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Abstract 
The local dynamical behaviors of a four-dimensional hyperchaotic Lorenz 
system, including stability and bifurcations, are investigated in this paper by 
analytical and numerical methods. The equilibriums and their stability under 
different parameter conditions are analyzed by applying Routh-Hurwitz cri-
terion. The results indicate that the system may exist one, three and five equi-
librium points for different system parameters. Based on the central manifold 
theorem and normal form theorem, the pitchfork bifurcation and Hopf bi-
furcation are studied respectively. By using the Hopf bifurcation theorem and 
calculating the first Lyapunov coefficient, the Hopf bifurcation of this system 
is obtained as supercritical for certain parameters. Finally, the results of theo-
retical parts are verified by some numerical simulations. 
 

Keywords 
Hyperchaotic Lorenz System, Stability, Pitchfork Bifurcation, Hopf  
Bifurcation, Central Manifold 

 

1. Introduction 

In 1963, Lorenz, an American meteorologist, discovered the first chaotic attrac-
tor while studying the atmospheric motion, which started the study of chaos. 
The Lorenz model also has become a classical model in the field of chaos.  

Based on Lorenz system, many scholars proposed Lorenz-like systems, which 
are widely used in image encryption, secure communication and many other 
fields. Perevoznikov et al. [1] considered two methods of stability analysis of 
systems described by dynamical equations through Lorenz and Rossler Model 
Problems. Liu et al. [2] gave new insights into a new Lorenz-like chaotic system 
from the literature. Wu et al. [3] investigated the stability of equilibrium points 
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and Hopf bifurcation of a Lorenz-like system with the normal form theory. The 
conditions guaranteeing the Hopf bifurcation were derived. Hu et al. [4] studied 
stability and Hopf bifurcation of a new four-dimensional quadratic autonomous 
system both analytically and numerically. Aziz et al. [5] designed a new elec-
tronic circuit as an engineering application on a four-dimensional chaotic system. 
Fu et al. [6] combined a three-dimensional autonomous system with a complex 
network, and used the chaotic synchronization of this system to apply it to confi-
dential communication. Wang et al. [7] suggested a brand-new Julia-fractal sys-
tem in three-dimensional to increase the randomness of chaotic sequences and 
widen the key space and then a fresh quantum circuit for Fibonacci scrambling 
was created.  

The bifurcation problem also has a profound application background. Zhang 
et al. [8] investigated the bifurcation characteristics of the active magnetic bear-
ing-rotor system subjected to the external excitation analytically. Wang et al. [9] 
presented a two-dimensional simplified Hodgkin-Huxley model under exposure 
to electric fields, and the Hopf bifurcation of this model was analyzed both analyt-
ically and numerically. Wen et al. [10] obtained the Hopf bifurcation associated 
with positive non-homogeneous steady states of a reaction-diffusion-advection 
logistic model, with two non-local delayed density-dependent terms and ze-
ro-Dirichlet boundary conditions. Li et al. [11] studied a four-dimensional iner-
tial two-nervous system with delay and obtained the critical value of zero-Hopf 
bifurcation by analyzing the distribution of eigenvalues.  

The following manuscript is organized as follows: a four-dimensional hyper-
chaotic Lorenz system is presented in the next section. In Section 3, the equili-
brium points and their stability are studied. The pitchfork bifurcation and Hopf 
bifurcation are analyzed in Section 4. In the last section, numerical simulations 
are presented to verify the theoretical results.  

2. Dynamic Modeling 

Wang et al. [12] proposed a four-dimensional hyperchaotic system by adding 
the nonlinear controller to Lorenz system, and analyzed its basic dynamic cha-
racteristics. On the basis of these works, Xie et al. [13] proposed a plaintext re-
lated color image encryption algorithm based on multiple chaotic maps to solve 
the problem of color image encryption and the local dynamics analysis of this 
system is carried out. The specific model is shown in the following:  

 

( )x a y x w
y bx y xz
z xy cz
w yz dw

 = − +
 = − −


= −
 = − +









                       (1) 

Where [ ]T, , ,x y z w  are the state variables, , , ,a b c d  are controllable parameters.  

