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Abstract 
Traditional material handling vehicles often use internal combustion engines 
as their power source, which results in exhaust emissions that pollute the en-
vironment. In contrast, automated material handling vehicles have the ad-
vantages of zero emissions, low noise, and low vibration, thus avoiding ex-
haust pollution and providing a more comfortable working environment for 
operators. In order to achieve the goals of “peaking carbon emissions by 2030 
and achieving carbon neutrality by 2060”, the use of environmentally friendly 
autonomous material handling vehicles for material transportation is an in-
evitable trend. To maximize the amount of transported materials, consider 
peak-to-valley electricity pricing, battery pack procurement, and the con-
struction of charging and swapping stations while achieving “minimum daily 
transportation volume” and “lowest investment and operational cost over a 
3-year settlement period” with the shortest overall travel distance for all ma-
terial handling vehicles, this paper examines two different scenarios and es-
tablishes goal programming models. The appropriate locations for material 
handling vehicle swapping stations and vehicle battery pack scheduling 
schemes are then developed using the NSGA-II algorithm and ant colony op-
timization algorithm. The results show that, while ensuring a daily transpor-
tation volume of no less than 300 vehicles, the lowest investment and opera-
tional cost over a 3-year settlement period is approximately 24.1 million Yu-
an. The material handling vehicles follow the shortest path of 119.2653 km 
passing through the designated retrieval points and have two shortest routes. 
Furthermore, the advantages and disadvantages of the proposed models are 
analyzed, followed by an evaluation, deepening, and potential extension of 
the models. Finally, future research directions in this field are suggested. 
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1. Introduction 

In order to achieve the goals of “carbon peak by 2030” and “carbon neutrality by 
2060”, the development of new energy electric vehicles is an important approach 
to energy conservation and emission reduction. Traditional material handling 
vehicles typically use internal combustion engines as their power source. How-
ever, the exhaust emissions produced by this power source contribute to envi-
ronmental pollution. Additionally, internal combustion engines require a fuel 
supply, which incurs high costs and is also susceptible to fuel price fluctuations. 
Moreover, the noise and vibration generated by internal combustion engines can 
have negative effects on the work environment and the health of operators. In 
contrast, environmentally friendly automated material handling vehicles possess 
features such as zero emissions, low noise, and low vibration, thus avoiding ex-
haust pollution and providing a more comfortable working environment for op-
erators. Furthermore, electric material handling vehicles utilize batteries as their 
energy source, obtaining energy through charging, which is more convenient 
and cost-effective. Therefore, using environmentally friendly autonomous elec-
tric vehicles for material transportation is an inevitable trend [1]. It is worth 
noting that electric vehicles have limited energy storage, which restricts their 
driving range, and therefore, the construction of charging facilities must be con-
sidered. However, setting up numerous charging and swapping stations can lead 
to increased social costs, so it is essential to consider the time cost of charging 
and swapping batteries. This involves the rational location selection of charging 
and swapping stations under a predetermined number of stations [2] [3]. Cur-
rently, there have been many studies on the planning of electric vehicle charging 
stations both domestically and internationally, but most of them focus on the 
interests of power companies and do not comprehensively consider various 
charging needs and social factors affecting electric vehicle charging [4]. In 2020, 
the National Development and Reform Commission and the Ministry of Trans-
port issued the “Notice on Further Reducing Logistics Costs and Implementing 
Measures”, calling for the active development of green logistics and promoting 
the greening and reduction of packaging and logistics equipment. Logistics 
companies should adjust their development strategies in accordance with their 
own business characteristics and development directions, actively adapting to 
the green transformation of the logistics industry. Therefore, centralized colla-
borative delivery is an important decarbonization method, which can improve 
the overall loading speed and vehicle utilization rate of environmentally friendly 
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automated material handling vehicles, while reducing empty driving, lowering 
logistics company operating costs and investments. This paper takes into ac-
count multiple parameters, such as peak-to-valley electricity pricing, construc-
tion costs of charging and swapping stations, and automatic battery swapping 
equipment costs, to establish a multi-objective programming model. The aim is 
to determine optimal station locations and scheduling schemes that ensure the 
minimum transportation volume and lowest investment and operational costs 
over a 3-year settlement period. The NSGA-II algorithm [5] and ant colony op-
timization algorithm are employed to solve the proposed model and provide 
more reasonable scheduling schemes. 

