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Abstract 
We expand previously established results concerning the uniform representa-
bility of classical and relativistic gravitational field equations by means of ve-
locity-field divergence equations by demonstrating that conservation equa-
tions for (probability) density functions give rise to velocity-field divergence 
equations the solutions of which generate—by way of superposition—the to-
tality of solutions of various well-known classical and quantum-mechanical 
wave equations. 
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1. Introduction 

The purpose of this paper is to broaden the scope of the results established in [1] 
and [2] by demonstrating that the notion of the divergence of a classical-motion 
velocity field generates a unifying mathematical description of various promi-
nent wave and field equations of theoretical physics. To this end, we will show, 
in Sections 2, 3, 4, 5, and 6, how solutions of the Klein-Gordon equation, the 
Schrödinger equation, and the classical wave equation can be obtained by supe-
rimposing wave functions ψ  that in turn produce solutions ρ  of the (proba-
bility) preservation equation  

( )div 0ρ =v                           (1) 
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by way of the defining equation  

*: .ρ ψ ψ=                         (2) 

That said, we must hasten to add that in our above-designation of Equation (1) 
as a “(probability) preservation equation”, we placed the word “probability” in 
parentheses because the interpretation of ρ  as a probability density function is 
not at all essential to our overall purpose. In particular, this suggested interpre-
tation is not meant to contradict the well-known fact that there is no general 
probability preservation equation associated with the Klein-Gordon equa-
tion—nor is it meant to introduce a competing notion of probability preserva-
tion to non-relativistic quantum mechanics where the probability density func-
tion is commonly defined to be the product *ψ ψ  rather than the square root of 
that product (as suggested in (2)). What we are after, first and foremost, is not 
physical interpretive novelty but the bringing to light of an underlying mathe-
matical unity. 

In order to make more precise the role played by Equation (1) in generating 
solutions of the various wave equations, referred to above, it is helpful to observe 
that ρ , as defined in (2), is a solution of (1) whenever there exists a real-valued 
function L (which we will choose to be the Lagrangian of a particle that moves 
with velocity v ) such that the wave function ψ  in (2) is a solution of the 
first-order wave equation  

( )div .iLψ ψ= ±v                        (3) 

This is so because (3) implies that  

( ) [ ]
[ ]

( ) ( )

* *

* * *

*

div div div
2

div div
div

2
div div 0,

iL iL

ψ ψ ψ ψ
ρ ρ ρ ρ

ρ

ψ ψ ψ ψ ψ ψ
ρ

ρ
ψ ψ ρ

ρ

 +  = + = +

− ± + −
= +

= − + =

v v
v v v v

v v
v

v v



 

where the brackets indicate, as usual, the taking of the directional derivative, that 
is, [ ]ψ ψ= ∂vv . So it is the establishment of this link between Equations (1) and 
(3) that happens to necessitate—for purely technical reasons—the introduction 
of the square root in (2), and it is this link as well that validates our pertinent 
claim according to which Equation (1) uniformly facilitates the construction of 
the sets of solutions of the various wave equations that we will subsequently dis-
cuss. As we will see, it is in superimposing solutions of Equation (3) that we will 
be able to generate these sets of solutions. 

Moreover, in reference to the results established in [2], it is worth mentioning 
that in a certain prominent special case the preservation Equation (1) is equiva-
lent to the familiar relativistic preservation equation which asserts the diver-
gence of the stress-energy tensor T  to be zero. To see why this is so, we assume 
that the curvature of a spacetime manifold is induced by the gravitational inte-
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ractions of a swarm of free particles whose rest-frame mass density is ρ  and 
whose unit-length geodesic velocity field is u  (i.e., ∇ =uu 0  and ( ), 1g =u u ). 
In other words, we assume that the stress-energy tensor is  

,ρ ⊗u u  

or equivalently, that  

( ) ( ), .gρ=T v v u u  

Given this assumption, the vanishing of the divergence of T  is equivalent to 
the validity of the conservation equation  

( )div 0ρ =u  

because in using the geodesic equation ∇ =uu 0 , we find that  

( ) ( )( )( )
( )( ) ( )( )

( ) ( ) ( ) ( )

[ ] ( )( ) ( )
( ) ( )

div ,

, ,

, , , ,

div ,

div ,

g

g g

g g g g

g

g

µ

µ µ

µ

µ

µ µ

µρ ρ ρ

ρ ρ

ρ

= ∇

= ∇ − ∇

 = + ∇ − ∇ 

= +

=

e

e e

e u

T v T v e

T v e T v e

u u v u v u e u v

u u u v

u u v

 

for all tangent vector fields v . Hence  

( )div 0 div 0,ρ= ⇔ =T u                       (4) 

as desired. 
The summative table below shows, in its last five rows, the results established 

in [2] along with the equivalence (4), and it also shows, in its first five rows, the 
results that we are going to derive in Sections 2, 3, 4, 5 and 6. Given this tabular 
summary, it does seem fair to assert that the notion of a (geodesic) velocity field 
yields surprisingly coherent mathematical descriptions of seemingly disparate 
fields of theoretical physics. 
 

Equation Standard Description Velocity Field Description 

Klein-Gord 
equation 

2 2
2

2 2 0m
t x
ψ ψ ψ∂ ∂

− + =
∂ ∂

 ( )div iLψ ψ= ±u  

Schrödinger 
equation ( )

2

2

1
2

i V x
t m x
ψ ψ ψ∂ ∂

= − +
∂ ∂

 
( )div iLψ ψ=v  

if ( ) 2V x x xα β γ= + +  

cl./electrom.wave 
equation 

2
2

2 0v
t
ψ ψ∂

− ∆ =
∂

 ( )div iLψ ψ= ±v  

non-rel. pres. 
equation 

*

0s
t x

ψ ψ∂ ∂
+ =

∂ ∂
 ( )*div 0ψ ψ =v  

rel. pres. 
equation none in general ( )*div 0ψ ψ =u

 

cl. vac. feq. 0V∆ =
 

( ) ( )div div , 0+ =  v v v v  
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Continued 

rel. vac. feq. ( )Ric 0, =v w  ( ) ( )div div , 0+ =  u u u u  

cl. mat. feq. 4V ρ∆ = π  ( ) ( )div div , 4 ρ+ = − π  v v v v  

rel. mat. feq. 
(free part.) 

( )Ric 2 8R g T− = π  
( ) ( )div div , 4 ρ+ = − π  w w w w  

for ( ), , 2⊥ ⊥= +w u u u u  

pres. en.-mo. div 0T =  ( )div 0ρ =u  

 
where 

*
*1

2
s

mi x x
ψ ψψ ψ

 ∂ ∂
= − ∂ ∂ 

. 

To better understand the motivating rationale for the mathematical methods 
outlined in this paper, it is helpful to appeal—at a purely intuitive level—to the 
quantum-mechanical wave-particle duality and to imagine each point of a clas-
sical or quantum-mechanical wave front to be the point of origin of a bundle of 
velocity-field trajectories that a particle might trace. Since the preservation of 
probability or mass along any such a bundle is guaranteed by Equation (1), it 
may occur to us to ask whether the corresponding density functions ρ —one 
for each bundle—can perhaps be used to construct the solutions of the partial 
differential equation that describes the time-evolution of the wave front. So as 
we set ρ  equal to *ψ ψ  and as we further observe that ρ  is a solution of (1) 
whenever ψ  is a solution of (3), we are naturally led to inquire whether the so-
lution of the governing partial differential equation can be constructed by supe-
rimposing solutions of Equation (3). As it turns out, in all the examples dis-
cussed in this paper such a construction is indeed feasible, but the more general 
question concerning the classification of partial differential equations that allow 
for such a construction of solutions has yet to be answered. 

