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Abstract 
This paper considers adaptive synchronization of uncertain neural networks 
with time delays and stochastic perturbation. A general adaptive controller is 
designed to deal with the difficulties deduced by uncertain parameters and 
stochastic perturbations, in which the controller is less conservative and op-
timal since its control gains can be automatically adjusted according to some 
designed update laws. Based on Lyapunov stability theory and Barbalat lem-
ma, sufficient condition is obtained for synchronization of delayed neural 
networks by strict mathematical proof. Moreover, the obtained results of this 
paper are more general than most existing results of certainly neural net-
works with or without stochastic disturbances. Finally, numerical simulations 
are presented to substantiate our theoretical results. 
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1. Introduction 

Recently, the dynamic behaviors of neural networks (NNs) have been paid great 
attentions by academic researcher. Owing to the drive-response synchronization 
scheme proposed by Pecora and Carroll [1], there have many works on synchro-
nization of neural networks and it has been a hot topic. It should be noticed that 
the coefficients of drive-response systems are identical in most existing results 
for drive-response synchronization of NNs [2] [3] [4]. However, in practical ap-
plications, it is unrealistic to assume that the coefficients of the drive-response 
system are exactly the same due to some uncertainties. Therefore, it is of great 
significance to study the synchronization of neural networks with uncertain pa-
rameters. 

How to cite this paper: Wu, E.L., Wang, Y. 
and Luo, F. (2023) Adaptive Stochastic Syn-
chronization of Uncertain Delayed Neural 
Networks. Journal of Applied Mathematics 
and Physics, 11, 2533-2544. 
https://doi.org/10.4236/jamp.2023.119164 
 
Received: August 2, 2023 
Accepted: September 1, 2023 
Published: September 4, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2023.119164
https://www.scirp.org/
https://doi.org/10.4236/jamp.2023.119164
http://creativecommons.org/licenses/by/4.0/


E. L. Wu et al. 
 

 

DOI: 10.4236/jamp.2023.119164 2534 Journal of Applied Mathematics and Physics 
 

The NNs with stochastic disturbance is close to real situation since some ran-
dom factors exist in the process of signal transmission. Therefore, many efforts 
have been devoted to investigating synchronization of NNs with stochastic dis-
turbances. For example, stochastic quasi-synchronization for delayed dynami-
cal networks via intermittent control was studied in [5]. Exponential synchroni-
zation of delayed memristor-based neural networks with stochastic perturbation 
via nonlinear control in [6]. Fixed-Time synchronization of reaction-diffusion 
fuzzy neural networks with stochastic perturbations [7]. In [8], synchronization 
of stochastic memristive neural networks with retarded and advanced argument 
has been investigated. Fixed-Time Synchronization of Neural Networks with 
Stochastic Perturbations by state feedback control is studied in [9]. 

It is well known that drive-response NNs cannot achieve synchronization by 
themselves. Therefore, a suitable control scheme is needed to investigate syn-
chronization of NNs, and the designed controller should be easy to implement 
and reduce the control cost. Among them, many different control schemes have 
been used to study synchronization of networks, such as state feedback control 
[10] [11], intermittent control [12] [13], adaptive control [14] [15] [16], etc. 
Among them, adaptive control has received special attention because it can au-
tomatically adjust the size of control gain by the adaptive law. For example, 
adaptive exponential synchronization of delayed chaotic networks was studied in 
[17]. Adaptive exponential synchronization of delayed neural networks with 
reaction-diffusion terms was investigated in [18]. It should be noted that the 
system parameters are determined and the same, and there is no random inter-
ference in the drive-response system [14] [15] [16] [17] [18]. From the point of 
view of practical application, the system with uncertain parameters and random 
disturbance is more realistic. However, the methods described above cannot be 
used to address this challenge. Therefore, it is urgent to find a new method to 
study the synchronization of delayed neural networks with uncertain parameters 
and random interference. 

