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Abstract 
We present calculations and improvement inspired by the work of Lorenzo 
Zaninetti, published in 2020, it concerns a problem whose origin dates back 
1911 with so called Maxwell-Jüttner distribution these lies on the Lorentz 

factor 
2

1

1
γ

β
=

−
, with v

c
β = . This work uses powerful modern software 

for a reconstruction of Zaninetti work, which computes with special func-
tions, these are included in the Mathematica software, as by instance Bessel 
and Meijer G-functions ready to manipulate. A progress is made, it is possible 
to perform an integral that is not computed in Zaninetti paper. This author 
connects the correct relativistic probability law: the Maxwell-Jüttner to the 
synchrotron emissivity with a magnetic B  field, this work generalize these 
results, using the linear Stark effect and deals with an electric field E . 
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1. Introduction 

The Maxwell distribution is fundamental for statistical behavior of identical par-
ticles of mass m, in a environment of temperature ( )T K , it starts with the  

Boltzmann theoretical thermodynamic law, which is ( ) e B

E
k Tf E

−

=  [1]. Setting 
2

2
m vE ⋅

= , one obtains the statistical distribution of identical particles of mass  

m. In order to obtain a true probability law, one integrates the Boltzmann law on 
a velocity range v from 0→∞ , this leads to the correct classical Maxwellian 
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distribution [2]. 
The theory of relativity developed by Albert Einstein (1905) imposes that the 

maximal physical velocity is v c= , with c is the velocity of light in vacuo. 
Taking into account the modification of the velocity limit, for high energy 

particles, the Maxwell distribution is changed into the Maxwell-Jüttner distribu-
tion, (1911) [3]. This paper shows how is the change from standard Maxwellian, 
with numerical evidences. 

Reminding the Maxwell distribution: that is:  

( )
( )

2

3 2
2

3
2

2 e, , ,
B

m v
k T

Maxwell B MB

B

vF v m k T m
k T

×
−

×π

×
= ×               (1) 

[4] This function ( ), , ,Maxwell B MBF v m k T  is a normalized probability law:  

( )
( )

2

3 2
2

30
2

2 e, , , d 1
B

m v
k T

Maxwell B

B

vF v m k T m v
k T

×
−

∞ ×
= ×

×π
=∫            (2) 

[4] At the origin of this article is the interest of the author (since a long time) 
on how to modify the Maxwellian distribution for particles of mass m, in sur-
rounding environment of temperature T, considering the finite value of the ve-
locity of light c in vacuo, then replacing v = ∞  into v c=  in the Maxwellian 
distribution is an interesting physical problem, it has important consequences 
for high temperatures up from 510 KT =  existing in laboratory fusion plasmas 
and astrophysical plasmas observed in X rays, notably in Supernovae explosions. 
The author came across the work of L. Zaninetti (2020) [4], in his paper changes 
of variables and the introduction of the Lorentz factor: γ  are perfectly shown. 

Dealing with relativity, the kinetic energy has to be changed according to the 

famous Albert Einstein formula: 
2

2 0
21

m cE mc
β

= =
−

, where 0m  is the rest 

mass of the particle and v
c

β = , and the Lorentz factor follows:  

2

2

1

1 v
c

γ =

−

                           (3) 

The relativistic energy follows from:  
2 2

0KinE mc m c= −                         (4) 
2

20
021

Kin
m cE m c

β
= −

−
                      (5) 

2
0 2

1 1
1

KinE m c
β

 
 = × −
 − 

                   (6) 

( )2
0 1KinE m c γ= −                        (7) 

This is the formula (3) [4] and in [5] formula (10). To install relativity in the 
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Maxwell distribution, I shall follow the Zaninetti way in [4], his function is:  

( )

2

2

2

2

1 1(1 )

1

2
1 1(1 )

1
2

0

e,

e d

T v
c

v
T v

c c

f v T v

w w

−

−

−

−

=

∫

                  (8) 

It is a not invariant in relativistic transformations. Following: [4] it is neces-
sary to change the variable v in this way: 

2 1
v

γ
γ
−

=  and 
2 2

1d d
1

v γ
γ γ

=
−

. 