In regard to this open question, however, we need to be aware that the unifying 
role played by velocity-field divergence equations is to some extent merely formal 
in nature. For the larger conceptual framework of which Equation (3) is descrip-
tive, in the various examples discussed in this paper, is not at all uniform. In the 
case of the relativistic Klein-Gordon equation, all speeds along velocity-field tra-
jectories are less than 1 (the speed of light), and the attendant pattern of superposi-
tion is therefore notably distinct from the one employed in solving the non-rela- 
tivistic Schrödinger equation. Moreover, in the case of the classical wave equation, 
the speed along trajectories is prescribed to be uniformly equal to the constant 
wave propagation speed, and in order for the concept of a velocity-field divergence 
to be viable in this case, it must pertain to fields along velocity cones whose di-
mension is strictly smaller than that of the embedding Newtonian spacetime. So 
the generating Equation (3), while formally constant, does vary significantly, from 
one example to the next, in terms of its conceptual and physical interpretation. 

So in the light of this interpretive variability, it is not at all obvious what a gene-
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ralized theory concerning the constructability of solutions of partial differential 
equations from solutions of velocity-field divergence equations can be expected to 
look like. The constructions outlined in this paper are very much dependent for 
their technical specifics upon the larger physical context of which a given partial 
differential equation is descriptive. And by implication, a truly general theory that 
equally applies to all these different contexts may not be easy to create. 

To conclude this introductory section, we wish to add, as a note of caution, 
that all the results derived in the present paper (as well as those derived in [1] 
and [2]) appear to be quite elementary in character. Thus it is conceivable, and 
maybe even likely, that other authors have recorded them in prior publications. 
But since the present author is not aware of any pertinent reference, the results 
in question are here being offered—with considerable hesitation—as provisional 
novelties. Moreover, the claim to novelty here in question strictly pertains to the 
unifying role played by velocity-field divergence equations. So we are not assert-
ing that the methods outlined in this paper are better than the standard methods 
described in, for example [3]-[10], but merely that they are more uniform. 

2. The Klein-Gordon Equation 

In this section we will show how the full set of solutions of the Klein-Gordon 
equation in one spatial dimension,  

2 2
2

2 2 0,m
t x
ψ ψ ψ∂ ∂

− + =
∂ ∂

 

can be constructed by superimposing solutions of Equation (3). The restriction 
to one spatial dimension is a choice of convenience and is justified by the fact 
that the extension to two and then three spatial dimensions would employ me-
thods similar to those used in Section 5 in solving the classical wave equation in 
two spatial dimensions. 

To get started, we introduce, for all y∈ , all 0t > , and all ( ),x y t y t∈ − +  
the unit Lorentz vector  

( )
( )22

1, :y

t
t x

x yt x y

 
=  − − −

u .                 (5) 

and consider—in direct analogy to (3)—the first-order wave equation  

( )div div .y y y y y y y yiLψ ψ ψ ψ = + = ± u u u              (6) 

The plus-or-minus sign on the right may be considered to be directly expres-
sive of the well-known fact that the Klein-Gordon equation has positive- and 
negative-energy solutions, but it may also be viewed to be a purely mathematical 
characteristic that naturally leads us to break up (6) into two distinct equations 
the solutions of which we will denote by yψ +  and yψ − , respectively. As we will 
see, this flexibility will be needed in order to generate the full set of solutions of 
the Klein-Gordon equation. 

To proceed, we observe that the Lagrangian yL  of a free particle that moves 
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along the unit-velocity flow line  

( ) ( ), ,

0
: ,y t x yc s s t x

y
 

= + 
 

u  

is equal to the particle’s rest mass m (in the particle’s rest frame and in Planck 
units) and that  

( )
( ) ( ) ( )2 2 22 2 2

1div , .y
t x yt x

t xt x y t x y t x y

∂ ∂ −
= + =
∂ ∂− − − − − −

u  

According to Equation (6), this yields  

( ) ( )2, 2
,y y

y y y yt x
im im

tt x y
x y

ψ ψ
ψ ψ ψ

+ +
+ + +  = − + = − +   − −

 − 

u  

and, by implication,  

( )( ) ( )

( )

( )

, ,

, , , ,
d
d

1 .
,

y t x

y
y y t x y t x y y

c s

y
y y

y

c s c s im
s t

x y

im im
ss t x

ψ
ψ ψ ψ

ψ
ψ ψ

+
+ + +

+
+ +

 ′= = − +   
 − 

 = − + = − + 
 u

 

One possible solution of this equation is easily seen to be  

( )( ), ,
eims

y y t xc s
s

ψ + =
π

, 

and in setting ( )22s t x y= − − , we find the following Lorentz-invariant form 

of the wave function yψ + :  

( )
( )

( )

( )

( )

2 22 21

2 22 2

e e, .
1

im t x y imt x y t

y t x
t x y t x y t

ψ
− − − −

+ = =
− −π π− −

            (7) 

By analogy, we also find that  

( )
( )

( )

2 21

2 2

e, .
1

imt x y t

y t x
t x y t

ψ
− − −

−

− −π
=                    (8) 

Remark. The factor 1 π  is a normalizing constant that guarantees that the 
integral of the density yρ ψ ψ ψ ψ+∗ + −∗ −= =  over any plane spatial cross- 
section of the light cone ( ){ }, | 0t x t y t x y t> ∧ − < < +  is always equal to one:  

( )
( )

1

12 22

1 1, d d d 1.
11

y t y t
yy t y t

t x x x v
vt x y t

ρ
+ +

− − −
= = =

−− ππ −
∫ ∫ ∫  

In order to generate the full set of solutions of the Klein-Gordon equation, we 
will now superimpose the solutions yψ +  and yψ −  as given in (7) and (8). To do 
so, we notice that  
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( ), 0y
x yt x

t
−  =  

u  

and that therefore  

( ), ,y
x yh y t x

t
ψ+ +− 

 
 

 

and 

( ), ,y
x yh y t x

t
ψ− −− 

 
 

 

are solutions of (6) for any complex-valued differentiable functions ( ),h y v+  
and ( ),h y v− . Hence we may attempt to find a solution ψ  of the Klein-Gordon 
equation of the following form: 

( ) ( ) ( )

( ) ( )2 21 1
1

1 2 2

, , , , , d

, e , e
d .

1 1

x t
y yx t

imt v imt v

x y x yt x h y t x h y t x y
t t

h x vt v h x vt v
v

v v

ψ ψ ψ
+ + + − −

−

+ − − − −

−

 − −    = +    
    

 − − = +
 − − π π

∫

∫
     (9) 

(Note: the substitution ( )v x y t= −  causes the factor 1/t in (7) and (8) to 
disappear.) Using elementary rules of differentiation, it follows that  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

2 2 11 2 2
2 21 2

112 2
1 2

2 11 2 2
21 2

112 2
1 2

e, 2 1 , d
1

e1 , d
1

e, 2 1 , d
1

e1 , d
1

imt v

imt v

imt v

imt v

h hv x vt v imv v x vt v v
yt y v

m v h x vt v v
v

h hv x vt v imv v x vt v v
yy v

m v h x vt v v
v

ψ + + −

−

−
+

−

− − − −

−

− −
−

−

 ∂ ∂ ∂
= − − − − ∂∂ ∂ − 

− − −
−

 ∂ ∂
+ − + − − ∂∂ −

π

π

π

π



− − −
−

∫

∫

∫

∫

 

and  

( ) ( )
2 22 2 1 2 11

2 2 21 2 2

e e, , d .
1 1

imt v imt vh hx vt v x vt v v
x y yv v
ψ + − − − −

−

 ∂ ∂ ∂ = − + −
 ∂ ∂ ∂− − π π

∫  

Hence 

( )

( )

2

2

2 2
2

2 2

2 11 2 2 2 2
21 2

2 11 2 2 2 2
21 2

e1 2 1 d
1

e1 2 1 d ,
1

imt v

imt v

m
t x

h hv imv v m v h v
yy v

h hv imv v m v h v
yy v

ψ ψ ψ

+ + −
+

−

− − − −
−

−

π

∂ ∂
− +

∂ ∂

 ∂ ∂
= − − − − + ∂∂ − 

 ∂ ∂
+ − − + − + ∂∂ − π

∫

∫

 

and, in setting ( ) ( ): ,vz y h y v± ±= , we may thus infer that ψ  is a solution of the 
Klein-Gordon equation if vz±  is a solution of the following second-order linear 
homogeneous differential equation:  
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( ) ( ) ( )2 2

22

2
0.

