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Abstract 
Image processing is the set of operations performed to extract “information” 
from the image. An interesting problem in digital image processing is the 
restoration of degraded images. It often happens that the resulting image is 
different from the expected image. Our problem will therefore be to recover 
an image close to the original image from a poor quality image (that has been 
skewed by Gaussian and additive noise). There are several algorithms on how 
we can improve the broken image in better quality. We present in this paper 
our numerical results obtained with the models of Tikhonov regularization, 
ROF, Vese Osher, anisotropic and isotropic TV denoising algorithms. 
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1. Introduction 

A digital image is composed of basic units (referred to as pixels) that each 
represent a specific area of the image. The width and height of an image are de-
termined by the practically infinite number of pixels that make up each of those 
dimensions, as well as the range of grayscale or colors that each pixel can contain 
(we speak of image dynamics). There are three categories of digital images: 
 Binary images: in the simplest images, a pixel can only take the values black 

or white. When a piece of text just has one color, this form of image is typi-
cally used to scan it; 

 The grayscale images: images with gray levels typically display 256 shades of 
gray. Simply put, each of the 256 colors in a 256-color image is defined by the 
range of gray. According to tradition, 0 represents black (null luminous in-
tensity) and 255 represents white (maximum luminous intensity); 
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 The color images: in order to represent the colors red, green, and blue, a 
color image is actually made up of three images. Each of these three images is 
referred to as a canal. This representation in red, green, and blue mimics how 
the human visual system works.  

The fundamentally ill-posed character of some practical problems is recog-
nized and is manifested in a very large class of problems, called “inverse prob-
lems”. There are several types of ill-posed inverse problems, and their applica-
tions can be found in many fields such as image processing. 

Digital image processing is one of the most crucial components of machine 
learning or computer vision. A fascinating area of digital image processing is the 
restoration of images. During the acquisition of image (especially through pho-
tography), it is typical for the final image to diverge from the expected image. 

Image processing refers to all techniques and methods used to modify, remove 
Gaussian noise and improve or analyze digital images. It aims to extract useful 
information, improve visual quality, detect specific patterns or objects, and iden-
tify various imaging tasks. Image processing plays a crucial role in many areas of 
our daily lives, such as digital photography, television, medicine, computer vi-
sion, pattern recognition, augmented reality, robotics, surveillance, security and 
surveillance, geography. It plays an essential role in understanding and exploit-
ing the visual information contained in the images. 

There are many examples and fields of applications of image processing. The 
two main areas that have enabled image processing to develop are: 

1) The military domain: missiles of all kinds (self-directed (short range), 
cruise (long range), …); intelligence (remote sensing from satellite images, the 
accuracy of which can go up to a few centimeters today, photo-interpretation); 
real simulators (aircraft, tank, …). 

2) The medical field: medical imaging (ultrasound, MRI, tomography; angio-
graphy; x-ray; ultrasound; scanner; MRI, …).  

Image processing is a discipline that concerns the manipulation, analysis and 
improvement of images using algorithms and computer techniques. Different 
techniques can be combined to get better results. There are many algorithms 
used in imaging to process and analyze images such as resizing, rotation, filter-
ing, as well as more advanced operations such as segmentation, object detection, 
pattern recognition, and image restoration. 

Image restoration algorithms are used to reduce Gaussian noise, remove arti-
facts, improve image resolution or overall image quality. Common methods in-
clude deconvolution techniques, model-based restoration, use of adaptive filters. 

Denoising is the opposite problem from removing noise from an image; the 
outcome would be subpar if noise was left in the image. Noise is parasitic infor-
mation that is added to the scene. Since noise has a wide range of origins and 
characteristics, it can be replicated in many different ways. There are many dif-
ferent kinds of noise, but the case study in this article is Gaussian additive noise 
with grayscale images, or f u η= + . The original image is represented by u, the 
observed noisy image is represented by f, and the Gaussian random fluctuation 
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to zero mean is represented by η . Gaussian noise is often referred to as normal 
noise in a predefined density function. It is a common technique for including 
noise in images. According to the following definition, this noise can be pro-
duced randomly and separately inside the image with 

( )
( )22

1
21 e ,

2

z z
p z σ

σ

− −
=

π
                   (1) 

where z stands for intensity, z  represents the mean value of z, and σ  stands 
for standard deviation. To return the image to a better level of visual quality, 
descalation techniques are necessary. The investigation of various image restora-
tion models with Gaussian noises will be covered in this paper. 

2. Some Models of Image Restoration 

This work as an introduction to image recovery, which is an interesting and 
ill-positioned problem and is of crucial importance to the idea of image 
processing. The process of recovering an image nearly identical to the original 
from an observation, usually a fuzzy or blurred image of an real image, is known 
as Restore name image. Several recovery models have been applied to many 
problems that are poorly posed in the mathematical literature. Among them are 
the following models. 

2.1. Tikhonov Regularization 

The oldest regular method still in used to address inverse problems is the Tik-
honov regularization method. In other words, we replace the ill-posed original 
problem with a well-posed alternative approximation problem. It is one of the 
most well-known methods of regularization in both statistical and digital analy-
sis. 

The Tikhonov regularization is a very commonplace yet overly simplistic re-
gularization method for image processing. If we assume that the additive noise v 
is Gaussian and that f represents the observed image, then we attempt to recon-
struct or restore the image u. 