Thus the distribution becomes: the relativistic MB in the variable γ   

( ) ( )12 1

4

1
, eTf T

γ

γ
γ

γ
γ

−−
= ×                     (9) 

The normalization of the distribution is performed:  

( ) ( )12 1

41

1
e dTN T

γγ
γ

γ
−∞ −

= ×∫                   (10) 

This integral is given in [4] formula (7), giving the distribution ( ),f tγ γ  this 
contains a special function: the Meijer G-function. Using Mathematica 12.2 the 
library has this function ready to use the MeijerG function [6]: 

It happens that the distribution PDF of [4] is given by: 

( )
1 1

2 3

4 3,0
1,3 2

32 1 e
,

1
0.25 | 3 1, 1,

2 2

T TT
f T

G
T

γ

γ
γ

γ

γ

−
−

−
=

 
 
 − − − 
 

               (11) 

The integral of the PDF follows: ( ) ( )
1

, , dF T f T
γ

γ γγ γ γ= ∫ , but written as the 
PDF [4], is not analytical, thus can only be numerically integrated. The novelty 
of this work is to perform all relevant integrals and formal derivatives of these 
quantities bypassing the use MeijerG functions of the Zaninetti article [4]. 

At this stage, it is possible to get new results using Mathematica but also, 
without using MeijerG functions:  

( ) ( ) { }
12 1

max max4

1
, e , ,1,TF T Integrate

γ

γ
γ

γ γ γ
γ

− −
 = ×
  

 is not integrable analytically,  

but can be numerically integrated with the NIntegrate function producing a ta-
ble with a fixed step, this is done in [4], thus constructing the DF (distribution 
function) with accuracy. 

If the approximation 2 1γ γ− ≈ , is made it simplifies. 
The integral is analytical: 

( )
( )2

1

3 2 2

Ei e
1 e ,

2

T

T

T T
TF T Integrate

T

γ

γ

γ

γγ γ
γ

γ γ

−

−
 − + −    = × = 

 
     (12) 

The asymptotic probability law of the relativistic MB is given by: 
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( )
( )

( )

2

2 2

Ei e
,

2

TT T
Tf T
N T T

γ

γ

γγ γ
γ

γ

− − + − 
 =               (13) 

( )
1 2

2

1e Ei

2

T T T
TN T
T

 − − + 
 = −                  (14) 

It can be compared with the data of the numerical integral, for low γ  values 
1γ ≥  and 4γ ≤ . 

It gives the same DF than the function numerically integrated from the PDF 
[4], it is a new result.  

Figure 1 shows the distribution of the relativistic Maxwell-Boltzmann formu-
la given in Equation (9) for 3 temperatures T. 

There are no differences in the Figures for the numerically integrated DF and 
these obtained with our approximation. 

The mode of the relativistic MB is given by deriving and solving: 

( ) 0f Tγ
′ =                          (15) 

( )
1 11

2 2

5 43 2

4 1e 1ee

1

T TT
f T

T

γ γγ

γ
γ γ
γ γγ γ

− −−

− −′ = − −
−

          (16) 

Solving ( ) 0f Tγ
′ =  gives the mode: 

The real solution of the cubic equation (the same than obtained, formula (11) 
in [4]) without using the Meijer G-function. 

3 23 4 0T Tγ γ γ− + − =                      (17) 

The real root is:  

( )
3 3 4 2

3

54 11664 5589 108 81
3 2

T T T T Tmode T − + − + − − +
=         (18) 

( )23

3 3 4 2

2 9 3

3 54 11664 5589 108 81

T
T

T T T T T

− −
− −

− + − + − − +
         (19) 

 

 

Figure 1. PDF of the relativistic MB as a function of γ for different values of T. 
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Another approach is possible, to find the distribution function DF, using the v 
velocity variable with c = 1. 