Based on the above discussion, this paper mainly focuses on synchronization 
of delayed NNs with uncertain parameters and stochastic perturbations. The main 
contributions are: 1) Based on the advantage of adaptive control strategy, a gen-
eral update law is proposed to further save communication resources and reduce 
control costs. 2) The designed controller can overcome the difficulties induced 
by uncertain parameters, time delays and stochastic disturbances simultaneously. 
3) An algebraic analysis method is development, sufficient condition is obtained 
to guarantee synchronization of the considering neural networks. 

Notations. n  denotes a set of n-dimensional Euclidean space. The super-
script T denotes transposition of a matrix or vector. nI  is the n n×  identity 
matrix. ⋅  is the Euclidean norm, x  is the absolute value of x. For vector  

( )T
1 2, , , n

nx x x x= ∈  , Tx x x= . ( )ij n n
A a

×
=  denotes matrix of n-dimen- 

sional, ( )T
maxA A Aλ= , ( )max Aλ  means the largest eigenvalue of A. {}diag ⋅   
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is the diagonal matrix. Moreover, let { }( )0
, , ,t t

P
≥

Ω    be a complete probabil-
ity space with filtration { } 0t t≥

  satisfying the usual conditions (i.e., the filtra-
tion contains all P-null sets and is right continuous). Denote by  

[ ]( )0
,0 ;P nL τ−   the family of all 0 -measurable [ ]( ),0 ; nC τ−  -valued ran-

dom variables ( ){ }: 0s sϖ ϖ τ= − ≤ ≤  such that ( )0sup
p

s sτ ϖ− ≤ ≤ < ∞E , where 
{}⋅E  stands for mathematical expectation operator with respect to the given 

probability measure P. {}Trace ⋅  is the trace of matrix.  

2. Preliminary Notes 

Consider the following uncertain delays neural network model:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

d d

, , d ,

x t C t x t A t f x t B t f x t t

t x t x t W t

θ

δ θ

 = − + + − 
+ −

        (1) 

in which ( ) ( ) ( ) ( )( )T
1 2, , , n

nx t x t x t x t= ∈   represents the state vector; 0θ >  
is time delay; ( ) ( ) ( ), ,C t A t B t  are uncertainty parameter matrix, in which 
( ) ( ) ( ) ( )( )1 2diag , , , n n

nC t C t C t C t ×= ∈  , ( ) 0iC t >  is the self-inhibition of 
ith neuron, ( ) ( )( ) n n

ij n n
A t a t ×

×
= ∈  and ( ) ( )( ) n n

ij n n
B t b t ×

×
= ∈  are the non- 

delayed and delayed connection weight matrices, respectively. ( )( )f x t  is real- 
valued activation function; ( ) ( )( ), ,t x t x tδ θ−  is the noise intensity matrix 
function. ( ) ( ) ( ) ( )( )T

1 2, , , nW t W t W t W t=   is a vector-form Wiener process de-
fined on a complete probability space ( )0, , ,t P≥Ω   . The initial condition of 
system (1) is ( ) ( )x t tγ= , [ ],0t θ∈ − . 

Consider NN (1) as drive system, then the controlled response NN is given as 
follows:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

d d

, , d

y t C t y t A t f y t B t f y t U t t

t y t y t W t

θ

δ θ

 = − + + − + 
+ −

    (2) 

in which ( ) ( ) ( ) ( )( )T
1 2, , , n

ny t y t y t y t= ∈   represents the state vector; ( )C t , 
( )A t  and ( )B t  are uncertainty parameter matrix, in which  
( ) ( ) ( ) ( )( )1 2diag , , , n n

nC t C t C t C t ×= ∈  , ( ) 0iC t >  is the self-inhibition of 
ith neuron, ( ) ( )( ) n n

ij n n
A t a t ×

×
= ∈  and ( ) ( )( ) n n

ij n n
B t b t ×

×
= ∈  are the non- 

delayed and delayed connection weight matrices, respectively. ( ) ( )( ), ,t y t y tδ θ−  
is the noise intensity matrix function. ( ) ( ) ( ) ( )( )T