2. One Pickup Point and One Delivery Point Model 

In material transportation, the simplest scenario involves having only one pickup 
point and one delivery point. Considering multiple parameters such as peak- 
to-valley electricity pricing, construction costs of charging and swapping sta-
tions, and automatic battery swapping equipment costs, it is crucial for logistics 
companies to find optimal locations for stations and scheduling schemes to en-
sure the minimum transportation volume and the lowest investment and opera-
tional costs over a 3-year settlement period. 

From a mathematical perspective, this is a multi-objective linear program-
ming problem. By establishing a multi-objective programming model, the dual- 
objective linear programming problem can be transformed into a sequential sin-
gle-objective linear programming problem. The two objective functions to be 
minimized are the minimum power consumption and the lowest total invest-
ment cost while satisfying the condition of minimum daily transportation vo-
lume. The NSGA-II algorithm is utilized to solve this problem effectively. 

2.1. Cost Analysis 
2.1.1. Peak-to-Valley Electricity Pricing Analysis 
Peak-to-Valley electricity pricing is a new pricing category implemented for ur-
ban residents’ electricity consumption. It involves two types of electricity usage: 
peak electricity consumption and off-peak electricity consumption. Typically, a 
24-hour day is divided into two time periods: 8:00 to 22:00, consisting of 14 
hours, referred to as the peak period, with a peak electricity price of 0.568 Yu-
an/kWh; and 22:00 to the next day’s 8:00, consisting of 10 hours, known as the 
off-peak period, with an off-peak electricity price of 0.288 Yuan/kWh. Based on 
the peak and off-peak electricity prices, the charging and discharging schedules 
of material handling vehicles can be economically allocated. The mathematical 
models for peak and off-peak electricity prices are as follows: 
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In the equations, pv represents the off-peak electricity price, pp represents the 
peak electricity price, pf represents the flat electricity price, [ta1, ta2] represents the 
off-peak electricity price period during one day, [tb1, tb2] represents the peak 
electricity price period during one day, and others represent the flat electricity 
price period. 

2.1.2. Battery Pack Cost Analysis  
Assuming that all battery packs have the same model and cost, let’s denote the 
cost of one battery pack as u. As mentioned in the problem, each material han-
dling vehicle requires 6 battery packs. Therefore, the total cost of battery packs 
for one material handling vehicle is 6u. Since there are a total of 900 material 
handling vehicles, the overall cost of purchasing battery packs is 900u.  

2.1.3. Charging and Swapping Station Costs 
The costs of charging and swapping stations for electric material handling ve-
hicles mainly include the construction costs, operational costs, and carbon emis-
sions costs. 

1) Construction Costs of Charging and Swapping Stations: The construction 
costs of charging and swapping stations include infrastructure expenses and 
equipment costs. According to relevant information, infrastructure expenses 
mainly cover the costs of business buildings and road construction. The equip-
ment costs include charging equipment, battery swapping machines, and other 
necessary facilities for the charging and swapping processes. 

2) Operational Costs of Charging and Swapping Stations: The operational 
costs of charging and swapping stations mainly include employee wages, equip-
ment maintenance costs, land lease costs, and other ongoing expenses related to 
the day-to-day operation of the stations. 

3) Carbon Emissions Costs: When electric material handling vehicles travel to 
charging and swapping stations, they consume electricity, and the production of 
this electricity may result in carbon emissions. We can calculate the environ-
mental impact of material handling vehicles’ journey to the swapping station by 
factoring in carbon emissions costs into the planning model for charging and 
swapping station location. This approach helps to consider and account for the 
environmental consequences of the transportation process and encourages the 
adoption of sustainable practices in material handling operations. 

2.2. Model Establishment 

Based on the comprehensive consideration of the aforementioned factors, we 
have established the following objective functions: 

1) Objective Function 1: Minimize Power Consumption Load.  
Let’s assume the peak-to-valley electricity pricing periods are [9:00, 17:00] and 

[17:00, 21:00]. During the off-peak electricity pricing period, all material han-
dling vehicles are fully charged to meet their energy requirements. In the peak 
electricity pricing period, they perform the discharging work, which can lead to 
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higher economic benefits. Let Z represent the minimum power consumption 
load. The objective function can be formulated as follows: 

( )1 2 1 2, , ,min T a a b bZ L t t t t= .                   (2) 

The constraints are as follows: 

[ ]
[ ]
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2) Objective Function 2: Minimum Investment and Operational Costs 
Over 3 Years 