11

imvz y m v z y
z y

vv

′
′′ ± − =

−−
 

Since the characteristic polynomial of this equation is  
22 2

2
22 2

2 ,
11 1

imvx m v imvx x
vv v

 
± − = ±  −− − 

 

it follows that there are coefficient functions ( )1C v±  and ( )2C v±  such that 

( ) ( ) ( ) ( )2 21 1
1 2, e e .imvy v imvy v

vh y v z y C v C v y± ± ± − ± −= = +   

Upon closer examination, we find that the added flexibility which the second 
term on the right-hand side of this equation seemingly provides is actually in-
consequential. That is to say, the inclusion of this term does not increase the size 
of the set of solutions ψ  (as a few simple calculations would readily show). 
Thus we will set 2 : 0C± =  and write C±  instead of 1C± . This yields the follow-
ing form of the general solution of the Klein-Gordon equation: 

( ) ( )
( )

( )
( )2 21 1

1

1 2 2

e e d .
1

,
1

1 im t vx v im t vx v

C v C v v
v

t x
v

ψ
− − − − −

+ −

−
=
π

 
 +
 − − 

∫  

The fact that any function of this form is indeed a solution of the Klein-Gordon 
equation follows from the preceding discussion and can of course also be veri-
fied directly by means of straightforward differentiation. Consequently, in order 
to prove that the functions ψ , given above, exhaust the full set of solutions of 
the Klein-Gordon equation, it only remains to be shown that the coefficient 
functions C+  and C−  can be determined from the initial conditions 

( ) ( ) ( )
2 21 11

1 2 2

e e10, d .
1 1

imvx v imvx v

C v C v v
v v

xψ
− − −

+ −

−

 
 +
 − − 

=
π ∫         (10) 

and  

( ) ( ) ( )
2 21 11

2 21

e e0, d .
1 1

imvx v imvx vimx C v C v v
t v v
ψ − − −

+ −

−π

 ∂  = −
 ∂ − − 

∫        (11) 

To this end we introduce the additional substitution 21k mv v= − . This 
yields ( )2 2 :v k m k k f k= + = , ( )22 21 v m f k− = , ( )32d dv m k f k= ,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2

e e0, d

e d ,

ikx ikx

ikx

m k kx C C k
f k f kf k f k

m k kC C k
f k f k f k

ψ
−

∞ + −

−∞

∞ + −

−∞

    
 = +           
    −

= +           

π

π 

∫

∫

 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

e e0, d

e d .

ikx ikx

ikx

im k kx C C k
t f k f k f k f k

im k kC C k
f k f k f k

ψ −
∞ + −

−∞

∞ + −

−∞

    ∂
= −        ∂     

    −
= −            

π

π

∫

∫
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Setting ( ) ( )( ) ( )2: 2B k mC k f k f k+ += −  and  
( ) ( )( ) ( )2: 2B k mC k f k f k− −= , we obtain  

( ) ( ) ( )( )10, e d
2

ikxx B k B k kψ
∞ + −

−∞
= +

π ∫  

and 

( ) ( ) ( ) ( )( )0, e d .
2

ikxix f k B k B k k
t
ψ ∞ + −

−∞

∂
= −

∂ π ∫  

Thus, by Fourier inversion,  

( ) ( ) ( )0, e dikxB k B k x xψ
∞+ − −

−∞
+ = ∫  

and 

( ) ( ) ( )( ) ( )0, e d .ikxif k B k B k x x
t
ψ∞+ − −

−∞

∂
− =

∂∫  

In solving these two equations for ( )B k+  and ( )B k− —and determining 
C+  and C−  thereby—we may conclude that the initial conditions (10) and (11) 
can indeed always be satisfied by properly choosing the coefficient functions 
C+  and C− . 

3. The Free-Particle Schrödinger Equation 

Since the free-particle Schrödinger equation,  
2

2
1 ,

2
i

t m x
ψ ψ∂ ∂

= −
∂ ∂

 

turns out to be considerably easier to deal with than the general Schrödinger 
Equation (with a non-zero potential), it may be instructive and helpful to first 
examine only this simpler equation and then to move on, in the next section, to 
the more involved calculations that the general Schrödinger equation gives rise 
to. Since the Schrödinger equation is non-relativistic in nature, we replace the 
relativistic unit field yu , as defined in (5), by the non-relativistic field  

( ) ( ) ( )
1 1

, : :
,y

y
t x

v t x x y t
   

= =   −  
v  

and consider the corresponding wave equation  

( )div divy y y y y y y yiLψ ψ ψ ψ = + = v v v               (12) 

with 

( ) ( )2 2,
, .

2 2
y

y

mv t x m x yL t x
t
− = =  

 
 

(Note: the reason why, in (12), we wrote yiL  instead of yiL±  is that the 
Schrödinger equation is first-order in t and therefore requires less flexibility in 
adjusting its solutions to given initial conditions.) Setting  

( ) ( ), ,

0
: ,y t x yc s s t x

y
 

= + 
 

v  
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and noting that  

( ) 1div , ,y
x yt x

x t t
∂ −

= =
∂

v  

we may apply (12) to infer that  

( )

2

,
.

2
y

y y yt x

im x y
t t
ψ

ψ ψ−   = − +     
v  

Thus  

( )( ) ( )
( )( )

( )

, ,
, , , ,

2

2

d
d 2

2

1 ,
2

y y t xy
y y t x y t x y y

y
y

y

imv c s
c s c s

s s
s x y tim

s s

im x y
s t

ψ
ψ ψ ψ

ψ
ψ

ψ

′  = = − + 

 −
= − +  

 

− = − +  
 

 

and one possible solution of this equation is  

( )( )
( ) ( )2 22

, ,
e .

im x y s t

y y t xc s
s

ψ
−

=  

Setting s t= , yields  

( )
( ) ( )2 22

e, ,
im x y t t

y t x
t

ψ
−

=                     (13) 

and, in direct analogy to (9), we may therefore conjecture the general solution of 
the free-particle Schrödinger equation to be of the following form:  

( ) ( ) ( ) 2 2, , , d , e d .imv t
y

x yt x h y t x y h x vt v v
t

ψ ψ
∞ ∞

−∞ −∞

− = = − 
 ∫ ∫       (14) 

(Note: here again the factor 1/t in (13) disappears due to the substitution 

( )v x y t= − .) Given this representation of ( ),t xψ , we readily find that  

( ) ( ) 2
2

2, , e d
2

imv th imvv x vt v h x vt v v
t y
ψ ∞

−∞

 ∂ ∂
= − − + − ∂ ∂ 
∫  

and 

( ) 2
2 2

2
2 2 , e d .imv th x vt v v

x y
ψ ∞

−∞

∂ ∂
= −

∂ ∂∫  

Hence 

2
2 2 2

2
2 2

1 1 e d ,
2 2 2

imv th h mv hi iv v
t m m yx y
ψ ψ ∞

−∞

 ∂ ∂ ∂ ∂
+ = − − ∂ ∂∂ ∂ 

∫  

and therefore, ψ  is a solution of the free-particle Schrödinger equation if 

( ) ( ): ,vz y h y v=  is a solution of the differential equation 

( ) ( ) ( )2 22 0.z y imvz y m v z y′′ ′− − =  

Since the characteristic polynomial of this equation is 
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( )22 2 22 ,x imvx m v x imv− − = −  

it follows that there are coefficient functions ( )1C v  and ( )2C v  such that 

( ) ( ) ( ) ( )1 2, e e .imvy imvy
vh y v z y C v C v y= = +  

As in the previous section, the second term on the right turns out to be re-
dundant, and therefore, we may write 

( ) ( ), e .imvyh y v C v=  

Using (14), it readily follows that 

( ) ( ) ( )2 2
, e d ,

im v t vx
t x C v vψ

− −∞

−∞
= ∫  

and the single initial condition 

( ) ( )0, e dimvxx C v vψ
∞

−∞
= ∫  

can easily be met, as in the previous section, by determining ( )C v  via Fourier 
inversion. 