Let ( )1
0V H= Ω  and ( )2H L= Ω , we take the original minimization problem 

(adjustment to the data):  

( ) 2: min ,Hu V
u fα∗

∈
= −                    (2) 

where : Nf Ω⊂ →   is the observed image and the following regularized 
problem: 

( ) { }2 2: min , 0.H Hu V
u f uα β α α

∈
= − + ∇ >            (3) 

The gradient must be “very minimal” in order for us to merely adjust u to 
the data f (it depends on the parameter). A slight gradient, in an image, is 
“smoothed”. The restoration will provide a blurry image because the margins are 
eroded. 

Proposition 1. [1] Assume that ( )  requires at least one answer u . The 
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problem ( )α  requires a one-of-a-kind solution uα . When 0α → , one can 
extract a subsequence from the family ( )uα α

 that converges (possibly) in V to a 
solution u∗  of ( ) .  

Proof. The solution exists, unique and therefore converges the well-posed re-
gularized Tichonov problem. The proof of this proposition will be found in de-
tail in [1].  

The restored image u is far less clear (in particular, the edges are eroded), 
which makes the problem of image restoration incompatible with the common 
expression for image restoration, ( ) 2

2L u u= ∇  (Tikhonov regularization). 
Think about the overall variation, or consider ( )L u Du= ∫ . This strategy is 
significantly more successful. With respect to the problem of functions of 
bounded variation spaces, this leads to a functional minimization in a particular 
Banach space. 

2.2. The Continuous Model of Rudin-Osher-Fatemi 

Rudin, Osher, and Fatemi (ROF) proposed the first image restoration model 
from a given noisy image having additive noise using regularization (TV), which 
is defined by  

( )( ) ( ){ }2 2, : , d d , with .x yTV u x y u x u x y u u u
Ω

= ∇ ∇ = +∫  

The regularization of total variation (TV) approach of image processing is 
used to reduce noise from digital images. (TV) is a technique that was originally 
developed by ROF, it has since been applied to a multitude of other imaging 
problems. 

Rudin, Osher, and Fatemi developed the method known as (TV) to address 
the problem of visual degradation. Now, it has been used to solve numerous ad-
ditional image problems. 

In [2], a model has been proposed by Rudin, Osher, and Fatemi and in which 
the image is divided into two parts f u v= + , where u is an unknown image 
and v is the noise. f is a brilliant measure that is usual at the beginning of a clean 
image, and is an agreement parameter. We will thus try to solve the problem and 
simply apply the regularization to the “ noise” portion using the u v+  formula 
with ( )u BV∈ Ω  and ( )2v L∈ Ω . If 2f L∈  is correct, the ROF problem is 
well-posed and the minimizer u exists, unique, and stable in ( )2L Ω . ROF pro-
posed the following minimization problem:  

( ) ( ) ( ) ( )2 2
2

1: inf : , , .
2ROF RoF u

J u v u BV v L f u vα
λ

 = + ∈ Ω ∈ Ω = + 
 

    (4) 

This results in a ( ) ( )( )2,BV LΩ Ω  decomposition of the image f. 
( )J u  denotes the total variance of u and 0λ > .  

( ) ( ) ( )( ) ( ){ }1 2sup d : , , 1 .cJ u u x div x x Cϕ ϕ ϕ
∞Ω

= ∈ Ω ≤∫   

Also known as BV, or functions of bounded variation space, according to 

( ) ( ) ( ){ }1 , .BV u L J uΩ = ∈ Ω < +∞  
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Here ( )J u  denotes the TV of u and 0λ >  is a weight parameter. 
Theorem 2. [2] [3] The problem ( )ROF  requires a single solution, which is 

provided by  

( ) ,Ku f fλλ= − Π                        (5) 

where Π  is the orthogonal projector on Kλ  (dilatation of K by λ ), and K is 
the overall closure in 2L .  

( ) ( ){ }1 2: : , , 1 .cK div Cϕ ϕ ϕ
∞

= ∈ Ω ≤  

2.3. Meyer’s Model 

In [4], Yves Meyer shows that if λ  is small enough, the ROF model will erase 
the texture. Yves Meyer suggests the use of a space of functions, which is in some 
ways the dual of the BV space, to extract both the u component in BV and the v 
component as an oscillating function (texture or noise) from f. The following 
definition is given by Meyer. 

Definition 1. [4] ( )2G   is a Banach space made of v distributions that may 
be written  

( ) ( ) ( ) ( ) ( ){ }2 2
1 2 1 2: , , , / , .x yG v x y g x y g x y g g L∞= = ∂ + ∂ ∈   

We will see that the space G allows for oscillating functions v, as justified by 
Meyer, and that the oscillations are well measured by the norm  

( ) ( )

( ) ( ) ( )

2
2

2 2 2 2
1 2 1 2

: inf ess sup / ,

, , .

G L
x

v g g x v div

g g L L g g

∞

∈

∞ ∞

= = =


= ∈ × = + 





 

g

g g
 

Meyer suggests the following new image restoration model:  

( ) ( ) ( ) ( ){ }: inf / , ; .Meyer Meyer Gu
J u v u BV v G f u vα α= + ∈ Ω ∈ Ω = +   (6) 

( )J u u= ∇∫  denotes the total variation of u and 0α > , while ( )2G   de-
notes the space of oscillating functions. 