That is ( )
2

1

1
v

v
γγ =

−
, the PDF function becomes: 

( )
( ) ( )

( )

2

4

1
1exp

FDibv ,

v
v

T
v T

v

γγ
γγ

γγ

 −
−  

 =              (20) 

and its derivative ( )FDibv ,v T′  is: 

( ) ( )
2

2
2

11
1

2
2

11 111
2 1

2

2

1FDibv , 4 1 1 e
1

11 1 e e1
1 1

1

v
T

v
vT

T

v T v v
v

v v vv
T

v

−
−

−
−−

−

′ = − − −
−

− −
−− +

−
−

 

Solving ( )FDibv , 0v T′ =  gives the mode. 

( )
3 4 2 8 6

2 2

3 4 2 8 6

1
2

32 4 2 8 6

1 216 36 24 3 27 1
12 12

2

216 36 24 3 27 1

1 1
12 216 36 24 3 27 1

T T T Tmode T
T T

T T T T

T T T T T

 − + + − −= − +



−
− + + − −


+ +
− + + − − 

 

2. Main Results  

It is accepted that relativistic effects are taken into account with the Max-
well-Jüttner distribution: 

( )
2

2

1 e
,

1MJf
K

γ

γ γ
γ

−
Θ− ×

Θ =
 Θ×  Θ 

                   (21) 

where 2
B MBk T
mc

Θ = . 

Following: [4], m is the mass of the atom, and Bk  is the Boltzmann constant, 
and the MBT  the temperature of the medium. 

Using the Zaninetti formula for the Maxwell-Jüttner distribution and its av-
erage value which implies the function [6]: 

2,1
1,3 2

10.25 |
0.5, 1, 1.5

G
T

 
 − − − 

                   (22) 

Instead it is possible to calculate all relevant quantities as average value or va-
riance of the Maxwell-Jüttner distribution with the useful. 
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Figure 2 Results obtained by calculating DF with numerical integration [4].  
Figure 3 Results obtained calculating DF by analytical integration, new way to 

get all quantities appearing in [4].  

Figure 4 Exact formal Maxwell-Jüttner distribution, with the 2
B MBk T
mc

Θ =  

variable [3]  

( )
2

2

e,
1MJf

K

γ

γγ

−
Θ×

Θ =
 Θ×  Θ 

                    (23) 

It gives:  

( )
( )( ) ( )

max
1 2 2

max max
max

2

e 2 1 1 e 2 2
,

1MJf
K

γ

γ γ
γ

−− Θ ΘΘ Θ Θ+ + −Θ + Θ + Θ
Θ =

 Θ  Θ 

  (24) 

 

 

Figure 2. L. Zaninetti DF Distribution Function of the relativistic MB obtained by 
numerical integration: T = 0.1 red curve, T = 0.5 blue curve T = 1, green curve.  

 

 

Figure 3. DF Distribution Function of the relativistic MB obtained by analytical in-
tegration: T = 0.1 red curve, T = 0.5, blue curve T = 1, green curve.  
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Figure 4. Maxwell-Jüttner relativistic PDF Distribution Function for dif-
ferent Θ red curve: 0.4Θ =  blue curve 0.6Θ =  green curve 0.8Θ = . 

 
This integral: the distribution function: the DF of [4], is normalized by: 

( )
( )( )1

2

e 2 1 1
1

Norm
K

− Θ Θ Θ + +
Θ =

 
 Θ 

 

Thus the resulting ( )max ,MJFDF γ Θ  is:  

( )
( )

max1
2 2
max max

max 2

e 2 2
, 1

2 2 1MJfDF

γ

γ γ
γ

−
Θ + Θ + Θ

Θ = −
Θ + Θ +

          (25) 

This DF function fits perfectly the numerical DF of [4], obtained by numerical 
integration. It is possible to find the mode of the ( ),MJf γ Θ , that is solving: 

( ), 0MJf γ ′Θ =  this gives: 

( )