4. The General Schrödinger Equation 

Before we move on to apply the methods used in the preceding two sections to 
the general Schrödinger equation, 

( )
2

2
1 ,

2
i V x

t m x
ψ ψ ψ∂ ∂

= − +
∂ ∂

 

we need to briefly review the results established in [1]. To do so, we denote by 

, ,y t xz  the spatial coordinate of a classical particle of mass m that moves in one 
spatial dimension in the force field V= −∇F  and satisfies the boundary condi-
tions 

( ), , 0y t xz y=                           (15) 

and  

( ), , .y t xz t x=                           (16) 

Given this definition of , ,y t xz , the corresponding 2-velocity field yv  is  

( ) ( ) ( ), ,

1 1
, :

,y
y t x y

t x
z t v t x

   
= =   ′   

v  

and the flow lines of yv  are described, in dependence on t and x, by the para-
meterizations  

( ) ( ), ,
, ,

: .y t x
y t x

s
c s

z s
 

=  
 

 

As explained in [1] (and as we will further explain below), it is plausible and 
necessary to assume that there is a value 0T >  such that the boundary condi-
tions (15) and (16) uniquely determine , ,y t xz  for all ( )0,t T∈ . For only under 
this assumption does it follow that yv  is a well defined vector field on ( )0,T ×  
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for all y∈  and that ( ), ,y t xc s  satisfies the flow line equation  

( ) ( )( ), , , ,y t x y y t xc s c s′ = v  

for all [ )0,s T∈ . After all, the unique determination of , ,y t xz  by the boundary 
conditions (15) and (16) implies that  

( ) ( ) ( ) ( ) ( )
, , , ,, , , , , ,

y t x y t xy t x y s z s y c sc s c s c s= =                (17) 

for all [ )0,s T∈ , and this equation in turn implies that  

( ) ( ) ( ) ( ) ( )( ) ( )( )
, ,

, , , ,
,, , , ,

111
.

y t x
y t x y y t x

y c sy t x y y t x

c s c sz sz s v c s
   

′ = = = =    ′   ′     
v  

Given this setup, we showed in [1] that the density function *
y y yρ ψ ψ= — 

without the square root—satisfies the preservation equation ( )div 0y yρ =v  
whenever there exists a real-valued function yL  such that yψ  is a solution of 
the first-order wave equation  

( )div div .
2

y
y y y y yiL

ψ
ψ ψ= +v v                   (18) 

(Note: in this latter equation, the first term on the right had to be inserted in 
order to account for the omission of the square root in the definition of yρ .) As 
demonstrated in [1], any solution of the free-particle Schrödinger equation as 
well as the general Schrödinger equation with an harmonic-oscillator type po-
tential  

( ) 2V x x xα β γ= + +                     (19) 

can be obtained by superimposing solutions of Equation (18). Moreover, we also 
showed in [1] that for arbitrary potentials V the full set of solutions of the 
Schrödinger equation can be constructed by superimposing solutions of (18) 
along path-integrals (as in Feynman’s path-integral formalism). 

Given these results, our goal in the present paper will be to show that the gen-
eral Schrödinger equation—with V as defined in (19)—can also be solved by su-
perimposing solutions of Equation (12) instead of Equation (18). So we will not 
discuss the most general case, using path-integrals, but limit ourselves to the 
discussion of the general Schrödinger equation with harmonic-oscillator type 
potentials. To be sure, the path-integral construction used in [1] can also be ap-
plied to solutions of Equation (12), but since the purpose of the present paper is 
not to discuss the Schrödinger equation in particular and in full detail but rather 
to bring to light a certain unifying principle, the simplifying restriction to har-
monic-oscillator type potentials seems natural and permissible. 

In order to begin the process of solving the Schrödinger equation, with V as 
defined in (19), we introduce the following lemma:  

Lemma 4.1. There exist functions ( ),a t s , ( ),b t s , and ( ),c t s  such that  

( ) ( ) ( ) ( ), , , , ,y t xz s a t s x b t s y c t s= + +  

for all ( ) ( ) [ ), , , 0, 0,y t x s T T∈ × × ×   if and only if V is an harmonic-oscillator 
type potential, as given in (19). 
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Proof. “⇒ ” If ( ) ( ) ( ) ( ) ( ), , , ,y t xz s a t s x b t s y e t f s= + + , then  

( )( ) ( ) ( ) ( ) ( ), , , , , , , ,y y t x y t x
a b cv c s z s t s x t s y t s
s s s
∂ ∂ ∂′= = + +
∂ ∂ ∂

 

and  

( ) ( ) ( ) ( ), , , , .y
a b cv t x t t x t t y t t
s s s
∂ ∂ ∂

= + +
∂ ∂ ∂

 

Consequently, in setting ( ) ( ): ,p t a t t s= ∂ ∂ , ( ) ( ): ,q t b t t s= ∂ ∂ , and  
( ) ( ): ,r t c t t s= ∂ ∂ , we may apply Newton’s law of motion to conclude that  

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

, , , , , , , ,

2

1 1 d
d

, ,

.

y t x y t x y y t x y t x y
s t

y y
y y y

V x V z t z t v c s c t v
m m s

v v
t x v v t x

t x
p t x q t y r t p t x q t y r t p t

p t p t x q t q t p t y r t r t p t

=

′ ′ ′′ ′  − = − = = =  

∂ ∂
 = = +  ∂ ∂

′ ′ ′= + + + + +

′ ′ ′= + + + + +

v  

Since the left-hand side of this equation only depends on x, the same must be 
true for the right-hand side, and therefore, ( ) ( ) ( )q t q t p t′ +  must equal zero, 
and the functions ( ) ( )2p t p t′ +  and ( ) ( ) ( )r t r t p t′ +  must both be constant. 
In other words, there must exist constants ,α β ∈  such that  

( ) 2 ,V x xα β′ = +  

and this equation trivially implies that there is a value γ ∈  such that  

( ) 2 ,V x x xα β γ= + +  

as desired. 
“⇐ ” If ( ) 2V x x xα β γ= + + , then  

( ) ( )( ) ( ), , , , , ,2 ,y t x y t x y t xmz s V z s z sα β′′ ′= − = − −  

and therefore, , ,y t xz  is a solution of the non-homogeneous second-order linear 
differential equation  

( ) ( )2 .z s z s
m m
α β′′ + = −                     (20) 

According to the elementary theory of this kind of differential equation, there 
must exist a solution ( )g s  of (20) and coefficients ( )1 , ,C y t x  and ( )2 , ,C y t x  
such that for : 2 mκ α=  it is the case that either  

( ) ( ) ( ) ( ) ( ), , 1 2, , e , , e if 0s s
y t xz s C y t x C y t x g sκ κ α−= + + <  

or  

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1 2, , sin , , cos if 0y t xz s C y t x s C y t x s g sκ κ α= + + >  

or  

( ) ( ) ( ) ( ) ( ), , 1 2, , , , if 0 .y t xz s C y t x s C y t x g s α= + + =  

In the first two of these cases ( )g s  can be chosen to be the constant 
2β α−  and in the third one it equals ( )2 2s mβ− . Given this observation, the 
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boundary value conditions (15) and (16), readily imply (by way of some trivial 
calculations) that either  

( ) ( )
( )

( )( )
( ) ( ), ,

sinhsinh
if 0

sinh 2 sinh 2 2y t x

t ss
z s x y

t t
κκ β β β α

κ α κ α α
−   = + + + − <   

   
 

or  

( ) ( )
( )

( )( )
( ) ( ), ,

sinsin
if 0

sin 2 sin 2 2y t x

t ss
z s x y

t t
κκ β β β α

κ α κ α α
−   = + + + − >   

   
 

or  

( ) ( )
2 2

, , if 0 .
2 2y t x

s t t s sz s x y
t m t m

β β α
  −

= + + − = 
 

 

Consequently, in each of these cases there exist functions ( ),a t s , ( ),b t s , 
and ( ),c t s  such that  

( ) ( ) ( ) ( ), , , , , ,y t xz s a t s x b t s y c t s= + +  

as desired. (Note: in the second representation of ( ), ,y t xz s  above we need to 
restrict t to positive values for which ( )sin 0tκ ≠ , but this is not a problem be-
cause if :T κ= π , then ( )sin 0tκ >  for all ( )0,t T∈ .)  