Description of the Model 
The interest in this space of oscillating functions stems from the fact that a 
strongly oscillating image with a small average norm in ( )2G  , can have large 
oscillations but a small average norm, and that the ( )2L Ω  norm is not the best 
choice for capturing the oscillating portion of an image. That is why he created a 
new space that was better suited from the start the G oscillating functions space. 
We have . G

 low for oscillating functions with a null average and high for 
geometric functions. 

We have arrived at the following conclusion based on a close approximation 
of the L∞  standard: 

( )2 2 2 2 2
1 2 1 2 1 2lim , , .

ppL L
g g g g g g L

∞

∞

→∞
+ = + ∈   
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Then, if , 0λ µ >  are tuning parameters, λ →∞  and p →∞  the approx-
imation of Meyer model is given by 

( ) ( )
1 2

1
2 2 2

1 2 1 2 1 2, ,
inf , , d d

P P

p x yu g g
G u g g u f u g g x y g gλ µ
 
  = ∇ + − − ∂ − ∂ + +     

∫ ∫

(7) 

where 
u∇∫  insures that ( )2u BV∈  , 

2
1 2 d dx yf u g g x y− − ∂ − ∂∫  insures that ( )f u div≈ + g , 

( )
1

2 2
1 1

p p
g gµ  +  

 is a penalty on the norm ( )v div= g  in G. 

As a result, the form of the Euler-Lagrange equation is given here. 

1 2
1 .

2x y
uu f g g div
uλ

 ∇
= − ∂ − ∂ +   ∇ 

                 (8) 

( ) ( )
1 2

2 2 2 2 2 2
1 2 1 2 1 1 22 .

p p

xx xy
p

g g g g g u f g g
x

µ λ
− − ∂  + + = − + ∂ + ∂   ∂   

   (9) 

( ) ( )
1 2

2 2 2 2 2 2
1 2 1 2 2 1 22 .

p p

xy yy
p

g g g g g u f g g
y

µ λ
− −  ∂ + + = − + ∂ + ∂   ∂   

  (10) 

2.4. Vese-Osher Model 

Vese and Osher, who were the first to propose an approach to solve Meyer’s 
problem numerically; that is to say to realize the program, they used the ap-
proximation of Meyer model as follows:  

( )
( ) ( )

( ){
( ) ( ) }

2
_ _ 2,

: inf /

, ; .

Vese Osher Vese Osher Gu v BV G
J u f u v v

u BV v G u v f

α λ µ
∈ × Ω

= + − − +

∈ Ω ∈ Ω + =


   (11) 

In our numerical calculations, the steps to calculate the solution of this prob-
lem are: 

1) Replace the term 
Gv  by 2 2

1 2
p

g g+  with ( )1 2,v div g g= ; 

2) 1p =  is used for digital resonances because it allows for faster calculations 
each iteration; 

3) Gives the equation of Euler-Lagrange; 
4) We apply a fixed point iterative technique with a finite difference semi-implicit 

scheme.  

2.4.1. The Numerical Discretization of Meyer’s Model 
The numerical discretization of Equations (8), (9) and (10) is performed using 
the semi-implicit method of difference and the iterative algorithm based on the 
fixed point. We used the following initial values for the iterative algorithm: 

1, 1and 100.h p n= = =  
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0

0
1

0
2

;
1 ;

2
1 .

2

x

y

u f
f

g
f

f
g

f

λ

λ

=

 = − ∇


= −
∇

 

The following concepts are used: ( ), ,i ju u ih jh= , ( ), ,i jf f ih jh= ,  
( )1, , 1 ,i jg g ih jh= , with the step 0h >  and the point ( ),ih jh  for all 0 ,i j M≤ ≤ , 

and the variable change is taken.  

( ) ( )
1 2

2 2 2 2
1 2 1 2 1 2, .

p p

p
H g g g g g g

− − = + + 
 

 

So the discretization of Equations (8), (9) and (10) is given by  

( )

( )

1, 1, 1, 1, 2, , 1 2, , 11
, ,

1 2 3 42

1 1, 2 1, 3 , 1 4 , 12

1
1 2 21

2
1 ;

2

n n n n
i j i j i j i jn

i j i j

n n n n
i j i j i j i j

g g g g
u f

h hc c c c
h

c u c u c u c u
h

λ

λ

+ − + −+

+ − + −

 − −
= − −

+ + + +

+ + + + 


  (12) 

( )

( )

1, 1, 1, 1,1
1, ,

1, , 2, , 1, ,
1

1, 1, 1, , 1, 1,
2

2, 1, 1 2, 1, 1 2, 1, 1 2, 1, 12

2
2 2,

2

1 ;
4

n n
i j i j i j i jn

i j
i j i j i j

n n n
i j i j i j

n n n n
i j i j i j i j

u u f f
g

h hH g g g

g g g
h

g g g g
h

λ
µ

+ − + −+

+
+ −

+ + − − + − − +

 − −
= −


− +

+

+ + − − 


       (13) 

( )

( )

, 1 , 1 , 1 , 11
2, ,

1, , 2, , 2, ,
1

2, , 1 2, , 2, , 1
2

1, 1, 1 1, 1, 1 1, 1, 1 1, 1, 12

2
2 2,

2

1 .
4

n n
i j i j i j i jn

i j
i j i j i j

n n n
i j i j i j

n n n
i j i j i j i j

u u f f
g

h hH g g g

g g g
h

g g g g
h

λ
µ

+ − + −+

+
+ −

+ + − − + − − +

 − −
= −


− +

+

+ + − − 


       (14) 