4 2
3

2 6 4 2 3

4 2
3

6 4 2 3

4 2
2 3

6 4 2 3

4 2
4 3

6 4 2 3

Mode

1 1 1 9 351 54 3 375 13 1 3375
2727

25

1 9 351 54 3 375 13 13 3375

2

1 9 351 54 3 375 13 19 3375

1 1
91 9 351 54 3 375 13 127 3375

Θ




− Θ − Θ −= − + − − − + +
 Θ Θ Θ Θ Θ



+
− Θ − Θ −

− − − + +
Θ Θ Θ Θ

+
− Θ − Θ −

Θ − − − + +
Θ Θ Θ Θ



+ −

− Θ − Θ −
Θ − − − + +

Θ Θ Θ Θ 

1
2




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1Figure 5 shows the mode, written Mode (Θ) obtained solving ( ), 0MJf γ ′Θ = .  
It has to be noticed that part of the Mode (Θ), the part containing  

4 2375 13 1− Θ − Θ −  is an imaginary number, because a negative square root, 
for all positive Θ, getting rid of the imaginary part enables a real curve (Figure 
5), this occurs in [4] and remains a theoretical problem when solving:  

( ), 0MJf γ ′Θ =  with Mathematica or Maple software. 

3. Application to Real Plasmas  

I shall use the Zaninetti magnetic B field frequency that is: 
2g

e

eB
m

ν
π

=  inserted 

in the PDF, whose general formula is:  

( )

1
1

3

2 3,0
1,3 2

16 1e
, ,

10.25 |
0.5, 1, 1.5

g

T T
g

g
g

g

T
FDis T

G
T

ν
ν

νν
ν

ν ν
νν
ν

−

−
× −

=
 
 − − − 

            (26) 

This leads to:  

( )

71 5.9769 10 113
19 3

2 3,0
1,3 2

3.572 107.49346 10 1e
, ,

10.25 |
0.5, 1, 1.5

B
T TB T

BFDis B T
G

B T

ν

ν

ν
νν

−− ×
− −×

× × −
=

 
 − − − 

 (27) 

4. Maxwell-Jüttner Distribution with Ee Electric Field  
This leads to: it is well known that applying an electric field Ee onto an atom, the 

interaction energy is: StarkE eEe z= × , this is the linear Stark effect, the factor 3
2

  

appears when the Hamiltonian of the atom plus the energy associated with the 
electric field Ee: 

2 2
2

02 4r
e

e eEez E
m rε

∆ +
π

− + =
                  (28) 

is solved. 
That is: the Stark energy is given by the mean quantity  

( ), , cos , ,nr n l m r n l mθ= , , ,n l m  being the hydrogen wave functions in 
spherical coordinates, yielding for the energy Stark nE eEe r= × , with ( )cosz r θ=  

The frequencies associated with the linear Stark effect are defined as: 
 

Stark
g

E
h

ν = , h is the Planck constant and Ee the electric field are defined by:  

2
0

3
2StarkE n e Ee a= × × × ×                    (29) 

 

 

1This equation has a meaning, that is gives a correct Mode(Θ) and the curve representing it, if one 

deletes its imaginary part 4 2375 13 1− Θ − Θ − . 
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Figure 5. Maxwell-Jüttner relativistic mode as a function of Θ for different Θ, 
taking the real part of the theoretical mode(Θ).  

 
Stark

g
E

h
ν =                          (30) 

n is the principal quantum number of the atoms in the plasmas, it can be in-
teger when considering atoms in low states, or such as *n n δ= −  for atoms (Li, 
Na, K). For all calculations, the definition of temperature T of the plasmas is  

used as in [4]: 
2

e
e

B

m cT
k

= , this temperature 95.92991 10 KeT = × , is quite high  

compared to the ionization energy of an hydrogen atom expressed in Kelvin 
157821 KIonizationT = , thus even with a temperature 0.1 eT T= × , most of the atoms 

should be ionized, part of an hot plasma. 
It is still possible define a Stark frequency using the Stark energy: 

StarkE eEez= , that is Stark
g

E
h

ν = , where the length z is a characteristic length, 

that could be the Debye length 0
2

B e
D

e

k T
n e
ε

λ = . 