So as we now assume that ( )V x  satisfies Equation (19), we may apply the 
preceding lemma to infer that there are functions ( ),a t s , ( ),b t s , and ( ),c t s  
such that  

( ) ( ) ( ) ( ), , , , ,y t xz s a t s x b t s y c t s= + +                (21) 

and  

( ) ( ) ( ) ( ), , , , .y
a b cv t x t t x t t y t t
s s s
∂ ∂ ∂

= + +
∂ ∂ ∂

 

Thus  

( ) ( ) ( ) ( )div , , , : ,y
y

v at x t x t t p t
x s

∂ ∂
= = =
∂ ∂

v  

and therefore, Equation (12) assumes the following form:  

( ) ( )( ) ,, , yy y yp t iL x v t x ψψ  = − + v                (22) 

where  

( ) ( )
2

, .
2

mvL z v V z= −                       (23) 

(Note: it is crucial for what follows that ( )div ,y t xv  depends only on t, and 
hence the restriction to harmonic-oscillator type potentials is crucial as well). To 
proceed, we observe that  

( )( ) ( ) ( )( )
( ) ( ) ( )( )( ) ( )( )

, , , , , ,

, , , , . ,

d
d

, ,

y y t x y t x y y y t x y

y t x y t x y y t x

c s c s c s
s

p s iL z s z s c s

ψ ψ ψ

ψ

′    = =   

′= − +

v
 

and in denoting by P an arbitrary antiderivative of p, we may hence infer that 
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one possible solution of this equation is  

( )( ) ( ) ( ) ( )( ), , , ,0 , d
, , e .

s
y t x y t xP s i L z z

y y t xc s τ τ τψ
′− + ∫=  

Setting s t=  yields  

( ) ( ) ( ) ( )( ), , , ,0 , d, e ,
t

y t x y t xP t i L z z
y t x τ τ τψ

′− + ∫=  

for all ( ) ( ), , 0,y t x T∈ × ×  . In order to define a superposition of the func-
tions yψ  analogous to (14), we use (21) and set  

( ) ( ) ( ) ( ) ( ), ,, : 0 ,0 ,0 ,0 .y y t x
a b cw t x z t x t y t
s s s
∂ ∂ ∂′= = + +
∂ ∂ ∂

         (24) 

Given this definition, it follows that yw  is constant along the flow line de-
scribed by , ,y t xc  because  

( )( ) ( ) ( ) ( ) ( )
, ,, , , ,, 0 0 , .

y t xy y t x y t x yy c sw c s z z w t x′ ′= = =  

(Note: the constancy of yw  along each flow line is obvious also because 
( ),yw x t  is simply the initial velocity of the flow line that starts at ( )0, y  and 

passes through ( ),t x ) Consequently, for all ( ) ( ), , 0,y t x T∈ × ×   it is the 
case that  

( ) ( ) ( )( ), , , ,
d, 0,
dy y y t x y y y t x

s t

t x w c t w w c s
s =

′   = = =   v         (25) 

and therefore, if ( ),h y w  is differentiable, then  

( )( ) ( ), , ,y yh y w t x t xψ  

is a solution of (22). Hence we may conjecture the general solution of the general 
Schrödinger Equation (with V given in (19)) to be  

( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ), , , ,0 , d

, , , , d

e , , e d .
t

y t x y t x

y y

i L z zP t
y

x t h y w t x t x y

h y w t x yτ τ τ

ψ ψ
∞

−∞

∞ ′−

−∞

∫

=

=

∫

∫
 

In order to determine h from this suggested equation, we use (24) to intro-
duce the substitution  

( ) ( )
( )
( )

( )
( )

( ) ( ) ( )

,0 ,0
, ,

,0 ,0 ,0

: .

a s t x c s twy w t x y
b s t b s t b s t

t w t x tλ µ ν

∂ ∂ ∂ ∂
= = − −

∂ ∂ ∂ ∂ ∂ ∂

= + +

 

(Note: the possibility of expressing y in this way as an affine function of w and 
x—in direct analogy to the substitution equation y x vt= −  or y x wt= −  that 
we used in the free-particle case—is another important reason for assuming that 
V is an harmonic-oscillator-type potential.) This yields  

( )d d ,y t wλ=  

and therefore,  

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )0 , , , ,

, d
, e , , , e d .

t
y w t x t x

i L z zP tt x t h y w t x w w
τ τ τ

ψ λ
′±∞−

∞

∫
= ∫



 

Setting  
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( ) ( ) ( ): e P tf t tλ −=  

and taking the derivative with respect to t, we find (in leaving out the argument 
of h) that  

( )
( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( )( )

0 , , , ,

0 , , , ,

0 , , , ,

0

, d

, d

, d

, ,

, d

0
, , , ,

e d

e d

, , e d

, d e d .

t
y w t x t x

t
y w t x t x

t
y w t x t x

t

i L z z

i L z z

i L z z

y w t x

t i L z z

y w t x t x

f t h w
t

hf t t w t x t w
y

if t hL x v t x w

if t h L z z w
t

τ τ τ

τ τ τ

τ τ τ

τ τ τ

ψ

λ µ ν

τ τ τ

′±∞

∞

′±∞

∞

′±∞

∞

±∞ ′

∞

∫

∫

∫

∫

∂ ′=
∂

∂′ ′ ′+ + +
∂

+

∂ ′+
∂

∫

∫

∫

∫ ∫









 

(Note: the plus-or-minus signs in the boundaries indicate that the substitution 
of w for y changes the boundaries’ signs whenever ( )tλ  is negative. Intuitively, 
it is quite easy to see that ( )tλ  must indeed be negative but a formal confirma-
tion of this fact will only be given in the special case— 0α > —that we will dis-
cuss at the end of this section) Using the Lagrangian equation of motion  

d
d

L L
v zτ
∂ ∂

=
∂ ∂

 

in conjunction with (23), we further observe that  

( ) ( )( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

0
, , , ,

0
, , , , , , , ,

0
, , , , , , , ,

0
, , , ,

,

, d

d

d d d
d d

d d
d

t

y w t x t x

t

y w t x t x y w t x t x

t

y w t x t x y w t x t x

t

y w t x t x

y w t

L z z
t

L z L z
z t v t

L z L z
v t v t

L z
v t

mz

τ τ τ

τ τ τ

τ τ τ
τ τ

τ τ
τ

∂ ′
∂

 ′∂ ∂ ∂ ∂ = +
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂    = +    ∂ ∂ ∂ ∂    
 ∂ ∂  =   ∂ ∂  

′=

∫

∫

∫

∫

( ) ( ) ( ) ( ), , , ,
, , ,

0

t
y w t x t x

x t x

z

t

τ
τ

∂

∂

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( )

( )

( )
( )

( ) ( ) ( )
( )( )

( )

, , , ,
0

, ,
, ,

, , , ,

, ,, ,

, ,
, ,

, , , ,

, ,

, ,
,

, ,

,

t

y w t x t x

y t x
y w t x

y w t x t x

y y w t xy y w t x

y t x
y w t x

y w t x t x

y w t xz zmz
y t t

zy w t xxmv t x
y t t

y w t xy ymw
y t t

z
mv t x mw t w

t

τ τ τ

τ

τ
λ

==

 ∂∂ ∂′= + 
∂ ∂ ∂ 

  ∂∂∂  = +  ∂ ∂ ∂   
 ∂∂ ∂ − +
 ∂ ∂ ∂ 

 ∂  ′= − +
 ∂
 

( ) ( )( ).t x tµ ν′ ′+
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In order to simplify this resulting expression, we notice, as in (17), that  

( ) ( ) ( )
, ,, , , y t xy t x y c sz zτ τ=  

and that, by implication,  

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

, , , ,,
, ,

, , , , , ,

, ,

d0 ,
d

, ,

, .

y t x y y t xy c s t
s t t

y t x y t x y t x
y y

t t

y t x
y

t

z t x z
s

z z t z xv t x v t x
t x t x

z
v t x

t

τ
τ

τ τ

τ

τ τ

τ τ

τ

=
=

= =

=

 = =  

∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂

∂
= +

∂

v

 

This yields  

( ) ( )( )
( )( )

( ) ( ) ( ) ( ) ( )( )

0
, , , ,

2
, ,

, d

, ,

t

y w t x t x

y w t x

L z z
t

mv t x mw t w t x t

τ τ τ

λ µ ν

∂ ′
∂

′ ′ ′= − − + +

∫
 

and therefore,  

( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )
( )

0

0

0

d

d

2
, , d

e d

e d

,
e d .