The following notations are used: 

1 2 2

1, , , 1 , 1

2 2 2

, 1, 1, 1 1, 1

3 2 2

1, 1, , 1 ,

4

1, 1 1, 1

1 ;

2
1 ;

2
1 ;

2
1

2

n n n n
i j i j i j i j

n n n n
i j i j i j i j

n n n n
i j i j i j i j

n n
i j i j

c
u u u u

h h

c
u u u u

h h

c
u u u u

h h

c
u u

h

+ + −

− − + − −

+ − +

+ − − −

=
   − −

+      
   

=
   − −

+      
   

=
   − −

+      
   

=
 −

 

2 2

, , 1

.
n n
i j i ju u

h
− −

+    
 

            (15) 
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2.4.2. Solution of Vese-Osher Problem 
In order to solve the Vese-Osher problem, we will study this final problem in the 
discriminating case, when the image is a vector with two dimensions of size 
N N× , the Eulidian space N NX ×=   and Y X X= × . 

If u X∈  then u Y∇ ∈  is defined by ( ) ( ) ( )( )1 2

, , ,
,

i j i j i j
u u u∇ = ∇ ∇ , where 

( ) ( )1 21, , , 1 ,
, ,

if , if ,
and =

0 if , 0 if .
i j i j i j i j

i j i j

u u i N u u j N
u u

i N j N
+ +− < − <  ∇ = ∇ 

= =  
    (16) 

In the discriminating case, the total variance (TV) of u is defined as 

( ) ( )1 , ,
.d i j N i j

J u u
≤ ≤

= ∇∑  

The divergence operator is div ∗= −∇  (the adjoint of ∇ ) where 

( )( )

1 1 2 2
, 1, , , 1

1 2
, ,,

1 2
1, , 1

if 1 if 1

if 1 if 1

if if ,

i j i j i j i j

i j i ji j

i j i j

p p i N p p j N

div p p i p j

p i N p j N

− −

− −

 − < < − < <
  = = + = 
 
− = − =  

   (17) 

and the space dG  is defined by  

( ){ }: / such that .dG v X g Y v div g= ∈ ∃ ∈ =  

Note that 

( ) ( ){ }: such that ,GG v G vµ µΩ = ∈ Ω ≤  

( ) ( ){ }: such that .d
d d

GG v G vµ µΩ = ∈ Ω ≤  

As dJ ∗  is the indicator function of ( )1
dG Ω  defined by 

( ) ( )
1

10 if
else.

d

d

d G

v G
J v vχ∗  ∈= = 

+∞
 

So to solve the Vese-Osher problem, we propose the following algorithm.  
Algorithm 1. The algorithm for solving Vese Osher problem 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

2
,,

1 if
inf , .2

if /
u v BV G

J u f u v v G
F u v

v G G
µ

µ
λ µ

µ

λ∈ Ω × Ω

  + − − ∈ Ω  =  
  +∞ ∈ Ω Ω  

 

By description; 

( ) ( ) ( ) ( )

( )

2

,,

1 if
inf , .2

if /

d
d X

u v X X
d

J u f u v v G
F u v

v X G

µ
λ µ

µ

λ∈ ×

  + − − ∈ Ω  =  
  +∞ ∈ Ω  

 

( ) ( ) ( ) ( ) 2
, ,

1inf , inf .
2d du v X X u v X X X

vF u v J u f u v J
λ µ

∗
∈ × ∈ ×

  
= + − − +  

  
 

We divide the problem into two sub-problems: 

Pbm1 u solution, v fixed: ( ) 21inf .
2v X d XJ u f u v
λ∈

 + − − 
 
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( )the solution is
according to ROF
change of variable

ˆ .dG

f f v

u f v P f v
µ

= −

= − − −  

Pbm2 v solution, u fixed: 
( ) { }2inf .d Xv G

f u v
µ∈ Ω

− −  

( )
the solution is

according to ROF
change of variable ˆ .dG

f f u
v P f u

µ= −
= −  

Lemma 3. There is an unique solution ( )ˆ ˆ, du v X Gλ∈ ×  that minimizes 
( ), ,F u vλ µ  in dX Gλ× .  

2.5. The Split Bregman Algorithm 

Goldstein and Osher first proposed the split Bregman algorithm in [5] to handle 
more general form optimization problems: 

( ) ( ){ }1: min ,
u X

H u uϖ
∈

= + Φ                    (18) 

where X is a closed convex set and : XΦ → , :H X →  are convex func-
tions. This problem is the same as the stress minimization problem as below: 

( ){ } ( )1,
: min such that .

u X d
H u d d uϖ

∈ ∈
= + = Φ


           (19) 

Goldstein and Osher introduced the split Bregman algorithm, which was 
written as follows:  

Algorithm 2. The split Bregman algorithm 
Initialization: 0 00, 0, 0k u b= = = . 
While 1k ku u tol−− >  do, 

( ) ( )
21

2
min

2
k k k

uu H u d u bλ+ = + −Φ − , 

( ) 21 1

2
min

2
k k k

dd d d u bλ+ += + −Φ − , 

( )( )1 1 1k k k kb b u d+ + += + Φ − , 
1k k= + , 

End while.  
The split Bregman algorithm is used to solve some of the most common form 

optimization problems: 

( ) 2

2

1ˆ : min .
2u X

z u u fϖ
∈

 = + − 
 

                    (20) 

Anisotropic and isotropic TV denoising problems are solved using the split 
Bregman method. 

