameters and ( )ˆL λ  is the maximum 
value of the likelihood estimate of the parameters. 

Higher values for the likelihood function give a better fit, with the minimum 
AIC; however, the value of the AIC increases as more parameters are added to 
the first component. 

In the case of small data set, 40n
K
< , the second-order AIC, AICc can be used  

more effectively. The AICc takes the form 

( )c
2 1ˆAIC 2log 2 ,

1
KK

n K
λ +

= − + +
− −

               (8) 

where 2 1
1

K
n K

+
− −

 is the bias-correction factor. As n increases, 2 1
1

K
n K

+
− −

 tends  

to zero; at that point, the AICc gives results that more closely resemble the AIC. 

3.3. Bayesian Information Criterion (BIC) 

The Bayesian (or Schwarz) information criterion is expressed as 

( ) ( )ˆBIC 2log log .L K nλ= − +                   (9) 

Further information on AIC and BIC can be found in [14] and similar 
references. 

The method with the smallest values of MSE, AIC, and BIC can, however, be 
assumed to be the most efficient method to estimate the parameter to estimate 
the exponential distribution, offering estimated values of λ  close to its true 
value. The best method of estimating the parameter can also be determined by 
calculating which offers the highest log-likelihood value. 

4. The Simulation Study 

This section discusses the use of a Monte Carlo simulation to compare the MSE, 
AIC, and BIC criteria, as defined in (6), (7), and (9) respectively, to estimate the 
parameter of the exponential distribution based on the classical methods of 
comparison using MLE and Bayes estimators under the loss functions, including 
SE, BEN, and BCL, which can be computed as shown in Section 2 in equations 2 
to 5. Sample sizes n = 10, 30, 150, 300, and 1,000 were used to achieve this, with 
data generated from the exponential distribution for the scale parameter 1λ = , 
with an arbitrary prior parameter (α, β, C) = (1, 2, 0.5). The number of 
replications used was 1,000,000 for each sample size. 

The efficiencies of the estimation methods are compared in Table 1 and Table 
2. The results of MSE, AIC, and BIC are presented in Table 1, while the 95% CIs, 
along with average confidence interval length. ALs, as computed using the 
estimators are displayed in Table 2. Table 1, which shows the estimated values  
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Table 1. Estimated value of the rate parameter, λ̂ , for the true parameter λ , mean square error (MSE), Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), with log-likelihood (L) when (α, β, C) = (1, 2, 0.5). 

 Estimators 

n = 10     

 MLE BSE BEN BCL 

λ̂  1.033686 1.003013 0.9978051 1.160923 

MSE 0.166474 0.07241902 0.07111619 0.072879 

L -6.350954 -4.9385 -13.81305 -10.41417 

AIC 15.07691 12.25219 30.00111 23.20334 

BIC 15.00449 12.17978 29.92869 23. 13093 

n = 30     

λ̂  0.9816438 0.991284 0.99964 1.005751 

MSE 0.039308 0.030747 0.029941 0.030747 

L -13.1564 -15.2890 -24.64788 -13.21051 

AIC 28.42004 32.68516 51.40291 28.52816 

BIC 29.71409 33.9792 52.6969 29.8222 

n = 150     

λ̂  0.995469 0.998004 0.9965661 1.001133 

MSE 0.0069195 0.006578301 0.006535639 0.0065790 

L -79.08826 -75.59041 -105.6675 -81.1737 

AIC 160.1765 153.2011 213.3351 164.3474 

BIC 163.1871 156.1915 216.3457 167.358 

n = 300     

λ̂  0.9949605 1.013197 0.9936484 0.9942531 

MSE 0.003398617 0.0032999 0.003304556 0.003321389 

L -183.2983 -182.7589 -165.4214 -156.1926 

AIC 368.5965 367.5179 332.8529 314.3853 

BIC 372.3003 317.2217 336.5466 318.0891 

n = 1000     

λ̂  1.001877 1.000891 1.001926 0.9990892 

MSE 0.00100733 0.000980377 0.000997429 0.000996724 

L -567.925 -604.1954 -555.8084 -541.6347 

AIC 1137.85 1210.389 1113.617 1085.269 

BIC 1142.758 1215.297 1118.524 1090.179 
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Table 2. The lower (L) the upper(U) and average length AL of 95% confidence intervals for λ  of exponential distribution. 

 (L, U) 

 AL 

n estimators 

 MLE BSE BEN BCL 

10 (0.7903452, 1.277027) (0.83655, 1.169469) (0.8462149, 1.149395) (0.993913, 1.327934) 

 0.4866818 0.332919 0.3031801 0.334021 

30 (0.911776, 1.051511) (0.928542, 1.054027) (0.93897, 1.060325) (0.9430085, 1.068498) 

 0.139735 0.125485 0.121355 0.1254895 

150 (0.9822032, 1.008736) (0.9850244, 1.010984) (0.9836738, 1.009458) (0.988153, 1.014113) 

 0.0265328 0.0259596 0.0257842 0.02596 

300 (0.9878749, 1.001046) (0.9999318, 1.012933) (0.9871547, 1.000142) (0.9877433, 1.000763) 

 0.013197 0.0130012 0.0129873 0.0130197 

1000 (0.9999109, 1.003843) (0.9989327, 1.002849) (0.9999695, 1.003882) (0.9971325, 1.001046) 

 0.0039321 0.0039163 0.0039125 0.0039135 

 
and the values of MSE, AIC, and BIC with log-likelihoods for the selected sam-
ple size, also offers the MSE values obtained using all four estimators ap-
proached. For small sample sizes (n = 10, 30), the BEN method can thus be seen 
to perform better than other estimation methods, based on it offering the smal-
lest value of MSE. With an increasing sample size, however, the BSE method 
provides the lowest MSE. The results further indicate that the lowest values of 
AIC and BIC were obtained by using BCL as n increases further, while the values 
of AIC and BIC are close to each other for all estimation methods. Overall, all 
methods offer good performance with respect to the estimation of the parameter, 
though the higher the log-likelihood value, the better the parameter estimation 
method, and the results also suggest that the BCL method gives a higher 
log-likelihood value than all other approaches. Comparing the results in this pa-
per to that in [8], we see that both of these results show that the Bayesian me-
thod is better than the MLE. The results show that the MSE and L values of all 
methods decreased with increasing the sample size. The values of AIC and BIC 
increase as the sample size increases. For all estimation methods the 95% confi-
dence intervals and average lengths for the parameter were computed. The nar-
row 95% band indicates that confidence levels are high. The results in Table 2 
show that AL values decrease as the sample size increases, becoming more simi-
lar and closer to each other. The smallest values of ALs were found by applying 
the BEN method. 

5. Conclusion 

In this study, four methods of estimating the parameter of the exponential dis-
tribution were compared. Estimating the exponential parameter using classical 
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MLE was thus compared with the use of the Bayesian method assessed using 
three criteria, the MSE, the AIC, and the BIC. The results indicate that the Baye-
sian method performs better than the maximum likelihood estimator for the es-
timation of the parameter, based on it having the smallest values of MSE, AIC, 
and BIC, with narrow 95% CIs and the shortest ALs. 
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