2

t

t

t

i L

i L

y w t x i L

i if t h w
t

hf t t w t x t i mwh w
y

mv t x
f t h V x w

τ

τ

τ

ψ

λ µ ν

±∞

∞

±∞

∞

±∞

∞

∫

∫

∫

∂ ′=
∂

 ∂′ ′ ′+ + + + ∂ 
 
 + +
 
 

∫

∫

∫







   (26) 

Similarly, we find that  

( ) ( )

( ) ( ) ( )( )
( )( )

0

0
0

, , , ,

d

d

e d

, d e d

t

t

i L

it

y w t x t

L

x

hf t t w
x y

if t h L z z w
x

τ

τ

ψ µ

τ τ τ

±∞

∞

±∞

∞

∫

∫

∂ ∂
=

∂ ∂

∂ ′+
∂

∫

∫ ∫





 

and  

( ) ( )( )
( )( )

( )
( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )
( )

( )

0

0

, , , ,

, ,

0

, ,

, ,, ,

, ,

, ,

, , , ,

d

d d
d

, ,

, ,
,

,

,

,

y w t x t x

y w

t

t

t

y w t x

y y w t xy y

t x t x

y w t

w t x

y w t

x t

x

x

L
x

L z
v x

y w t xz zmz
y x x

y w t xx xmv t x
y x

z z

x

y w t xy ymw
y x x

mv

τ τ τ

τ τ
τ

τ τ τ

==

∂
∂

 ∂ ∂  =   ∂ ∂  

 ∂∂ ∂′= + 
∂ ∂ ∂ 

 ∂∂ ∂
= + 

∂ ∂ ∂ 
 ∂∂ ∂ − +
 ∂ ∂ ∂ 

=

′∫

∫

( ) ( ), .t x mw tµ−
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Thus  

( ) ( )

( ) ( ) ( ) ( )( )

0

0
, ,

d

d

e d

, e d

t

t

y w
i

t x

i L

L

hf t t w
x y

if t mh v t x w t w

τ

τ

ψ µ

µ

±∞

∞

±∞

∞

∫

∫

∂ ∂
=

∂ ∂

+ −

∫

∫





 

and  

( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

0

0

0

2 2
2

2 2

, ,

2

,
d

,

d

d

1 e d
2 2

, e d

, e d .
2

t

t

t

y w t x

i L

y w t x

i L

i L

f t ht w
m mx y

hif t t v t x w t w
y

mf t h v t x w t w

τ

τ

τ

ψ µ

µ µ

µ

±∞

∞

±∞

∞

±∞

∞

∫

∫

∫

∂ ∂
=

∂ ∂
∂

+ −
∂

− −

∫

∫

∫







 

Finally, in combining this equation with (26), we may infer that  

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0

0

0

0

0

2
d

2

d

2
2 d

2

d
, ,

2 d2
, ,

1 e d
2

e d

e d
2

, e d

2 , e d .
2

t

t

t

t

t

i L

i L

i L

i L
y w t x

i L
y w t x

i V x if t h w
t m x

hf t t w t x t i mwh w
y

f t ht w
m y

hif t t v t x w t w
y

mf t h w t w t v t x w

τ

τ

τ

τ

τ

ψ ψ ψ

λ µ ν

µ

µ µ

µ µ

±∞

∞

±∞

∞

±∞

∞

±∞

∞

±∞

∞

∫

∫

∫

∫

∫

∂ ∂ ′+ − =
∂ ∂

 ∂′ ′ ′+ + + + ∂ 
∂

+
∂
∂

+ −
∂

− −

∫

∫

∫

∫

∫











 

Consequently, ( ),t xψ  is a solution of the general Schrödinger Equation (with 
a harmonic-oscillator type potential) if ( ) ( ): ,wq y h y w=  is a solution of the 
following differential equation:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

, ,

22
, ,

0
2

,

2 ,
2

y w t x

y w t x

f t t
q y if t t w t x t q t

m

if t t v t x w t q t

if t q t f t mw t w t x t q t

m f t w t w t v t x q t

µ
λ µ ν

µ µ

λ µ ν

µ µ

′′ ′ ′ ′ ′= + + +

′+ −

′ ′ ′ ′+ + + +

− −

       (27) 

This equation can easily be solved in general by finding the roots of the cor-
responding characteristic polynomial, but more natural and instructive is here to 
consider a concrete example: if ( ) 2V x xα=  is a genuine harmonic oscillator 
potential (with 0α >  and 0β γ= = ), then, according to the proof of Lemma 
4.1, it is the case that  

( ) ( )
( )

( )( )
( ), ,

sinsin
sin siny t x

t s ys x
z s

t t
κκ

κ κ
−

= +  

and, by implication, 
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( ) ( )
( )

( )( )
( ), ,

coscos
,

sin siny t x

t s ys x
z s

t t
κ κκ κ

κ κ
−

′ = −  

( ) ( ) ( ) ( ), ,, cot ,
siny y t x

yv t x z t t x
t

κκ κ
κ

′= = −  

( ) ( ) ( )cot div , ,yp t t t xκ κ= = v  

( )

( )
1e ,

sin
P t

tκ
− =  

( ) ( ) ( ) ( ), ,, 0 cot ,
siny y t x

xw t x z t y
t

κ κ κ
κ

′= = −  

( ) ( ) ( )
1, , tan ,

cos
xy w t x t w

t
κ

κ κ
= − +  

( ) ( )1 tan ,t tλ κ
κ

= −  

( ) ( )
1 ,

cos
t

t
µ

κ
=  

( ) 0,tν =  

( ) ( ) ( )

( )
1e ,

cos
P tf t t

t
λ

κ κ
−= = −  

( ) ( ) ( ) ( ), , , tan
cosy w t x

wv t x t x
t

κ κ
κ

= −  

for all ( ) ( ), , , 0,w y t x T∈ × × ×    with ( ): 2T κ= π . (Note: T is here re-
duced from κπ  in the proof of Lemma 4.1 to ( )2κπ  because we need to 
make sure that not only ( )sin tκ  but also ( )cos tκ  is different from zero for 
all ( )0,t T∈ .) Substituting in (27) yields  

( ) ( ) ( )
2 22 2 sin 0

cos cos
mwi m wq q m i t q

t t
κ κ

κ κ
 

′′ ′− + − =  
 

 

and the roots of the corresponding characteristic polynomial are  

( )( ) ( ) ( )( )
( )

2 2 21 cos 2 sin cos
.

cos

i mw m w t m i t t

t

κ κ κ κ

κ

± − +
 

Consequently, in setting  

( ) ( )
( )( ) ( ) ( ) ( )2 2 21 cos 2 sin cos cos

, : e ,
iy mw m w t m i t t t

h y w C w
κ κ κ κ κ + − + 

 =  

it follows that  

( ) ( ) ( )( )
( ) ( )( ) ( )( )0 , , , ,

, d1, , , , e d
cos

t
y w t x t x

i L z z
t x h y w t x w w

t

τ τ τ
ψ

κ κ

′∞

−∞

∫
= ∫  

with  

( ) ( ) ( )
1, , tan

cos
xy w t x t w

t
κ

κ κ
= − +  
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is a solution of the Schrödinger equation in the case where ( ) 2V x xα=  and 
0α > . Moreover, the initial condition  

( ) ( )10, e dimwxx C w wψ
κ

∞

−∞
= ∫  

can once again be easily satisfied by Fourier inversion.  