When 10a = , 28b = , 
8
3

c = , 1.52 0.06d− ≤ ≤ − , the system is in a hyper-

chaotic state [13]. Its hyperchaotic state can be observed by Figure 1.  
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Figure 1. The projections of system (1) when 10a = , 28b = , 
8
3

c = , 1d = − . (a) The three-dimensional projection 

of x-z-w plane; (b) The two-dimensional projection of x-y plane; (c) The two-dimensional projection of y-z plane; (d) 
The two-dimensional projection of x-z plane.     

3. Equilibrium Analysis 

In this section, the stability of the equilibrium points of this system will be ana-
lyzed.  

Theorem 1. Let 0b ≠ , 0c ≠ , ( )2 2 2 2 2 2 2 22 4b c b a c d abc d ac d∆ = + + − ,  
( )2

1

2

2

acd abcd b c
t

ad

− + + + ∆
= , 

( )2

2

2

2

acd abcd b c
t

ad

− + + − ∆
= , the system has  

https://doi.org/10.4236/jamp.2023.1110182


Y. Ren, L. Q. Zhou 
 

 

DOI: 10.4236/jamp.2023.1110182 2792 Journal of Applied Mathematics and Physics 
 

only one equilibrium point ( )0 0,0,0,0S =  as long as it meets any of the following 
conditions: 1) 0∆ <  i.e. 2 2 2 2 2 22 4 0b a c d abc d ac d+ + − < ; 2) 0∆ =  and also  

22 0
2

acd abcd b c
ad

− + +
< ; 3) 0∆ >  and also 1 2, 0t t < . And the system has three  

equilibrium points as long as it meets any of the following conditions: 1) 0∆ = ; 
2) 0∆ >  and also 1 0t > , 2 0t < ; 3) 0∆ >  and also 1 0t < , 2 0t > . The sys-
tem has five equilibrium points as long as it meets the condition: both 0∆ >  
and 1 0t > , 2 0t > .  

Proof 1. Solving the equations to find the equilibrium points of system (1):  

 

( ) 0
0

0
0

a y x w
bx y xz
xy cz

yz dw

 − + =
 − − =


− =
− + =

                       (2) 

when 0x = , it’s easy to obtain the equilibrium point ( )0 0,0,0,0S = ; and when 
0x ≠ ,we have  

 ( ) ( )22 2 2 2 0ad x c b cx abcd x c+ − − + =              (3) 

let 
( )2

1

2

2

acd abcd b c
t

ad

− + + + ∆
= , 

( )2

2

2

2

acd abcd b c
t

ad

− + + − ∆
= , where  

( )2 2 2 2 2 2 2 22 4b c b a c d abc d ac d∆ = + + − .  

When 0∆ <  the system has only one equilibrium point S0.  

When 0∆ =  and also 
22 0

2
acd abcd b c

ad
− + +

< , the system has equilibrium 

point S0. And when 0∆ =  and the 
22 0

2
acd abcd b c

ad
− + +

> , the system has three 

equilibrium points as following: S0; 
2

1 1 1
1 1 12 2 2

1 1 1

, , ,bcx bx abcxS x ax
x c x c x c

 
= − + + + 

;  

2
2 2 2

2 2 22 2 2
2 2 2

, , ,bcx bx abcxS x ax
x c x c x c

 
= − + + + 

. Where 
2

1
2

2
acd abcd b cx

ad
− + +

= ,  

2

2
2

2
acd abcd b cx

ad
− + +

= − .  