1 2, , , nU t u t u t u t=   is the 
controller to be designed. The initial condition of system (2) is ( ) ( )y t tκ= , 

[ ],0t θ∈ − . The other parameters are the same as (1). 
Let ( ) ( ) ( )e t y t x t= − . The error system is obtained by systems (1) and (2) as 

following  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( )

d d

, , d ,

e t C t e t A t g e t B t g e t t U t t

t e t e t W t

θ ϖ

δ θ

 = − + + − + + 
+ −

   (3) 

in which  
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )t C t C t x t A t A t f x t B t B t f x tϖ θ= − + − + − − ,  
( )( ) ( )( ) ( )( )g e t f y t f x t= − , ( )( ) ( )( ) ( )( )g e t f y t f x tθ θ θ− = − − − ,  
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ), , , , , ,t e t e t t y t y t t x t x tδ θ δ θ δ θ− = − − − , The initial condi-
tion is ( ) ( ) ( )e t t tκ γ= − , [ ],0t θ∈ − . 

Inspired by [19], the uncertain parameters ( )A t , ( )B t , ( )C t  and ( )A t , 
( )B t , ( )C t  in (1) and (2) can be written as the following from:  

( ) ( ) ( ) [ ] ( )[ ]            ,A B CA t B t C t A B C GF t E E E  = +            (4) 

( ) ( ) ( ) ( )            ,BA CA t B t C t A B C GF t E E E   = +                (5) 

where , , , , , , , , , , , ,A B C BA CC A B E E E G C A B E E E  are known constant matrix, 
( )1 2diag , , , nC c c c= 

, ( )1 2diag , , , nC c c c= 
, 0ic > , 0ic >  1,2, ,i n=  ,  

( )F t  is unknown matrix and satisfy ( ) ( )TF t F t I≤ . 
To proceed our study, the following assumptions are needed.  
(H1) There exist positive constants , 1,2, ,ih i n=  , such that  

( ) ( ) .i i if u f v h u v− ≤ −  

(H2) There exist nonnegative constants 1
iS  and 2

iS  such that  

( ) ( )( )1 2,  ,  1,2, , .i i i ix t S f x t S i n≤ ≤ =   

(H3) There exist positive constants 1µ  and 2µ , such that  

( ) ( )( ) ( ) ( )( ) ( ) ( )2 2T
1 2Trace , , , , .t e t e t t e t e t e t e tδ θ δ θ µ µ θ − − ≤ + −   

Remark 1. By choosing appropriate parameters for systems (1) and (2), it is 
easy to see that the considered networks systems of (1) and (2) are chaotic. 
Moreover, in practical application, the parameters of the considered model can 
be obtained by different train. Based on the selected parameters and MATLAB 
tool, the data of assumptions is met. The reasonableness of the parameters and 
the given assumptions will be tested later in Section 4.  

Definition 1. If there is a controller ( )U t  such that the solutions ( )x t  and 
( )y t  satisfy the equation  

( ) ( ) ( )lim lim 0
t t

y t x t e t
→∞ →∞

   − = =   E E  

with arbitrary initial conditions. Then, system (3) is globally asymptotically sta-
bility. That is to say system (2) is globally asymptotically synchronized with (1). 

Lemma 1. [20] Given any vector , nx y∈  and positive definite matrix Q, 
inequality  

T T T2x y x Qx y Qy≤ +  

is hold.  
Lemma 2. [21] If ( ) :f t R R+→  is a uniformly continuous function for 
0t ≥  and the limit of the integral  

( )
0

lim d
t

t
f s s

→∞ ∫  

exist and is finite, then ( )lim 0
t

f t
→∞

= .  

3. Main Results 

In this section, based on the Lyapunov stability theorem, sufficient condition for 
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the synchronization of the considered neural networks is obtained. Rigorous 
mathematical proof is also given. 