I shall use the definition of the distribution ( ), ,gFDis Tν ν  given by [4], that 

is Equation (26): changing the frequency 
2g

e

eB
m

ν
π

=  into 
2

03
2g

en Eea
h

ν =  for 

temperatures 0.1 eT T≤  and for higher temperatures g
eEe z

h
ν ×

=  z being a 

length characteristic of the plasma, it could be the Debye length Dλ . The for-
mula from [4] with the magnetic field B frequency distribution is changed with 
the electric field Ee giving the equation:  

( )

1 1
3

2 3,0
1,3 2

16 1e
, ,

10.25 |
0.5, 1, 1.5

h
eEez
T The Ee T z

eEezFDStark Ee T
hh G

eEezT

ν

ν

ν
νν

−
−

× × × −
=

 
 − − − 

      (31) 
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Figure 6 shows frequencies obtained with the Stark energy 3
2

E eEe z= ×  is 

inserted in ( ), ,FDStark Ee Tν , with 0z a= . 

Figure 7 gives frequencies2,3 Numerically the distribution is:  
 

 

Figure 6. Stark frequencies versus variable Ee field using the distribution  

( ), ,FDStark Ee Tν  these: blue curve T = 0.1, red T = 0.5, green T = 1 in 
2

e

B

m c
k

 units, 

the highest frequencies occur for small Ee field values and z length, here 0z a= , and 
low T temperatures.  

 

 

Figure 7. Stark Energy frequencies in the relativistic ( ), ,FDStark Ee Tν  T varies from 

0.1 to 1 in 
2

e

B

m c
k

 units, blue curve T = 1, green curve T = 0.5, red curve T = 0.1. 

 

 

2 11
0 5.29777210 m

e

a
m cα

−= =
  is the Bohr radius an 191.602176 10 Ce −= − ×  the electric charge of 

an electron, and 23 J6.022 10
KBk = ×  the Boltzmann constant, 319.10938 10 kgem −= × . 

3The electric field is written as Ee or F to distinguish these quantities from the energy written En. 
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( )
81 6.430 10 115

22 3

2 3,0
1,3 2

, ,

4.135 106.015 10 1 e

10.25 |
0.5, 1, 1.5

Eez
T T

FDStark Ee T

Ee z Ee T z
Eez

G
Ez T

ν

ν

ν

νν

−− ×
− −

 
  ×

× × ×  −     
 =

 
 − − − 

  (32) 

Comments of Figure 7: the distribution ( ), ,FDStark Ee Tν  shows that the 
lesser are the values of the energy e Ee z× ×  the highest are the frequencies  

because of the factor h
e Ee z

ν
× ×

 is higher for small values z, if used on atom  

scale such as the Bohr radius a0 gives an higher frequency distribution than a z 
factor of z = 10−2 m, the frequencies from a z near a0 compared to the z = 10−2 m  

are enhanced by a factor of fac = 
2

10
10 13749

0.529 10

−

− =
×

. Using the Max-

well-Jüttner PDF distribution Equation (22) and defining 2
e

E
m c

γ =  yields: 

( )
2

1e

, ,
12

h
eEez

MJ

hh
eEez

F Stark Ee
eEe zK

ν

ν

ν

−
Θ

 
 

− 
 
 Θ =

 Θ  Θ 

              (33) 

Numerical results are obtained inserting the Planck constant h and electric 

charge of the electron e, and giving to the electric field 5 V10
m

E =  this field E is 

26 times higher than the ionizing field for hydrogen V3816
mIonizationE =   

( )

102.0336 10
20

20

2

4.1356 102.0678 10 e 1
, , ,

1

z

MJ
zF Stark Ee z

z K

ν

ν

ν

−×
−−− Θ ×

× −
Θ =

 Θ  Θ 

 (34) 

For a hot plasma, 210 mz −=  and a field 5 V10
m

Ee =  the numerical distribu-

tion is:  

( )
92.0336 10

20 18
5 2

2

2.0678 10 4.1356 10 1e,10 , ,10
1MJF Stark

K

ν

νν

−×
−− − Θ

− × × −
Θ =

 Θ  Θ 

 (35) 

and the graphical representation is:  

Figure 8 gives the energy distribution for a field value 5 V10
m

Ee =  and a z 

length 210 mz −= .  
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Figure 8. Stark frequencies in the Maxwell-Jüttner distribution function of Θ and 
z the characteristic plasma length.  