When 1 20, 0, 0t t∆ > > <  or 1 20, 0, 0t t∆ > < > , the system has three equili-
brium points. The equilibrium points in the former case are 0S ;  

2
1 1 1

1 1 12 2 2
1 1 1

, , ,bcm bm abcmM m am
m c m c m c

 
= − + + + 

, 1 1m t= ;  

2
2 2 2

2 2 22 2 2
2 2 2

, , ,bcm bm abcmM m am
m c m c m c

 
= − + + + 

, 2 1m t= −  respectively. And the equi-

librium points in the other case are S0; 
2

1 1 1
1 1 12 2 2

1 1 1

, , ,bcn bn abcnN n an
n c n c n c

 
= − + + + 

, 

1 2n t= ; 
2

2 2 2
2 2 22 2 2

2 2 2

, , ,bcn bn abcnN n an
n c n c n c

 
= − + + + 

, 2 2n t= −  respectively.  
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When 1 20, 0, 0t t∆ > > > , the system has five equilibrium points. The equili-
brium points are S0, M1, M2, N1, N2. Therefore, Theorem 1 is proved.  

Then the stability will be discussed. Choosing case 1 20, 0, 0t t∆ > > >  as an 
example and the analysis process for other situations are similar. Based on 
Theorem 1, the system has equilibrium points S0, M1, M2, N1, N2 when  

1 20, 0, 0t t∆ > > > . Since the system has symmetry, the stability of M2, N2 are 
same as the M1, N1. The Routh-Hurwitz criterion is applied to analyze stability of 
S0, M1, N1, and the following theorems are obtained. 

Theorem 2. When ( ) ( )21 4 0a a ab+ − − < , 0c > , 0d < , 1a > − ; or  

( ) ( )21 4 0a a ab+ − − ≥  and 0c > , 0d < , 
( ) ( ) ( )21 1 4

0
2

a a a ab− + ± + − −
<  

the equilibrium point ( )0 0,0,0,0S =  is asymptotic stable.  

Proof 2. The Jacobian matrix of system (1) at S0 is as following:  

0

0 1
1 0 0

0 0 0
0 0 0

S

a a
b

J
c

d

− 
 − =
 −
 
 

 

It’s characteristic polynomial is  
( ) ( )( ) ( ) ( )2

1 1 0P c d a a abλ λ λ λ λ = + − + + + − =  . And characteristic roots are 

1 cλ = − , 2 dλ = , 
( ) ( ) ( )2

3,4

1 1 4
2

a a a ab
λ

− + ± + − −
= .  

All characteristic roots have negative real parts if these parameters satisfy 
( ) ( )21 4 0a a ab+ − − < , 0c > , 0d < , 1a > − . Applying the Routh-Hurwitz 
criterion [14] we can know S0 is asymptotically stable. Similarly, when the para-
meters simultaneously satisfy ( ) ( )21 4 0a a ab+ − − ≥  and 0c > , 0d < ,  

( ) ( ) ( )21 1 4
0

2
a a a ab− + ± + − −

< , the equilibrium point is also asymptotically 

stable.  
Theorem 3. When 1 0a > , 1 2 3 0a a a− > , 2 2

1 2 3 1 4 3 0a a a a a a− − > ,  

( )2 2
4 1 2 3 1 4 3 0a a a a a a a− − > , the equilibrium point  

2
1 1 1

1 1 12 2 2
1 1 1

, , ,bcm bm abcmM m am
m c m c m c

 
= − + + + 

 is asymptotically stable.  

Proof 3. The Jacobian matrix of system (1) at M1 is as following:  

1

1
1

1

1
1

1

11

1 1

0 1

1 0

0

0

M

a a
btb t

t c

bc tJ
t c

t c

bc tbt d
t c t c

− 
 
 − − −
 +
 

=  
− + 

 
 − − + + 

 

The characteristic polynomial of this matrix is  
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( ) 4 3 2
2 1 2 3 4P a a a aλ λ λ λ λ= + + + +  

where  

( )

0 1 2 1
1

2 2 22
1 1 1

3 1 1 2
1 1 1 1

2 2 2 2 2
1 1 1

4 12
11

1, 1, ,

,
( )

3 .

abca a a c d a a c ac t ad cd d
t c

abct b ct b c tabc abcda ac at ad cd acd dt
t c t c t c t c

b c t b ct abc d abcdta acd adt
t ct c

= = + − + = + + + − − − −
+

+
= + − + − − − − + +

+ + + +

− −
= − − +

++

 

Calculating the following determinants: 1 0∆ > , 2 0∆ > , 3 0∆ > , 4 0∆ > . Ac-
cording to Routh-Hurwitz critetion, the equilibrium point M1 is asymptotically 
stable.  