2.5.1. Anisotropic TV Denoising Problem 
The problem of anisotropic TV denoising is considered in [6]. 

( ) 2
1 1 2

1 1

: min ,
2u

u u u f
x y

µτ
 ∂ ∂ = + + − ∂ ∂  

              (21) 

where f is the noisy image, u
x
∂
∂

 and u
y
∂
∂

 will be noted by xu  and yu  re-
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spectively. The problem is solved using a constraint equivalent to a problem 
( )1 . We answer the problem ( )2  as follows: 

( )
2

2 21 1
2

: min
2

subject to , .

x yu

x x y y

d d u f

d u d u

µτ = + + −

 = =

  

The split Bregman algorithm can be used to tackle this last problem: 

( ) 222
3 3 21 21 2, ,

: min .
2 2 2x y

x y x x y yu d d
d d u f d u d uµ λ λτ  = + + − + − + − 

 
   (22) 

We use 

( )
if ,

, if ,
0 else.

x a x a
shrink x a x a x a

− >
= + < −



                 (23) 

The Gauss-Seidel function is also useful. 

(

)

, 1, 1, , 1 , 1 , 1, , ,

, , 1 , , , 1, , , , , 1 , , ,

4

.
4

k k k k k k k
i j i j i j i j i j x i j x i j

k k k k k k
y i j y i j x i j x i j y i j y i j i j

G u u u u d d

d d b b b b f

λ
µ λ

µ
µ λ

+ − + − −

− − −

= + + + + +
+

+ + + + + + +
+

    (24) 

Algorithm 3. The split Bregman algorithm of anisotropic TV denoising 
Initialization: 0 00, 0, 0k u b= = = . 
While 1k ku u tol−− >  do, 

1k ku G+ = , where G is the Gauss-Seidel function, 
1 1 1,k k k

x x xd shrink u b
λ

+ + = ∇ + 
 

, 

1 1 1,k k k
y y yd shrink u b

λ
+ + = ∇ + 

 
, 

( )1 1 1k k k k
x x x xb b u d+ + += ∇ − , 

( )1 1 1k k k k
y y y yb b u d+ + += ∇ − , 

1k k= + , 
End while.  

2.5.2. Isotropic TV Denoising Problem 
The problem of isotropic TV denoising is considered in [6], 

( ) 2
1 1 2 2: min .

2u
Is u u fµ ′ = ∇ + − 

 
                (25) 

The problem ( )1′  is solved using a constraint equivalent problem ( )2′ :  

( )
 ( ) 2

1 22
2

: min ,
2

subjectto , .

x yu

x x y y

Is d d u f

d u d u

µ = + −′ 
 = =

              (26) 

To solve the problem ( )2′ , we solve the following problem without con-
straint:  
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( )  ( ) 222
3 3 2 2 2, , 2

: min , .
2 2 2x y

x y x x y yu d d
Is d d u f d u d uµ λ λ ′ = + − + − + − 

 
  (27) 

The split Bregman algorithm can be used to tackle this last difficulty. 
We give the following definitions:  

2 2
: .k k k k k

x x y ys u b u b= − + −                   (28) 

Algorithm 4. The split Bregman algorithm of isotropic TV denoising 
Initialization: 0 00, 0, 0k u b= = = . 
While 1k ku u tol+− >  do, 

1k ku G+ = , where G is the Gauss-Seidel function, 
( )1

1

k k k
x xk

x k

s u b
d

s

λ

λ
+

+
=

+
, 

( )1

1

k k k
y yk

y k

s u b
d

s

λ

λ
+

+
=

+
, 

( )1 1 1k k k k
x x x xb b u d+ + += + − , 

( )1 1 1k k k k
y y y yb b u b+ + += + − , 

1k k= + , 
End while.  

3. Numerical Experimental Results 

We present in this section our numerical results obtained with the following 
models of: Tikhonov regularization, ROF, anisotropic and isotropic TV denois-
ing. Let X be the matrices that depict an image of size m n× . We then used 
Matlab ( ), ,f imnoise X 'gaussian' sigma=  command to define our noise image 
f, where sigma is a version of the Gaussian noise level. We used the values 

0.1µ = , 0.2λ =  and the tolerance 510Tol −=  in our studies. In our experience, 
we have tried to implement several models of rehabilitation. Each model aims to 
produce a better solution to remove noise from the image. However, we are 
going to implement iast in the script. By calculating Performance metrics as well 
different sigma values, we try to present the best result. The results for Tikhonov 
regularization, ROF, anisotropic and isotropic TV denoising algorithms are in 
Tables 1-8. 

In addition, in Tables 9-16, we evaluate quality of images restored by the im-
age restoration models of Tikhonov regularization, ROF, anisotropic and iso-
tropic TV denoising algorithms, we use square error (MSE), signal noise rate 
(SNR), peak signal to noise ratio (PSNR), image quality index (IQI), normalized 
cross-correlation (NK), average difference (AD), structural content (SC), maxi-
mum difference (MD), and normalized absolute error (NAE), So that the defini-
tions of quality measures are in the Figure 1. 