Let’s assume i represents the demand point where the material handling ve-
hicles are located, with a total of m demand points; j represents the candidate 
locations for charging and swapping stations; hi represents the battery swapping 
demand at demand point i for electric vehicles; k represents the level or capacity 
of the swapping station, { }1,2,3k∈ ; Fbk represents the construction cost of a 
swapping station at level k; Frk represents the annual operational cost of a swap-
ping station at level k; represents the distance between demand point i and 
swapping station j; Pco2 represents the carbon emissions price, which is the price 
for trading CO2 emissions in carbon markets; represents the carbon emissions 
coefficient per unit distance traveled by electric vehicles; eelec represents the 
greenhouse gas emission factor for the supply of electricity at charging termin-
als, it quantifies the average carbon emissions produced per unit of electricity 
generated during the charging process; E1km represents the average energy con-
sumption of an electric vehicle per 1 kilometer of travel; represents the conver-
sion efficiency. The objective function is as follows: 

1 2 3 4min F C C C C= + + + .                   (4) 

The constraints are as follows: 
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Here are the constraints, C1 represents the construction cost of the swapping 
station; C2 represents the operational cost of the swapping station; C3 represents 
the carbon emissions cost of electric vehicles; C4 represents the cost of purchas-
ing battery packs; the 5th equation represents the calculation formula for the 
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carbon emissions coefficient per unit distance traveled by electric vehicles; the 
6th equation represents the constraint for the minimum daily transportation 
quantity; the 7th equation represents the distance constraint between material 
handling vehicles and swapping stations (distance between pickup and delivery 
points is 10 km). 

2.3. Solving the Model Based on the NSGA-II Algorithm 

The Non-Dominated Sorting Genetic Algorithm (NSGA) is a method based on 
Pareto-optimal solutions. This algorithm performs a non-dominated sorting of 
individuals into different layers based on their dominance relationships before 
executing the selection operator [5]. The Non-Dominated Sorting Genetic Algo-
rithm II (NSGA-II) is an improved version of the non-dominated sorting me-
thod. Compared to NSGA, NSGA-II introduces a fast non-dominated sorting 
method, reducing the computational complexity. It replaces the fitness sharing 
strategy with the proposed crowding distance and crowding distance compari-
son operators. These operators are used as winning criteria in comparisons 
among individuals at the same level after fast sorting. This allows individuals in 
the approximate Pareto front to extend to the entire Pareto front and achieve a 
more uniform distribution. NSGA-II also incorporates an elite strategy [6], 
combining the parent population with the offspring population and letting them 
compete together for the next generation is more favorable for preserving the 
excellent individuals from the parent population to the next generation. Through 
the non-dominated sorting of all individuals in the population, the best individ-
uals are not lost, thus improving the overall quality of the population. 

Specific algorithm flow is shown in Figure 1. 
The performance of the NSGA-II algorithm is influenced by the adjustment of 

parameters, such as crossover probability, mutation probability, and population 
size. In the NSGA-II algorithm, both the crossover operation and mutation op-
eration require setting probabilities, namely the crossover probability and muta-
tion probability. For a population of “size”, perform the crossover operation 
“size/2” times and the mutation operation “size” times. In each operation, a 
random number is generated and compared with the given probability. If the 
random number is smaller than the given probability, the operation continues; 
otherwise, it exits. The crossover operation takes two individuals from the pop-
ulation in order of their ranking (according to the individual’s number) and 
performs the crossover operation. Each time the crossover operation is executed, 
it is also necessary to determine whether to conduct the crossover operation by 
comparing the generated random number with the given crossover probability. 
By continuously adjusting the parameters, a set of individuals belonging to 
non-dominated rank 1 can be found as the optimal solution. 

2.4. Solution Results 

The peak electricity price is set at 3.118 Yuan/(kWh), and the off-peak electricity 
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price is 1.089 Yuan/(kWh). The price of one battery pack is 10,000 Yuan, so the 
total cost of the battery pack for one vehicle (including 6 battery packs) is 60,000 
Yuan. The total cost for 900 vehicles in the swapping stations to purchase battery 
packs is 9 million Yuan. The construction cost of a charging and swapping sta-
tion is approximately 2.5 million Yuan, with a distribution cost of around 1.92 
million Yuan per year and an operational cost of around 1.21 million Yuan per 
year. 

After applying the NSGA-II algorithm to ensure a minimum daily transporta-
tion quantity of 300 vehicles, the minimum investment and operational cost over 
a 3-year settlement period is found to be 24.1 million Yuan. The fitness value 
change curve is shown in Figure 2. 
 

 

Figure 1. Flowchart of NSGA algorithm. 
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Figure 2. Fitness value change curve. 