The analysis process of equilibrium N1 is the same as that of M1. Simply re-
place the value of t1 with t2 in the coordinate of equation M1, then the stability of 
point N1 can be obtained. 

4. Bifurcation Analysis 
4.1. Pitchfork Bifurcation 

In this section, the pitchfork bifurcation of equilibrium point S0 is investigated. b 
is set to the bifurcation parameter, which leads to the following theorem.  

Theorem 4. Assuming the parameters satisfy conditions that 1a ≠ − , 0c ≠ , 
0d ≠ , the pitchfork bifurcation occurs when the parameter b crosses the critical 

value 1b = .  
Proof 4. The Jacobian matrix of S0 is  

0 1|

0 1
1 1 0 0
0 0 0
0 0 0

bS

a a

J
c

d

=

− 
 − =
 −
 
 

 

It’s characteristic polynomial is ( ) ( )( ) ( )2
3 1 0P c d aλ λ λ λ λ = + − + + =   and 

the characteristic roots are 1 0λ = , ( )2 1aλ = − + , 3 cλ = − , 4 dλ = , respec-
tively. In other words, the system has one zero eigenvalue and the others with 
non-zero real parts. The corresponding eigenvectors of these four eigenvalues 
are calculated as follows:  

1

1
1
0
0

ξ

 
 
 =
 
 
 

, 2

1
0
0

a

ξ

− 
 
 =
 
 
 

, 3

0
0
1
0

ξ

 
 
 =
 
 
 

, 4

2

1
1
0

d

d d ad

ξ

+ 
 
 =
 
 

+ + 

 

Let  

( )1 2 3 4

2

1 0 1
1 1 0 1

, , ,
0 0 1 0
0 0 0

a d

T

d d ad

ξ ξ ξ ξ

− + 
 
 = =
 
 

+ + 
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Using the following transformation  

1

2

3

4

xx
xy

T
xz
xw

  
  
   =
  
  

   

 

Then system (1) becomes  

 ( )
1 1 1

2 2 2

3 3 3

4 4 4

0 0 0 0
0 1 0 0
0 0 0
0 0 0

x x g
x x ga
x x gc
x x gd

      
      − +      = +
      −
      

      









               (4) 

where  

( ) ( ) ( ) ( )

( ) ( )

( )

2 2
1 2 4 1 2

4 1 3 2 3 3 4

3 2 2
1 3 2 3 3 4 42

1 1 1
1 1

1 1

1 ,
( 1)( )

ag a a x a d x b x ab x
a a

bd b x x x ax x d x x

a d x x x x x x d ad d x
a d ad d

  = + + + + − − + + +
+ + − − + − + 

+ +  − − − − + + + + + +

 

( ) ( ) ( )

( ) ( )

( )( ) ( )

2
2 4 1 2

4 1 3 2 3 3 4

3 2 2
1 3 2 3 3 4 42

1 1 1 1
1 1

1 1

,
1

g a d x b x ab x
a a

bd b x x x ax x d x x

d x x x x x x d ad d x
a d ad d

  = − + + − − + + +
+ + − − + − + 

 + − − − + + + + + +

 

( ) ( ) ( ) ( )2 2 2
3 1 2 4 1 2 1 4 2 41 1 2 1 ,g x ax d x a x x d x x d a x x= − + + + − + + + + −  

( )4 1 3 2 3 3 42
1 .g x x x x x x

d ad d
= − − −

+ +
 

Next, the central manifold theorem [15] [16] is used to analyze the stability of 
point S0 when 1b = . Constructing the following local central manifold 
represented by the two-parameter family x1 and b. δ  and δ  are sufficiently 
small.  