In Figure 2, we did an experiment by taking the original image of Barbara 
(image without noise), then we added white Gaussian noise (sigma 0.08). 

A comparative numerical was carried out between the Tikhonov regulariza-
tion restoration model and the ROF; TV anistropic and isotropic denoising al-
gorithm for the same parameter sigma 0.08 is shown in Figure 3 and Figure 4. 
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Table 1. Results for the ROF algorithm, sigma = 0.01. 

images size n × m 
number of 
iterations ( )

2

2 1
denoised I noisy I

MN sigma
−

∗ −
 denoised 

PSNR 
noisy 
PSNR 

cameraman 398 × 398 25 0.1349 24.6132 20.3181 

barbara 510 × 510 25 0.41724 22.3979 20.1075 

camera 340 × 340 26 0.1179 24.9959 20.4143 

flower 256 × 256 22 0.099939 25.9711 20.1339 

girl 216 × 233 21 0.018344 26.1987 20.2102 

Iline 1961 × 3553 24 34.5489 34.5489 19.9895 

university 480 × 640 25 0.050125 25.0007 20.554 

 
Table 2. Results for the ROF algorithm, sigma = 0.08. 

images size n × m 
number of 
iterations ( )

2

2 1
denoised I noisy I

MN sigma
−

∗ −
 denoised 

PSNR 
noisy 
PSNR 

cameraman 398 × 398 25 0.1349 24.6132 20.3181 

barbara 510 × 510 25 0.41724 22.3979 20.1075 

camera 340 × 340 29 −0.87675 20.7695 18.8938 

flower 256 × 256 22 0.099939 25.9711 20.1339 

girl 216 × 233 20 −0.87384 20.7782 18.1269 

Iline 1961 × 3553 29 −0.87735 21.8224 17.9203 

university 480 × 640 26 −0.8717 20.6516 18.5907 

 
Table 3. Results for the ROF algorithm, sigma = 0.2. 

images size n × m 
number of 
iterations ( )

2

2 1
denoised I noisy I

MN sigma
−

∗ −
 denoised 

PSNR 
noisy 
PSNR 

cameraman 398 × 398 38 −0.94385 13.7602 13.2205 

barbara 510 × 510 30 −0.93372 13.5776 13.2581 

camera 340 × 340 38 −0.9668 15.234 15.0525 

flower 256 × 256 34 −0.94424 13.7758 13.078 

girl 216 × 233 25 −0.95348 14.0803 13.4558 

Iline 1961 × 3553 32 −0.95397 14.0965 13.2012 

university 480 × 640 35 −0.95166 14.3564 13.8881 

 
Table 4. Results for the Tichonov Regularization algorithm, sigma = 0.01. 

images size n × m ( )
2

2 1
denoised I noisy I

MN sigma
−

∗ −
 denoised PSNR 

noisy 
PSNR 

cameraman 398 × 398 −0.97352 23.9646 20.3181 
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Continued 

barbara 510 × 510 −0.96845 23.6274 20.1075 

camera 340 × 340 −0.97294 24.0817 20.4143 

flower 256 × 256 −0.97523 24.1745 20.1339 

girl 216 × 233 −0.97692 24.3646 20.2102 

Iline 1961 × 3553 −0.97614 24.2821 19.9895 

university 480 × 640 −0.97551 24.3021 20.554 

 
Table 5. Results for the Tichonov Regularization algorithm, sigma = 0.08. 

images size n × m ( )
2

2 1
denoised I noisy I

MN sigma
−

∗ −
 denoised PSNR 

noisy 
PSNR 

cameraman 398 × 398 −0.97254 19.8452 17.9764 

barbara 510 × 510 −0.96842 19.7739 17.9621 

camera 340 × 340 −0.97612 20.7023 18.8938 

flower 256 × 256 −0.97468 19.9527 17.9206 

girl 216 × 233 −0.9771 20.2027 18.1269 

Iline 1961 × 3553 −0.97636 20.0426 17.9203 

university 480 × 640 −0.97617 20.5036 18.5907 

 
Table 6. Results for the Tichonov Regularization algorithm, sigma = 0.2. 

images size n × m ( )
2

2 1
denoised I noisy I

MN sigma
−

∗ −
 denoised PSNR 

noisy 
PSNR 

cameraman 398 × 398 −0.97377 13.7374 13.2205 

barbara 510 × 510 −0.97051 13.7499 13.2581 

camera 340 × 340 −0.98386 15.4174 15.0525 

flower 256 × 256 −0.9748 13.6479 13.078 

girl 216 × 233 −0.97887 14.0148 13.4558 

Iline 1961 × 3553 −0.97781 13.769 13.2012 

university 480 × 640 −0.97776 14.4049 13.8881 

 
Table 7. Results for the anisotropic TV denoising algorithm, sigma = 0.08. 

images size n × m number of iterations relative error time (s) 

cameraman 398 × 398 43 0.104779 45.680272 

barbara 510 × 510 41 0.173054 85.609672 

camera 340 × 340 7 0.165105 5.001468 

flower 256 × 256 51 0.211968 24.340052 

girl 216 × 233 47 0.149544 17.045064 

Iline 1961 × 3553 164 0.143347 10438.736396 

university 480 × 640 141 0.143296 300.869216 
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Table 8. Results for the isotropic TV denoising algorithm, sigma = 0.08. 