Theorem 3. Suppose that the assumptions (H1) - (H3) are satisfied. Then the 
neural networks (1) and (2) can achieve globally asymptotically synchronization 
under the following adaptive controller  

( ) ( ) ( ) ( ) ( )( )sign , 1,2, , ,i i i i iu t l t e t t e t i nαβ= − − =          (6) 

and adaptive law  

( ) ( )
( ) ( )

2 ,

.
i i i

i i i

l t e t

t e t

ε

β ξ

 =


=





 

where 0, 0, 1,2, ,i i i nε ξ> > =  , 1α > .  
Proof. Consider the following Lyapunov function:  

( ) ( ) ( ) ( )1 2 3 ,V t V t V t V t= + +                     (7) 

where  

( ) ( ) ( )T
1

1 ,
2

V t e t e t=  

( ) ( ) ( )T
2

1 d ,
2

t

t
V t e s e s s

θ−
= Γ∫  

( ) ( )( ) ( )( )2 2
3

1 1

1 1 ,
2 2

n n

i i i i
i ii i

V t l t k m tβ
ε ξ= =

= − + −∑ ∑  

Γ  is positive diagonal matrix, ik  and im  are constants to be determined. 
Differentiating ( )1V t  along trajectories of (3) and taking the expectations on 

both sides, one obtains  

( ) ( ) ( )( ) ( )( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

T1 T

T

T

d 1
d 2

sign

1 Trace , , , ,
2

V t
e t d e t d e t d e t

t

e t C t e t A t g e t B t g e t

t l t e t t e t

t e t e t t e t e t

θ

ϖ αβ

δ θ δ θ

   = +     


= − + + − 


+ − − 
 + − −  

E E

E
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

T

2 2
1 2

sign

1
2

e t C t e t A t g e t B t g e t

t l t e t t e t

e t e t

θ

ϖ αβ

µ µ θ


≤ − + + − 


+ − − 

+ + − 


E

  (8) 

where  

( ) ( ) ( ) ( )( )1 2= diag , , , ,nl t l t l t l t  

( ) ( ) ( ) ( )( )1 2diag , , , .nt t t tβ β β β=   
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By (2.5), (H1) and Lemma 1, one can gets  

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

T T

T T T T ,

C

C C

e t C t e t e t C GF t E e t

e t Ce t e t G G E E e t

− = − +

≤ − + +
       (9) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( ( ) ( )( ) ( )( ) ( ) ( )

( )( )( ) ( )( ))

( )( ( ) ( ) ( ) ( ) ( )

( ) ( ))

T T T

T T T T T

T T

T T T T T T

T T

1
2

1
2

,

A

A A

A

e t A t g e t e t Ag e t e t GF t E g e t

e t AA e t g e t g e t e t GG e t

g e t E E g e t

e t AA e t e t HH e t e t GG e t

E e t HH e t

= +

≤ +

+

≤ +

+

 (10) 

and  

( ) ( ) ( )( ) ( )( ( ) ( ) ( )

( ) ( )
( ) ( ))

T T T T T

T T

T T

1
2

.B

e t B t g e t e t BB e t e t GG e t

e t HH e t

E e t HH e t

θ

θ θ

θ θ

− ≤ +

+ − −

+ − −

       (11) 

By (9) - (11), one obtains from (8)  

( ) ( ) ( )( ) ( ){ ( ) ( )

( ) ( ) ( ) ( )( ) }

1 T T
1 2

T

d
d

sign ,

V t
e t l t e t e t e t

t

e t t t e t

θ θ

ϖ αβ

 
≤ Ω − + − Ω − 

 

 + − 

E E
      (12) 

where ( )T T T T T
1 1

12 1
2 nC C AC G G E E AA BB E HH Iµ Ω = − + + + + + + +   and  

( ) T
2 2

1 1
2 nBE HH Iµ Ω = + +  , ( )1 2diag , , , nH h h h= 

 