( ) ( ){ ( ) ( ) ( )
( ) ( ) }

5
0 1 2 3 4 2 1 1 3 2 1 4 3 1

1

, , , , | , , , , , ,

, , 0,0 0, 0,0 0, 1,2,3

c

i i

W S x x x x b x h x b x h x b x h x b

x b h Dh iδ δ

= ∈ = = =

< < = = =



 

Suppose 1 2 3, ,h h h  have expressions of the following forms:  

 ( )2 1 1 1 1 2 1 3,x h x b a x a x b a b= = + + +                  (5) 

 ( ) 2 2
3 2 1 1 1 2 1 3,x h x b b x b x b b b= = + + +                 (6) 

 ( ) 3 2 2
4 3 1 1 1 2 1 3 1,x h x b c x c x b c x b= = + + +                (7) 

According to the chain rule for derivatives, we have  

 1Dhg Bh g= +                           (8) 

where  
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( )1 2

2 3

3 4

1 0 0
, , 0 0

0 0

h g a
h h g g B c

h g d

 − +   
    = = = −    

        

 

Substituting Equations (4)-(6) to Equation (7), and comparing the coefficients of 
the corresponding terms with equal exponents, we can calculate the expressions 
of ih  as follows:  

 
( )

( )

2

2 1 12 22

11
1 1

a
x x x b

a a a a

+
= − + +

+ + + +
            (9) 

 2
3 1

1
2

ax x
ac a c

+
= +

− +
                 (10) 

 
( )

( )( )( )

2
3

4 12

1
2 3

a
x x

d ad d ac a c a ad d
+

= +
+ + − + + +

      (11) 

Finally, substituting expressions (8)-(10) to Equation (3), we can obtain the 
vector field of the system on the central manifold.  

( )( )
( )( )

( )( ) ( )( )

3 2 32

1 12

2
3

1 1 1 12 2

2 2 2 2

1 1 2 1

1

1 1

1 1
1 11 1

1 1 1

0

a d d ad da d abd ab ax c
a a d ad d

a d a a a db a b x
a aa d ad d a d ad d

a a b ab a a a ba x a x b
a a a

b

  + + + ++ + + −  = −
   + + + + 
    + + + +     + − + +
     + ++ + + + + +    

    − − −
+ + + +    + + +    

=














(12) 

( )
( )
( )

( )( )( )

2

1 2 12 22

2

1 2

11 1; ; ;
21 1

1
.

2 3

a aa a b
ac a ca a a a

a
c

d ad d ac a c a ad d

+ +
= − = =

− ++ + + +

+
=

+ + − + + +

 

The equilibrium point of this system in this expression is ( )0,1pS = . To satisfy 
the condition that pitchfork bifurcation occurs, letting ( ) 1,F x b x=  , we calculate 
the value at 1b =  of the following equations:  

( )
( ) ( ) ( )

2

2
0,11 10,1 0,1

0,0 0, 0, 0, 0;F F FF
x b x
∂ ∂ ∂

= = = =
∂ ∂ ∂

 

( )

( )22
1 2

1 0,1

0,
1

a a aF
x b a

+∂
= − ≠

∂ ∂ +
 

( )

( )( )
( )( )

( )( )

3 2 33 2

13 2
1 0,1

12

1
6

1 1

1 6
11

a d d ad dF a d abd c
ax a d ad d

a d a b
aa d ad d

 + + + +∂ + + = −
+∂  + + + 

 + + + −
 ++ + + 
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( )( )
2

1 12

1 6
1 1

0.

a a d a b
a a d ad d

 + + + +
 + + + + 

≠

 

According to the pitchfork bifurcation theory [17], when parameter b crosses 
the critical value 1b = , the pitchfork bifurcation occurs at the equilibrium point 
Sp.  