images size n × m number of iterations relative error time (s) 

cameraman 398 × 398 23 0.104677 57.237110 

barbara 510 × 510 137 0.17464 182.507988 

camera 340 × 340 143 0.172107 86.802806 

flower 256 × 256 22 0.210941 41.570893 

girl 216 × 233 24 0.151122 18.938243 

Iline 1961 × 3553 15 0.143349 771.958677 

university 480 × 640 24 0.143312 120.298105 

 
Table 9. Performance metrics for ROF algorithm, sigma = 0.01. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 95.4334 3.9647 28.3338 −2.4160e−06 1.3366 −64.3582 0.4536 223 0.6382 

barbara 96.1126 4.2188 28.3030 4.8606e−08 1.2066 −51.1091 0.4790 223 0.7199 

camera 94.6071 4.3055 28.3716 3.1438e−05 1.1302 −37.7750 0.7046 234 0.3002 

flower 95.6821 4.2095 28.3225 −7.1457e−07 1.5430 −88.4721 0.2649 182 1.1511 

girl 95.0412 4.1605 28.3517 −1.5265e−07 1.3229 −75.2978 0.4226 196 0.7586 

Iline 95.9190 4.2459 28.3118 0.9893 1.3479 −58.0632 0.4805 206 0.5112 

university 88.4816 4.5937 28.6623 7.7624e−04 1.0743 −46.5255 0.5581 250 0.6777 

 
Table 10. Performance metrics for ROF algorithm, sigma = 0.08. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 95.4334 3.9647 28.3338 −2.4160e−06 1.3366 −64.3582 0.4536 223 0.6382 

barbara 96.1126 4.2188 28.3030 4.8606e−08 1.2895 −62.4257 0.4411 223 0.7338 

camera 162.7122 1.9505 26.0166 3.1438e−05 1.1711 −47.1331 0.6584 234 0.3313 

flower 95.6821 4.2095 28.3225 −7.1457e−07 1.5430 −88.4721 0.2649 182 1.1511 

girl 163.1718 1.8132 26.0044 −1.5265e−07 1.3696 −82.4141 0.4053 196 0.7715 

Iline 164.7801 1.8959 25.9618 0.9893 1.4095 −66.9820 0.4521 188 0.5319 

university 151.8053 2.2494 26.3179 7.7624e−04 1.1407 −57.3012 0.5196 250 0.6852 

 
Table 11. Performance metrics for ROF algorithm, sigma = 0.2. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 238.3766 −0.0110 24.3582 −1.5908e−07 1.4816 −89.4316 0.3828 190 0.7872 

barbara 239.9024 0.2463 24.3305 4.8606e−08 1.4276 −81.4507 0.3819 223 0.8033 

camera 236.3087 0.3299 24.3960 3.1438e−05 1.2246 −59.9995 0.6018 234 0.3897 

flower 239.7857 0.2196 24.3326 −7.1457e−07 1.7601 −110.2763 0.2341 182 1.2374 

girl 237.7749 0.1780 24.3691 −1.5265e−07 1.4474 −94.2270 0.3762 196 0.8140 

Iline 239.5990 0.2701 24.3360 0.9893 1.5124 −81.9270 0.4059 160 0.6046 

university 219.8879 0.6402 24.7088 7.7624e−04 1.2430 −74.7657 0.4619 250 0.7667 
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Table 12. Performance metrics for Tichonov algorithm, sigma = 0.01. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 95.4334 3.9647 28.3338 2.1712e−05 1.3361 −64.2595 0.4506 244 0.6637 

barbara 96.1126 4.2188 28.3030 6.7731e−09 1.2060 −51.0406 0.4732 223 0.7462 

camera 94.6071 4.3055 28.3716 3.0292e−05 1.1294 −37.6595 0.7005 241 0.3220 

flower 95.6821 4.2095 28.3225 −3.6032e−06 1.5423 −88.3622 0.2636 201 1.1744 

girl 95.0412 28.3517 4.1605 2.0528e−07 1.3220 −75.1643 0.4206 201 0.7728 

Iline 95.9190 4.2459 28.3118 0.9841 1.3469 −57.9367 0.4791 254 0.5287 

university 88.4816 4.5937 28.6623 7.1609e−04 1.0743 −46.4538 0.5522 254 0.7034 

 
Table 13. Performance metrics for Tichonov algorithm, sigma = 0.08. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 164.1012 1.6105 25.9797 −4.2489e−06 1.3902 −73.4494 0.4244 233 0.6934 

barbara 165.0845 1.8696 25.9537 4.0697e−08 1.2888 −62.3501 0.4363 223 0.7574 

camera 162.7122 1.9505 26.0166 3.0208e−05 1.1702 −46.9840 0.6554 235 0.3418 

flower 1.8539 164.5883 25.9668 −3.0678e−06 1.6220 −96.3537 0.2529 197 1.1856 

girl 163.1718 1.8132 26.0044 2.8824e−07 1.3688 −82.2831 0.4034 202 0.7837 

Iline 164.7801 1.8959 25.9618 0.9893 1.4084 −66.8355 0.4511 238 0.5417 

university 151.8053 2.2494 26.3179 7.7624e−04 1.1404 −57.1934 0.5148 254 0.7062 

 
Table 14. Performance metrics for Tichonov algorithm, sigma = 0.2. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 238.3766 −0.0110 24.3582 1.1434e−06 1.4810 −89.3073 0.3809 221 0.7922 