Differentiating ( )2V t  and ( )3V t  along trajectories of (3) and taking the ex-
pectations on both sides, one obtains  

( ) ( ) ( ) ( ) ( )2 T Td 1 1 ,
d 2 2

V t
e t e t e t e t

t
θ θ

   = Γ − − Γ −     
E E        (13) 

( ) ( )( ) ( ) ( )( ) ( )3 2

1 1

d
.

d

n n

i i i i i i
i i

V t
l t k e t m t e t

t
β

= =

   = − − −     
∑ ∑E E      (14) 

Take ( ) T
21 nBE HH IµΓ = + + , ( )max 1 1ik λ= Ω + Γ + , 1,2, ,i n=  , one de-

rives from (8), (12) - (14) that  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )( ) ( )

T T

1

d
sign

d

.
n

i i i
i

V t
e t e t e t t t e t

t

m t e t

ϖ αβ

β
=

    ≤ − + −    
− − 


∑

E E
    (15) 

Take ( ) ( )1 2
i i iBC Am C G E S A G E B G E S> + + + + +

  

   . By (3) - (5), 
(15) and (H2), one can obtains  
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( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

T

1

T

1 1

T

1

sign

1

n

i i i
i

n n

i i i i
i i

C A

n

i iB
i

e t t t e t m t e t

e t C t C t x t A t A t f x t

B t B t f x t m e t t e t

e t C GF t E x t A GF t E f x t

B GF t E f x t m e t

ϖ αβ β

θ α β

θ

=

= =

=

 − − − 

= − + −

+ − − − + −

≤ + + +

+ + − −

∑

∑ ∑

∑

 



 



 

( ) ( ) ( )

( ) ( )

( ) ( ) (

) ( )

1 2

1

2

1

1

1

2

1

0,

n

i i iC A
i

n

i i iB
i

n

i iC A
i

n

i i iB
i

e t C GF t E S A GF t E S

B GF t E S m e t

e t C G E S A G E

B G E S m e t

=

=

=

=

≤ + + +

+ + −

≤ + + +

+ + −

≤

∑

∑

∑

∑

 



 



 



 



                 (16) 

where C C C= − , A A A= − , B B B= − , C CCE E E= −


, AAAE E E= −


, 

BBBE E E= −


. 
Therefore, by (15) and (16) known that  

( ) ( ) ( )Td
.

d
V t

e t e t
t

 
 ≤ −   

 
E E                   (17) 

Integrating (17) from 0 to t yields  

( ) ( ) ( ) ( )T
0

0 d ,
t

V t V e s e s s  − ≤ −    ∫E E               (18) 

then  

( ) ( ) ( )T
0

d 0 .
t
e s e s s V   ≤    ∫E E  

Therefore  

( ) ( ) ( )T
0

lim d 0 .
t

t
e s e s s V

→∞
   ≤    ∫E E  

By Lemma 2, we obtain that  

( ) 2
lim 0,
t

e t
→∞

  =  
E  

which means that  

( ) ( ) ( )lim lim 0.
t t

e t y t x t
→∞ →∞

   = − =   E E  

According Definition 1, system (2) is globally asymptotically synchronized with 
(1). The proof is completed.  

Remark 2. Although the parameters of systems (1) and (2) are uncertain and 
nonidentical, the synchronization of NNs is achieved under the adaptive con-
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troller by Theorem 1. Comparing with the results of [14] [15] [16] [17] [18], the 
obtained result of this paper is more general. On the other words, the analysis 
method of Theorem 1 can be applied to investigate synchronization of drive- 
response neural networks with certain or identical parameters.  

4. Numerical Simulations 

In this section, some numerical examples are given to verify Theorems 1. For 
system (1), we give the specific parameter conditions. For ( ) ( ) ( )( )T

1 2,x t x t x t= , 
let ( ) ( )( ) ( )( )( )T

1 2tanh , tanhf x x t x t= , 1θ = , and  

( ) 2 sin 0
,

0 1 0.06cos
t

C t
t

+ 
=  + 

 

( ) 1.2 0.06sin 0.5
,

6.2 5.2 0.06cos
t

A t
t

+ 
=  − + 

 

( ) 1.4 0.06sin 0.2
.