4.2. Hopf Bifurcation 

This section focuses on Hopf bifurcation with a as the bifurcation parameter. 
Theorem 5. Assume 1, 0, 0b c d> > < , when the parameter a crosses the crit-

ical value −1, the Hopf bifurcation will occur at the point S0.  
Proof 5. The characteristic polynomial of Jacobian matrix of the system at S0 

is  

 ( ) ( )( ) ( ) ( )( )2
4 1 0.P c d a a abλ λ λ λ λ= + − + + + − =  

when 1, 0, 0b c d> > < , the eigenvalues are 1 cλ = − , 2 dλ = , 3,4 1ibλ = ± − . 

From calculating, we obtain ( )( )
1

d 1 0
d 2a

Re a
a

λ
=−

= − ≠ , which satisfy the two  

conditions for generating Hopf bifurcation. According to Hopf bifurcation 
theory the system generates Hopf bifurcation at S0.  

Normal form theory [15] [16] [18] and central manifold theorem are used for 
further analysis. According to the conclusion of Theorem 5, the specific values of 
the relevant parameters are set to 1, 2, 1, 2a b c d= − = = = −  to satisfy the condi-
tions for the Hopf bifurcation to occur. The corresponding eigenvalues of these 
parameters are 1 2 3 41, 2, i, iλ λ λ λ= − = − = = −  respectively. Converting the sys-
tem (1) to the following normal form: ( )x x F x= +   where  

1 1 0 1
2 1 0 0
0 0 1 0
0 0 0 2

− 
 − =
 −
 

− 

  

The ( )F x  has Taylor expansion near the S0:  

( ) ( ) ( ) ( )41 1, , ,
2 6

F x x y x y z X= + +    where  

( ) ( )

0 0
2 0

, , , ,
2 0
2 0

xz
x y x y z

xy
yz

   
   −   = =
   
   
−   

   

Letting nq∈  is the complex eigenvector which is corresponding to the ei-
genvalue 3 iλ = , np∈  is adjoint eigenvector which meets T ip p= −  and 
the standardized condition , 1p q = . From calculation we have the value of q 
and p:  
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 ( )
T

T 1 1 1 1 31,1 i,0,0 , i, i,0, i
2 2 2 10 10

q p  = − = + − + 
 

        (13) 

The critical real eigenspace cT  corresponds to 3 4,λ λ  and suT  corresponds 
to 1 2,λ λ  are both two-dimensional and is spanned by { },Req Imq . For any 

nx∈ , x zq zq y= + + , where 1z∈ , czq zq T+ ∈ , suy T∈ . The complex 
variable z is the coordinate on cT , having  

 
,

, ,

z p x

y x p x q p x q

 =


= − −
                (14) 

Therefore, system (33) has the following form in the coordinate system (36):  

( ) ( )2 2 2
20 11 02 21

2 2
20 11 02

1 1 1i , , , ,
2 2 2

1 1
2 2

z z G z G zz G z G z z z p q y z p q y

y y H z H zz H z

 = + + + + + + +

 = + + + +








 


(15) 

where  

( ) ( ) ( )20 11 02, , , , , , , ,G p q q G p q q G p q q= = =    

( ) ( ) ( )
( ) ( ) ( )

20

11

, , , , ,

, , , , ,

H q q p q q q p q q q

H q q p q q q p q q q

 = − −


= − −

  

  
 

The central manifold cW  has an expression:  

( ) 32 2
20 11 02

1 1, .
2 2

y V z z w z w zz w z o z= = + + +  

We also have , 0ijp w = , by combining the quadratic forms with respect to z 
and z  in the invariance condition in cW , we can obtain z zy V z V z= + 

  , 
4

ijw ∈  satisfy the following system of linear equations  

 
( )

( )

0 20 20

11 11

0 02 02

2i

2i

n

n

I A w H
Aw H

I A w H

ω

ω

 − =

− =
 − − =

                 (16) 

According to all the above formulas, the following results can be obtained:  