barbara 239.9024 0.2463 24.3305 −4.0468e−08 1.4267 −81.3551 0.3786 223 0.8199 

camera 236.3087 0.3299 24.3960 3.0276e−05 1.2233 −59.7684 0.6005 234 0.3932 

flower 239.7857 0.2196 24.3326 −2.8803e−06 1.7591 −110.1366 0.2331 182 1.2489 

girl 237.7749 0.1780 24.3691 −1.5265e−07 1.4463 −94.0664 0.3748 195 0.8222 

Iline 239.5990 0.2701 24.3360 0.9882 1.5113 −81.7794 0.4052 208 0.6085 

university 219.8879 0.6402 24.7088 7.7368e−04 1.2425 −74.6313 0.4586 254 0.7748 

 
Table 15. Performance metrics for the anisotropic TV denoising algorithm, sigma = 0.08. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 7.6326e+03 15.9295 9.3041 2.8414e−05 1.1423 −44.5176 0.6582 255 0.3806 

barbara 1.4142e+04 11.8896 6.6257 −3.5635e−06 1.3828 −77.6333 0.3766 234 0.8772 

camera 1.1758e+04 12.4348 7.4276 −7.3644e−O5 1.3689 −73.9475 0.4184 228 0.7373 

flower 1.6863e+04 10.0637 5.8614 5.5853e−06 1.5642 −88.7960 0.2694 255 1.1090 

girl 1.3374e+04 12.9140 6.8682 8.4450e−08 1.3312 −75.0687 0.4254 221 0.7501 

Iline 232.5184 12.9318 24.4662 0.0052 1.0129 −5.3346 0.9706 255 0.0268 

university 1.4088e+04 13.1774 6.6423 2.3093e−04 1.1405 −61.5217 0.4907 255 0.7909 
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Table 16. Performance metrics for the isotropic TV denoising algorithm, sigma = 0.08. 

Images MSE SNR PSNR IQI NK AD SC MD NAE 

cameraman 7.5933e+03 15.8979 9.3265 3.1550e−05 1.1435 −44.1626 0.6577 255 0.3825 

barbara 1.3937e+04 11.8882 6.6890 −3.3960e−06 1.3831 −77.6695 0.3784 242 0.8666 

camera 1.1626e+04 12.4178 7.4764 −7.3644e−05 1.3804 −76.0561 0.4157 228 0.7384 

flower 1.6711e+04 10.1155 5.9007 5.1306e−06 1.5626 −88.6839 0.2706 255 1.0941 

girl 1.3120e+04 12.9056 6.9516 4.4023e−07 1.3339 −75.3454 0.4267 221 0.7382 

Iline 210.5850 12.9318 24.8965 0.0052 1.0122 −5.0294 0.9724 255 0.0250 

university 1.3858e+04 13.1735 6.7138 2.3140e−04 1.1553 −63.5094 0.4866 255 0.7864 

 

 

Figure 1. Quality measures. 
 

In Figure 5, we did an experiment by taking the original image of girl (image 
without noise), then we added white Gaussian noise (sigma 0.08). 

Finally, in Figure 6 and Figure 7, we show comparisons and numerical results 
for the Tikhonov regularization restoration model and the ROF model; TV ani-
stropic and isotropic denoising algorithm with a noisy image of girl for the same 
parameter sigma 0.08. 
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Figure 2. The original and noisy image Barbara for sigma = 0.08. 
 

 

Figure 3. Denoised image barbar by Tikhonov and ROF for sigma = 0.08. 
 

 

Figure 4. Denoised image Barbara by TV anistropic and isotropic for sigma = 0.08. 
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Figure 5. The original and noisy image girl for sigma = 0.08. 
 

 

Figure 6. Denoised image girl by Tikhonov and ROF for sigma = 0.08. 
 

 

Figure 7. Denoised image girl by TV anistropic and isotropic for sigma = 0.08.  
 

Remark  
To quantify the restoration quality for a noisy image, we use sometimes 

measures. On note ,j kx  is original image and ,j kx′  is restored image with [M N] 
this is the size of the images. 

https://doi.org/10.4236/jamp.2023.119175


S. Bougueroua, N. Daili 
 

 

DOI: 10.4236/jamp.2023.119175 2689 Journal of Applied Mathematics and Physics 
 

Program for calculating image quality measurements in MATLAB 
 

 

4. Conclusion 

In this paper, we have presented and compared theoretical and numerical of dif-
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ferent imaging algorithms for solving optimization problems. We are looking for 
an image that is near to the original as possible among images that have been 
skewed by Gaussian and additive noise. Image deconstruction is a technique for 
restoring a noisy image after it has been captured. According to our experimen-
tation, and by calculating performance metrics as well different sigma values, we 
can conclude that the ROF model is better image quality compared to the Ti-
chonov regularization, because the space BV ensures continuity and allows for a 
stairway effect in restoring smooth images in applications where edges are not 
the main feature. We can conclude that the anisotropic TV and isotropic TV 
denoising algorithms work in a direct correlation relationship. In other words, 
regardless of how little the sigma value is that we get better and more old image 
quality results. Finally, it should be mentioned that all the methods that are 
common for removing parasitic information are added from an image.  
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