3. Multiple Pickup Points and Single Delivery Point Model 
3.1. Model Analysis 

When there are multiple pickup points and a single delivery point, knowing the 
distances between the delivery point and each pickup point, as well as the dis-
tances between any two pickup points, is equivalent to knowing the positions of 
the swapping station, multiple pickup points, and a single delivery point. It can 
be considered as multiple material handling vehicles departing from the swap-
ping station, traveling to the pickup points to pick up the goods, and then trav-
eling to the delivery point for unloading. In this case, the material handling ve-
hicles are no longer moving on both sides of the road, but following the driving 
routes, as shown in Figure 3 [7].  

In Figure 3, Pi represents the pickup points, D represents the delivery point. 
Let dij represents the distance between pickup point i and pickup point j. Xkij in-
dicates whether material handling vehicle k travels from pickup point i to pick 
up point j, where Xkij = 1 if it does and Xkij = 0 otherwise; Δ+(i) represents the set 
of arcs departing from pickup point i, Δ−(j) represents the set of arcs returning to 
pick up point j; { }\ 0, 1N V n= +  represents the set of pickup points and the de-
livery point, k represents the set of distribution vehicle. Therefore, the following 
mathematical model is established: 

( ),min ij kiji K i j A d X
∈ ∈∑ ∑ ,                     (6) 
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Figure 3. Connectivity graph between the swapping station and pickup points. 
 

In the above equation, the first constraint restricts each pickup point to be as-
signed to only one path, and the remaining constraints represent the flow re-
strictions of material handling vehicle k on the paths. 

3.2. Solving the Model Based on Ant Colony Optimization  
Algorithm 

Ant Colony Optimization (ACO) is a probabilistic algorithm used to find opti-
mized paths in graphs, inspired by the foraging behavior of ants in nature. When 
ants search for food, if they encounter an unexplored intersection, they will 
randomly choose a path to proceed while releasing pheromones related to the 
path length. Ants leave a volatile hormone, known as pheromones, on the paths 
they have traveled. The role of pheromones is to inform other ants about the 
information of the optimal path. When subsequent ants encounter the same in-
tersection again, they have a higher probability of choosing the path with a 
higher pheromone concentration. This process forms a positive feedback loop 
[8]. Therefore, in a situation with a finite number of solutions, ants tend to fol-
low the path with a higher accumulation of pheromones. Ants that find the 
shortest path will return to the nest early, leaving more pheromones on the pat 
[9]. Due to the higher accumulation of pheromones on the shortest path, more 
ants will choose this path, eventually allowing the entire colony to find the 
shortest path between the food source and the nest [10]. 

As shown in Figure 4, in the sequence (1) - (2) - (3), as time passes, ants move 
in the direction of higher pheromone concentration. Within the same time 
frame, the pheromones left on the shorter path increase. As a result, more ants 
are attracted to the shorter path. Eventually, as more ants pass through a certain 
path, the subsequent ants tend to choose this path [11]. In the end, all ants will 
follow this path as their route. 
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Figure 4. Ant movement path map. 
 

The two essential steps of the Ant Colony Optimization algorithm are path 
construction and pheromone updating [12]. In ant colony optimization algo-
rithms, multiple parameters need to be adjusted to find the best solution, in-
cluding the number of ants, pheromone evaporation rate, and pheromone depo-
sition intensity. Each parameter has a different role, and the optimal parameter 
settings need to be found through trial and optimization. The number of ants is 
one of the important parameters that affect the algorithm’s performance. For 
small-scale problems, we typically set the number of ants between 50 and 100, 
for medium-scale problems, we can set it around 200 - 300, and as for large-scale 
problems, we can set it at around 500 - 1000. The pheromone evaporation rate is 
a parameter that controls the rate at which pheromones evaporate. For small-scale 
problems, we can set the evaporation rate around 0.2; for medium-scale prob-
lems, we can set it around 0.3; for large-scale problems, a higher evaporation rate 
is generally required and can be set between 0.4 - 0.5. The pheromone deposition 
intensity represents the strength of pheromone updating, controlling the amount 
of pheromones released by ants on the path. For small-scale problems, the inten-
sity can be set around 1; for medium-scale problems, we can set it around 2; for 
large-scale problems, we can set it between 2 - 3; the Ant Colony Optimization 
algorithm flowchart is shown in the Figure 5 [13].  