5. Correct Relativistic M-B Distribution for Any Energy En  

Providing an energy written En in the equation, gives the good relativistic beha-
vior of the Maxwell-Boltzmann distribution:  

( )

1 1
3

2 3,0
1,3 2

16 e 1
, ,

10.25 |
0.5, 1, 1.5

h
En

T T

Rel

hEn T
En

F En T
hh G
En T

ν

ν

ν
νν

−
−  

× × × ℜ −  
 =

 
 − − − 

          (36) 

The same applies to the Maxwell-Jüttner distribution that is:  

( )
2

1 e
, ,

12

h
En

MJ

hh
EnF En

En K

ν

ν

ν

−
Θ−

Θ =
 ×Θ×  Θ 

                 (37) 

Numerically:  

( )

172.5746 10
34

34

2

6.6261 103.3130 10 1 e
, ,

1

En

MJ
EnF En

En K

ν

ν

ν

−×
− −− Θ×

× −
Θ =

 ×Θ×  Θ 

    (38) 

It is readily seen that to get real values it is necessary that any kind of energy 
En in Joule units has to be En hν≥  numerically 346.626 10En ν−≥ × . 

It is possible to check the normalization of this distribution integrating on the 

variables ν  with a initial value 201.23554 10Fν = × , B
F

k Te
h

ν = , and on the  

variable Θ, these calculations are quite heavy if one wants an analytical integra-
tion. The integrated distributions are obtained with parameters: maxν  and maxΘ , 
these replace integration to infinity and give analytical results with: max 10 Fν ν≥ ×  
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and max 10Θ ≥ . This means that instead of an integration of the variables ν  
and Θ towards infinity, the function Integrate works well, if the limits of integra-
tion to Infinity, are replaced by a integration with: max

F

ν

ν∫  rather than 
Fν

∞

∫ , the 
same apply for the variable Θ that is again, maxΘ

Θ∫  replaces 
∞

Θ∫  in that way the 
normalization of ( ), ,MJF Enν Θ  is obtained.  

Figure 9 shows the variation of the energy distribution ( )-M Jf En  when any 
energy is quantized by the relation En hν= .  

Defining a thermal energy by: BEn k T=  gives the following figure: 
Figure 10 plots the Maxwell Jüttner distribution, for BEn k T=  and 

Bk T
h

ν = , the temperatures T vary from 0 to 100, these are given in 
2

e

B

m c
k

 units,  

to get the temperatures in Kelvin one has to multiply T by the factor: 5.92965 × 
109.  

 

 

Figure 9. Maxwell-Jüttner relativistic distribution of energy En hν= . Different Θ 
values. Red curve is for 0.1Θ = . Other curves are for 0.5Θ ≥  and 10Θ ≤ . 
These curves merge for 0.5Θ ≥ .  

 

 

Figure 10. Maxwell-Jüttner relativistic distribution of energy BEn k T= .  
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6. Conclusions  

This article reviews significant progress made for this interesting problem to 
adapt the Maxwell probability distribution to Einstein relativity theory, (no phys-
ical velocity should be greater than c velocity of light), this leads to a correction 
given partly by the Maxwell-Jüttner distribution. It is known that this correction 
is important for high temperatures obtained in astrophysical or fusion plasmas, 
such high temperatures are such that: 

22
0

2

2

or
1B

B

m cmcT T
k v k

c

≥ ≥

−

. 

It is desirable that the manipulation of these quantities: PDF and DF distribu-
tions relativity compatible with the correct Maxwell-Jüttner theoretical expres-
sion, should give a better handling of real plasmas. 

The use of modern software like Mathematica gives an unique way to deal 
with special functions, all the results obtained by L. Zaninetti with Maple are  

found again, with the special function 3,0
1,3 2

10.25 |
0.5, 1, 1.5

G
T

 
 − − − 

. 

The basic approximation 2 1γ γ− ≈  brings analytical results that fit per-
fectly the numerical construction of the distribution function DF of [4]. Note-
books developed by the author can be sent to interested readers of this article.  
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