( ) ( ) ( ) ( ) ( ) ( )T T T, 0,0,2 2i,0 , , 0,0,2,0 , , 0,0,2 2i,0q q q q q q= − = = +    

20 11 020, 0, 0G G G= = =  

( ) ( ) ( )T T T
20 02 20 110,0,2 2i,0 , 0,0,2 2i,0 , 0,0,2,0H H H H= − = = + =  

( )
T T

T
20 11 02

2 6 2 60,,0, i,0 , 0,0,2,0 , 0,0, i,0 .
5 5 5 5

w w w   = − − = = − +   
   

 

Then the constraint equation of the original system on cW  is  

( ) ( )( )

2 2
20 11 02

2
21 11 20

1 1i
2 2

1 2 , , , ,
2

z z G z G zz G z

G p q w p q w z z

= + + +

+ + + +



 
 

Calculating the first Lyapunov coefficient  
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( ) ( ) ( )( )

( ) ( )( )

1
1

0

1
0

10 , , , 2 , , ,
2

, , 2i ,

4 0.
5

n

l Re p q q q p q A q q

p q I A q q

ω

ω

−

−

= −

+ − 

= >

  

   

Therefore, the Hopf bifurcation is subcritical. 

5. Numerical Simulations 

In this section we present some numerical simulations of system (1) to verify the 
above theoretical analysis. For showing the stability of the equilibrium point S0 
of system (1) under the parameter conditions satisfying Theorem 1, we give the 
time histories of the solutions by Fourth-order Runge-Kutta methods. The para-
meters are chosen to be ( ) ( ), , , 2, 8,1, 2a b c d = − −  and ( ) ( ), , , 2,0.5,2, 3a b c d = − , 
satisfying the first and second cases of Theorem 1, respectively. According to 
Figure 2, it can be seen that the equilibrium solution is asymptotically stable 
when the conditions of Theorem 1 are satisfied.  

The bifurcation of the system is analyzed in Section 4. According to the results 
of the theoretical analysis, choosing 1a = − , 5b = , 1c = , 2d = − , at this point, 
the parameter conditions for the system to generate Hopf bifurcation are satis-
fied. We give the time histories, Lyapunov exponential spectrum, projections of 
four-dimensional phase portrait diagram of the model at this time.  

Figure 3(a) shows that in this case the system is in periodic motion and also 
in a steady state. From the Lyapunov exponents spectrum in Figure 3(b), we can 
see the Lyapunov characteristic index satisfy ( )0, , ,− − −  which means stable 
closed orbit will occur. Figure 4 and Figure 5 show the two-dimensional and 
three-dimensional projections of the system when the Hopf bifurcation condition 
is satisfied, respectively.  

 

 
Figure 2. Time histories of system (1) for different parameters. (a) 2, 8, 1, 2a b c d= = − = = − ; (b) 2, 0.5, 2, 3a b c d= = = = − .     
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Figure 3. Bifurcation numerical simulations. (a) 1, 5, 1, 2a b c d= − = = = − ; (b) 1, 5, 1, 2a b c d= − = = = − .     

 

 
Figure 4. The two-dimensional projection of system (1). (a) The two-dimensional projection of x-y plane; (b) The 
two-dimensional projection of z-w plane.     

 

 
Figure 5. The three-dimensional projection of system (1). (a) The three-dimensional projection of x-y-z space; (b) 
The three-dimensional projection of x-y-w space.     
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6. Conclusion 

The local dynamics of a new four-dimensional Lorenz-like system is investigated 
with both analytical and numerical methods in this paper. Starting with a dis-
cussion of the number of equilibrium points, the stability is analyzed under dif-
ferent parameters by applying the Routh-Hurwitz criterion. The parameter con-
ditions corresponding to the occurrence of pitchfork bifurcation and Hopf bi-
furcation, respectively, are given, and the related properties of the bifurcations 
are analyzed. Finally, numerical simulations verify the correctness of the theo-
retical parts and show the change in the number of equilibrium points as the 
pitchfork bifurcation parameter crosses the critical value.  
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