3.3. Model Conclusion 

During the model simulation, the parameters were set as follows: the initial 
number of ants was 75, α value was 1, β value was 5, the pheromone evaporation 
factor ρ was 0.85, the constant Q for updating pheromone concentration was 5, 
and the maximum iteration was set to 100. By using the Ant Colony Optimiza-
tion algorithm, the shortest path was found to be 119.2653 km. The variation of 
distance during iterations is shown in Figure 6.  

Meanwhile, the optimal delivery route map is shown in Figure 7.  
From the above figure, it can be observed that there are two shortest paths for 

the material handling vehicle to travel: 
One of the routes is as follows: [Route 1] 0 → 5 → 1 → 3. 
The other route is as follows: [Route 2] 0 → 2 → 4 → 7 → 6 → 8 → 16 → 14 → 9 → 

10 → 12 → 11 → 13 → 15 → 0. 

4. Model Evaluation and Generalization 
4.1. Advantages 

1) Utilization of linear programming models simplifies the problem, and the  
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Figure 5. Ant colony optimization algorithm flowchart. 
 

 

Figure 6. Distance iteration variation graph. 
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Figure 7. Optimal solution route map. 
 
linear programming objective function allows for finding maximum, minimum, 
and critical values. This facilitates discussions on different vehicle-battery dis-
patching strategies for various scenarios; employing multi-objective program-
ming models simplifies the problem and makes the solution process more 
straightforward;  

2) The use of graph theory models in combination with the Ant Colony Op-
timization algorithm streamlines the solving process and provides more intuitive 
results.  

4.2. Shortcomings and Limitations of the Model 

1) During the data collection process, differences in data acquisition methods 
and statistical approaches may lead to certain conclusions lacking practical vali-
dation, potentially impacting the experimental results;  

2) During the data collection process, differences in data acquisition methods 
and statistical approaches may lead to certain conclusions lacking practical vali-
dation, potentially impacting the experimental results; 

3) Shortcomings and limitations of the model: Due to insufficient data to 
support, the parameter values in the modeling process of this study are subject 
to a considerable level of subjectivity. Future research plans to accumulate more 
relevant empirical data, continuously refine the model, and enhance computa-
tional accuracy to better validate the applicability value of the model. 

4.3. Model Generalization 

The various model algorithms presented in this paper can be suitably applied to 
optimization problems in other engineering fields. For instance, the NSGA-II 
algorithm used for solving in this study is not only applicable to the material 
handling vehicle scheduling problem but also useful in other domains such as 
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path planning, production scheduling, and more. It can efficiently and effective-
ly solve diverse models and optimization challenges across different engineering 
applications. 

5. Conclusions 

This article starts with graphical simulations and combines with the characteris-
tics of the power grid to focus on the last part of transporting goods. It analyzes 
the selection of charging and swapping stations and battery scheduling using 
models of extreme value problems and software like MATLAB. The implemen-
tation of the scheduling plan and the selection of charging and swapping stations 
are objectively and macroscopically depicted. The influence of different battery 
swapping methods during vehicle travel on the swapping process is considered, 
evaluating the fleet’s status (empty or loaded) during swapping. Multiple dimen-
sions of cost calculations, including time cost, charging, and swapping prices, are 
considered, establishing a new multidimensional planning system. 

Furthermore, this article simplifies the path map based on the attributes and 
characteristics of multiple pickup points and a single delivery point, considering 
two influencing factors, and efficiently searches for optimal paths using the ant 
colony algorithm. 

From the results of the model, it can be seen that using electric vehicles for 
material transportation indeed simplifies the transportation process. However, it 
is important to note that this study is based on certain assumptions. On the one 
hand, using environmentally friendly automatic electric vehicles for material 
transportation is a developmental trend. On the other hand, in formulating elec-
tric vehicle scheduling plans, it is necessary to consider the time cost of charging 
and swapping batteries, leading to the proposal of new vehicle transportation 
site selection and scheduling problems, which are necessary for advocacy, de-
velopment, and limitations. 

Due to space limitations, this paper cannot select particular examples to quan-
titatively verify the economic index functions of the impacts of charging and 
discharging on the power grid’s reliability, voltage quality, and the reduction of 
harmonic pollution. Therefore, future research directions involve selecting ap-
propriate conditions and examples for verification, and improving the economic 
comparison index functions. 

Currently, the automatic material handling vehicle industry in China is still in 
the development stage, and domestically produced batteries have a relatively 
short lifecycle, potentially facing a high scrappage rate issue. Therefore, for dis-
carded batteries that have reached their service life, it is necessary to establish a 
market-oriented battery recycling network to improve energy utilization effi-
ciency, save costs, protect the environment, and reduce heavy metal pollution.  
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