5. The Classical Wave Equation 

In order to solve the classical wave equation  

2
2

2 0v
t
ψ ψ∂

− ∆ =
∂

                       (28) 

in two spatial dimensions for some given velocity value ( )0,v∈ ∞ , we consider, 
for a given point ( ) 2,x y ∈ , the positive-time velocity cone  

( ) ( )( ) [ ){ }3
, , cos , sin | 0 0,2 .x yC t x vt y vt tθ θ θ= + + ∈ ≥ ∧ ∈ π  

Using the parameterization  

( ) ( )
( )

, , cos ,
sin

x y

t
t x vt

y vt
θ θ

θ

 
 = + 
 + 

p  

we find the metric tensor on ,x yC  to be  

2

2 2

1 0
0
vt t t

v t
t

θ

θ θ θ

∂ ∂ ∂ ∂ ⋅ ⋅   +∂ ∂ ∂ ∂ = =  ∂ ∂ ∂ ∂   ⋅ ⋅ 
∂ ∂ ∂ ∂ 

p p p p

G
p p p p

 

(where the dots represent the ordinary Euclidean inner product in 3 ), and the 
determinant of G  is  

( )2 2 21 .g v v t= +  

Furthermore, in defining the tangential velocity field  

( ) ( )
( )

,

1
, : cos 1 0

sin

t
x y t v v v

t t t
v

θθ θ
θ θ

θ

 
∂ ∂ ∂ ∂ ∂ = = + = + =  ∂ ∂ ∂ ∂ ∂ 

 

p p p p pv  

on ,x yC , we may use the familiar formula for the divergence of a vector field on 
a Riemannian manifold to infer that  

( ) ( ) ( ) ( )2

, 2

11 1div , .
1

t
x y

v vt t
t gv gv

t tg v vt
θθ

θ

∂ + ∂∂ ∂ = + = = ∂ ∂  +
v    (29) 

Consequently, as we now consider a free particle of mass m that moves along 
the trajectory on ,x yC  that is described by the equation  

( ) ( ), , ,: ,x y x yc t tθ θ= p  
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for any fixed value [ )0,2θ ∈ π , we may infer that the Lagrangian is 2 2mv  and 
that therefore Equation (12) assumes the following form:  

2

, , , , ,
1 .

2x y x y m x y m
imv

t
ψ ψ± ± 
  = − ±  

 
v                  (30) 

Thus 

( )( ) ( )( )
2

, , , , , , ,
d 1
d 2x y x y x y m x y

imvc s c s
s sθ θψ ψ± ± 

= − ± 
 

 

and one possible solution of this equation is 

( )( )
2 2

, , , ,
e .

2

imv s

x y m x yc s
vsθψ

±
± =

π
 

Setting s t= , we find that 

( ) ( )( )
2 2

, , , , , ,
e, : ,

2

imv t

x y m x y m x yt c t
vtθψ θ ψ

±
± ±=

π
=              (31) 

where the factor 2 vπ  in the denominator is inserted in order to guarantee that 
the integral of , ,x y mψ ±  along each cross-sectional circle  

( ) [ ){ }, , , | 0,2x y x yc t Cθ θ∈ ∈ π  

is equal to one. That said, we move on to construct the general solution ψ  of 
the classical wave equation by superimposing functions of the form  

( ) ( ) ( )
2 2

, ,
e, , , , , , ,

2

imv t

x y mh x y m t h x y m
vt

θ ψ θ θ
±

± ± ±=
π

 

as m ranges from 0 to ∞  and as ( ),x y  traces out circles of radius vt in the 
xy-plane. This yields  

( ) ( ) ( )( )

( ) ( )( )

2

2

22

0 0

22

0 0

e, , cos , sin , , d d
2
ecos , sin , , d d ,

2

imv t

imv t

t x y h x vt y vt m vt m
vt

h x vt y vt m vt m
vt

ψ θ θ θ θ

θ θ θ θ

∞ +

−
∞ −

π

π

π

π

= − −

+ − −

∫ ∫

∫ ∫
  (32) 

where the factor vt at the end of each integrand is accounted for by the fact that  

( )
( )

0
d cos .

d
sin

vt x vt
y vt

θ
θ

θ

 
 = − 
 − 

 

To proceed, we take the second partial derivatives of ψ  with respect to t, x 
and y:  

( ) ( )

( ) ( )

2

2

22 2
0 0

22 2
0 0

1 cos sin e d d
2 2

1 cos sin e d d
2 2

imv t

imv t

h h imv hv v m
t x y

h h imv hv v m
x y

ψ θ θ θ

θ θ θ

+ + +
∞ π

− − −
∞ π −

 ∂ ∂ ∂
= − − + ∂ π ∂ ∂ 

 ∂ ∂
+ − − − π ∂ ∂ 

∫ ∫

∫ ∫
 

and  
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( ) ( )

( ) ( )

( ) ( )

2

2

2

2

2 2 22 2 2 2 2 2
2 2 20 0

22 2 2
0 0

2 2 2
0 0

2 42 2
0 0

1 cos sin e d d
2

1 2 sin cos e d d
2

1 cos sin e d d
2

1 e d d
2 4

imv t

imv t

imv t

imv t

h hv v m
t x y

hv m
x y

h himv v v m
x y

m v h m

ψ θ θ θ

θ θ θ

θ θ θ

θ

+ +
∞ π

+
∞ π

+ +
∞ π

+
∞ π

 ∂ ∂ ∂
= + π∂ ∂ ∂ 

∂
+

π ∂ ∂

 ∂ ∂
− + π ∂ ∂ 

−
π

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

       

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

2 22 2 2 2 2 2
2 20 0

22 2 2
0 0

2 2 2
0 0

2 42 2
0 0

1 cos sin e d d
2

1 2 sin cos e d d
2

1 cos sin e d d
2

1 e d d
2 4

imv t

imv t

imv t

imv t

h hv v m
x y

hv m
x y

h himv v v m
x y

m v h m

θ θ θ

θ θ θ

θ θ θ

θ

− −
∞ π −

−
∞ π −

− −
∞ π −

−
∞ π −

 ∂ ∂
+ + π ∂ ∂ 

∂
+

π ∂ ∂

 ∂ ∂
+ + π ∂ ∂ 

−
π

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

and  

2

2

2 2

2 2

2 22 2
2 20 0

2 22 2
2 20 0

1 e d d
2

1 e d d .
2

imv t

imv t

x y

h h m
x y

h h m
x y

ψ ψψ

θ

θ

+ +
∞ π

− −
∞ π −

∂ ∂
∆ = +

∂ ∂

 ∂ ∂
= + π ∂ ∂ 

 ∂ ∂
+ + π ∂ ∂ 

∫ ∫

∫ ∫

  

Thus  

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

2
2

2

2 22 2 2 2 2 2
2 20 0

22 2 2
0 0

2 2 2
0 0

2 42 2
0 0

1 sin cos e d d
2

1 2 sin cos e d d
2

1 cos sin e d d
2

1 e d d
2 4

imv t

imv t

imv t

imv t

v
t

h hv v m
x y

hv m
x y

h himv v v m
x y

m v h m

ψ ψ

θ θ θ

θ θ θ

θ θ θ

θ

+ +
∞ π

+
∞ π

+ +
∞ π

+
∞ π

∂
− ∆

∂
 ∂ ∂

= − + π ∂ ∂ 
∂

+
π ∂ ∂

 ∂ ∂
− + π ∂ ∂ 

−
π

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

2 22 2 2 2 2 2
2 20 0

22 2 2
0 0

2 2 2
0 0

2 42 2
0 0

1 sin cos e d d
2

1 2 sin cos e d d
2

1 cos sin e d d
2

1 e d d ,
2 4

imv t

imv t

imv t

imv t

h hv v m
x y

hv m
x y

h himv v v m
x y

m v h m

θ θ θ

θ θ θ

θ θ θ

θ

− −
∞ π −

−
∞ π −

− −
∞ π −

−
∞ π −

 ∂ ∂
− + π ∂ ∂ 

∂
+

π ∂ ∂

 ∂ ∂
+ + π ∂ ∂ 

−
π

∫ ∫

∫ ∫

∫ ∫

∫ ∫
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and in setting ( ) ( ), , : , , ,mz x y h x y mθ θ± ±=  we may infer that ψ , as defined in 
(32), is a solution of the classical wave equation if ,mz θ

±  satisfies the partial dif-
ferential equation  

( ) ( ) ( ) ( )

( ) ( )

2 2 2
2 2 2 2 2

2 2

2 4
2

0 sin cos 2 sin cos

cos sin .
4

z z zv v v
x yx y

z z m v zimv v v
x y

θ θ θ θ

θ θ

∂ ∂ ∂
= − − +

∂ ∂∂ ∂

 ∂ ∂
+ − ∂ ∂ 



     (33) 

In substituting for ( ), ,mz x yθ
±  a function of the form ( ), eax byC m θ± + , it fol-

lows that the characteristic polynomial of the differential equation above is  

( ) ( ) ( ) ( ) ( )

( ) ( )( )

2 2 2 2 2 2 2

2 4
2

, sin cos 2 sin cos

c
4

si .os n

P a b v a v b v ab

m v zimv v a v b

θ θ θ θ

θ θ

± = − − +

+ −

 

In order to eliminate the mixed term ( ) ( )22 sin cosv abθ θ , we introduce the 
substitutions  

( ) ( )cos sin ,a θ α θ β= −  

( ) ( )sin cos .b θ α θ β= +  

In doing so, the equation ( )0 ,P a b±=  is easily seen to be turned into the 
equation  

2 2
20 .