0.1 3.5 0.06cos
t

B t
t

− + 
=  − + 

 

The noise intensity matrix function ( ) ( )( ) ( ) ( )( ), , diag ,t x t x t x t x tδ θ θ− = − . 
The initial condition is ( ) ( )T0.2,0.4x t = , [ ]1,0t∈ − . Figure 1 shows the chao-
tic trajectory of system (1) with and without stochastic disturbances.  

For system (2), let ( ) ( ) ( )( )T
1 2,y t y t y t= , ( ) ( )( ) ( )( )( )T

1 2tanh , tanhf y y t y t= , 
1θ = , and  

( ) 1.3 0.12sin 0
,

0 2.8 0.06cos
t

C t
t

+ 
=  + 

 

( ) 2.5 0.12sin 1.2
,

1.8 2 0.12cos
t

A t
t

+ − 
=  + 

 

( ) 2.8 0.12sin 0.1
.

0.3 6 0.12cos
t

B t
t

− + 
=  − + 

 

 

  
(a)                                                    (b) 
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Figure 1. Chaotic trajectory of system (1). (a) Without stochastic disturbances; (b) With stochastic disturbances. 

The noise intensity matrix function ( ) ( )( ) ( ) ( )( ), , diag ,t y t y t y t y tδ θ θ− = −  
The initial condition is ( ) ( )T1, 1.3y t = − , [ ]1,0t∈ − . Figure 2 shows the chaotic 
trajectory of system (2) with and without stochastic disturbances. 

From Figure 1, it is easy to see that (H2) is satisfied. Besides, (H1) is also satis-
fied when 1 2 1h h= = . From (3), one have  

( ) ( )( ) ( ) ( )( )( ) ( ) ( )2 2TTrace , , , , ,t e t e t t e t e t e t e tδ θ δ θ θ− − ≤ + −  

therefore, (H3) is satisfied. 
The time-step size is taken as 0.001, 3.5α = , ( ) ( )1 2 0.1l t l t= = ,  
( ) ( )1 2 0.2t tβ β= = , [ ]1,0t∀ ∈ − , 2iε = , 1.5iξ = . Figure 3 shows the syn-

chronization error. Figure 4 shows the time evolution of the control gains ( )il t  
and ( )i tβ , 1,2i = . Therefore, system (2) is globally asymptotically synchro-
nized with (1) under the adaptive controller (6) based on Theorem 3. 
 

  
(a)                                                   (b) 

Figure 2. Chaotic trajectory of system (2). (a) Without stochastic disturbances; (b) With stochastic disturbances. 
 

 

https://doi.org/10.4236/jamp.2023.119164


E. L. Wu et al. 
 

 

DOI: 10.4236/jamp.2023.119164 2542 Journal of Applied Mathematics and Physics 
 

Figure 3. Synchronization error trajectory of system (2.3). 

 
(a) 

 
(b) 

Figure 4. Time evolution of the control gains ( )il t  and ( )i tβ . (a) ( )il t ; (b) ( )i tβ . 

5. Conclusions 

In this paper, synchronization for a class of delayed neural networks with un-
certain parameters and stochastic disturbances has been investigated. The de-
signed adaptive controller can restrict the effects of the stochastic perturbations 
and the uncertain parameters. Based on the concept of Lyapunov stability theory 
and Barbalat lemma, synchronization criteria have been obtained. Numerical 
simulations verify the effectiveness of the theoretical results. 

It is well known that the sign function can lead to chatting phenomenon, 
which damages equipment and induces undesirable effect. Moreover, due to en-
vironmental causes, neural networks are always affected by some external attacks. 
Studying the synchronization of neural networks with external attacks and mis-
matched parameters via non-chatting control is more practical, which is our fu-
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ture research work. 
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