4
m vimvβ α= ± +  

Choosing 0α =  and 2imvβ = , we may infer that the function  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

cos sin sin cos
,

sin cos 2

, , e , e

, e

x yax by
m

imv x y

z x y C m C m

C m

θ α θ β θ α θ β
θ

θ θ

θ θ

θ

− + +± ± + ±

− +±

= =

=
 

is a solution of (33). Consequently, as we substitute ( )cosx vt θ−  for x and 
( )siny vt θ−  for y (see (32)), we find that  

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

sin cos 2

0 0

sin cos 2

0

2

2

0

1, , , e d d

1 , e d

2

d
2

imv x y vt

imv x y vt

t x y C m m

C m m

θ θ

θ θ

ψ θ θ

θ θ

∞ − + ++

∞ − + −

π

π −

=

+

π

π

∫ ∫

∫ ∫
 

is a solution of the classical wave equation. In order to represent this solution in 
a form that allows us to use Fourier inversion to match given initial conditions, 
we introduce the polar substitution  

( )
( )

sin 2
.

cos 2
mvp

mvq
θ
θ

 − 
=        

 

Given this substitution, it follows that 2 22mv p q= + , and therefore, there 
exist coefficient functions ( ),B p q±  such that  

( ) ( )

( )

2 2

2 2

1, , , e d d
2

1 , e d d
2

i px qy vt p q

i px qy vt p q

t x y B p q p q

B p q p q

ψ
+ + +∞ ∞ +

−∞ −∞

 + − + ∞ ∞ −  
−∞ −

 
 

∞

 =
π

+
π

∫ ∫

∫ ∫
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Hence  

( ) ( ) ( )( ) ( )10, , , , e d d ,
2

i px qyx y B p q B p q p qψ
∞ ∞ ++ −

−∞ −∞
= +

π ∫ ∫  

( ) ( ) ( )( ) ( )2 210, , , , e d d
2

i px qyx y v p q B p q B p q p q
t
ψ ∞ ∞ ++ −

−∞ −∞

∂
= + −

∂ π ∫ ∫   (34) 

and therefore,  

( ) ( ) ( ) ( )1, , 0, , e d d ,
2

i px qyB p q B p q x y p qψ
∞ ∞ − ++ −

−∞ −∞
+ =

π ∫ ∫  

( ) ( )( ) ( ) ( )2 2 1, , 0, , e d d
2

i px qyv p q B p q B p q x y x y
t
ψ∞ ∞ − ++ −

−∞ −∞

∂
+ − =

π ∂∫ ∫  

by Fourier inversion. Finally, in solving these two equations for B+  and B− , 
the desired solution of the initial value problem (34) is obtained.  

6. The Electromagnetic Wave Equation 

The problem of solving the electromagnetic wave equation  
2

2 0
t
ψ ψ∂

− ∆ =
∂

                        (35) 

may seem to be a mere special case of the classical wave equation and therefore 
redundant, but insofar as the choice 1v =  that turns (28) into (35) is unders-
tood to be a relativistic one, it may be helpful to explain how certain technical 
difficulties that this choice entails can properly be handled. 

In a special relativistic setting the Euclidean inner product that we used to 
calculate the metric tensor G on the velocity cone ,x yC  is naturally replaced by 
the Lorentz inner product, and thus we find that  

2

2 2

1 0
0
vt t t

v t
t

θ

θ θ θ

∂ ∂ ∂ ∂ ⋅ ⋅   −∂ ∂ ∂ ∂ = =  ∂ ∂ ∂ ∂ −   ⋅ ⋅ ∂ ∂ ∂ ∂ 

p p p p

G
p p p p

 

(where the dots represent the Lorentz inner product in 3 ), and the determi-
nant of G  is  

( )2 2 21 .g v v t= − −  

So if 1v =  (the speed of light) then 0g =  and the metric induced by G  on 
( ) ( )( ) [ ){ }3

, , cos , sin | 0 0,2x yC t x vt y vt tθ θ θ= + + ∈ ≥ ∧ ∈ π  becomes degene-
rate and the divergence of  

( ) ( )
( )

,

1
, cos

sin
x y t v

v
θ θ

θ

 
 =  
 
 

v  

becomes undefined (according to the formula we used in (29)). However, for 
values ( )0,1v∈ , the divergence of ,x yv  can easily be calculated using essential-
ly the same formula as in (29):  
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( ) ( ) ( ) ( )2

, 2

11 1div , .
1

t
x y

v vt t
t gv gv

t tg v vt
θθ

θ

∂ − ∂∂ ∂ = − + − = = ∂ ∂−   −
v  

Using this result, we may now replace the classical kinetic energy 2 2mv  by 
the relativistic kinetic energy 21m v−  (relative to an intertial observer whose 
worldline is the t-axis) and thereby turn Equation (30) into the equation 

, , , , ,2

1 .
1

x y x y m x y m
im

t v
ψ ψ± ± 
  = − ±    − 

v  

Moreover, in order to determine the limiting form of this equation, as v ap-
proaches 1 and as m approaches zero (the restmass of a photon), we may natu-
rally assume that the kinetic energy 21m v−  approaches a limiting pho-
ton-energy value E hν= . This yields 

, , , , ,
1 .x y x y E x y EiE
t

ψ ψ± ±   = − ±    
v                  (36) 

and the solution corresponding to (31) is  

( ), ,
e, .
2

iEt

x y E t
t

ψ θ
±

± =
π

 

Consequently, in direct analogy to (32), the general solution of the electro-
magnetic wave equation is  

( ) ( ) ( )( )

( ) ( )( )

2

0 0

2

0 0

1, , cos , sin , , e d d
2

1 cos , sin , , e d d ,
2

iEt

iEt

t x y h x t y t E E

h x t y t E E

ψ θ θ θ θ

θ θ θ θ

∞ +

∞ − −

π

π

= − −

+ −

π

−
π

∫ ∫

∫ ∫
 

and the differential equation corresponding to (33) is  

( ) ( ) ( ) ( )

( ) ( )

2 2 2
2 2

2 2

2

0 sin cos 2sin cos

2 cos sin .

z z z
x yx y

z ziE E z
x y

θ θ θ θ

θ θ

∂ ∂ ∂
= − − +

∂ ∂∂ ∂
∂ ∂

+ −
∂ ∂



 

So from this point onward, the process of solving the electromagnetic wave 
equation is completely parallel to the way in which we solved the classical wave 
equation in the previous section. In summary therefore we may say that while 
we were not able represent ψ  as a superposition of solutions of an equation of 
the form  

( ), , ,div ,x y x y x yiLψ = ±v  

due to the degeneracy of the Lorentz metric on a light cone, we did manage to 
represent it as a superposition of solutions of a limiting Equation (namely Equa-
tion (36)) that the equation above generates (as v approaches 1).  

7. Conclusion 

We demonstrated that the complete set of solutions of the Klein-Gordon equa-
tion, the Schrödinger Equation (with harmonic-oscillator potential), and the 
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classical wave equation can be constructed by superimposing solutions of the 
velocity-field divergence Equation (3). In doing so we brought to light an un-
derlying mathematical unity that, in similar fashion, was previously found in [2] 
to underlie as well the gravitational field equations of Newton and Einstein.  
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