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Abstract 
This paper presents a bifurcation study of a mRNA-protein network with 
negative feedback and time delay. The network is modeled as a coupled sys-
tem of N ordinary differential equations (ODEs) and N delay differential eq-
uations (DDEs). Linear analysis of the stable equilibria shows the existence of 
a critical time delay beyond which limit cycle oscillations are born in a Hopf 
bifurcation. The Poincaré-Lindstedt perturbation method is applied to the 
nonlinear system, resulting in closed form approximate expressions for the 
amplitude and frequency of oscillation. We confirm our perturbation analysis 
results by numerically simulating the full 2N-dimensional nonlinear system 
for N = 2, 7, 15, and 30. Our results show that for small perturbations the 
equilibrium undergoes a supercritical Hopf and the system exhibits stable pe-
riodic solutions. Furthermore, our closed form numerical expressions exhibit 
the importance of the network’s negative feedback and nonlinear effects. 
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1. Introduction 

The basic functions of life are carried out by millions of cells, all of which are 
formed of thousands of proteins and genes interacting [1]. An important goal in 
the areas of applied mathematics and biology is trying to understand these net-
work of interactions. Theoretically, the network represents how certain genes 
affect other genes [2] and, in the case when the network involves a small number 
of genes, its dynamic properties can be studied directly in a laboratory [3] [4]. 
However, in the case when the network is formed of a large number of genes, 
then understanding its dynamic behavior might be difficult and nonintuitive [5] 
[6]. In recent years, various computational techniques have been developed that 
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help us understand some of the intrinsic properties of these networks. For an 
extensive review see [7]-[14]. 

The biology behind the model in this work can be roughly summarized in a 
three step process (see Chapter 2 for more details): 1) in the nucleus a gene is 
copied onto messenger RNA (mRNA), 2) the mRNA then gets translated into a 
protein, and 3) the protein then returns to the nucleus where it represses pro-
duction of mRNA (see Figure 1). This mRNA-protein feedback mechanism has 
been studied previously in several works [14] [15]. One of the more promising 
and relevant mRNA-protein models with feedback was first studied by Monk [15] 
and subsequently analyzed in more detail by a few others [14] [16].  

In this work we extend the author’s previous study [14] of a single mRNA-protein 
model to a network formed of N coupled mRNA-protein systems. The network 
structure in this work is described in Section 4 and the model is given by a sys-
tem of N nonlinear DDEs coupled to N linear ODEs. Section 2 gives a summary 
of the biological background of our model. In Section 3 we present the linear 
analysis of a network of two coupled mRNA-protein systems. The network of N 
coupled mRNA-protein systems and its associated linear analysis is presented in 
Section 4 followed by its nonlinear analysis in Section 5. Section 6 presents a 
computational analysis and comparison of MATLAB’s numerical results with 
our perturbation results. In Section 7 we discuss our conclusions and future di-
rections. 

2. Biological Background 

Transcription and translation are the main processes by which a cell expresses 
the instructions encoded in its genes. Transcription is the first step in gene ex-
pression and it includes the replication of a gene into messenger RNA (mRNA). 
The second step is the translation process, where the mRNA diffuses out of the 
nucleus and is captured, read, and translated by a ribosome yielding as a final 
product an associated protein. The final step in this feedback mechanism happens 
when the protein then diffuses back into the nucleus and represses production of 
its own mRNA. From these mechanisms, mRNA and protein concentrations arise 
naturally as the main intracellular regulatory agents in our model [1] [2]. 

 

 
Figure 1. Diagram of the mRNA-protein feedback inhibition mechan-
ism. The gene is copied onto mRNA, which then diffuses out of the nuc-
leus and gets translated into a protein. The protein then diffuses back 
into the nucleus where it represses the transcription of its own mRNA. 
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There are several mechanisms that the cell uses to regulate levels of mRNA 
and protein concentrations. One important mechanism is the cell’s ability to ad-
just and control the breakdown rate (degradation rate) of old mRNA or proteins 
by increasing or decreasing the concentration of enzymes that degrade these. 
Another important example is the cell’s ability to regulate the production rate 
(transcription rate) of a specific mRNA. This is usually accomplished by a spe-
cial type of proteins called transcription factors, which either promote or repress 
mRNA production by binding directly to the gene. Although other cellular me-
chanisms happen parallel during this transcription-translation process, in Fig-
ure 2 we only present the main mechanisms relevant to the description of our 
model. Here feedback arises when the protein product returns to the nucleus as a 
transcription factor and slows down the transcription of its own mRNA by 
binding to the gene’s promoter site [3] [15].  

Previous findings [15] show that there are time delays associated with the 
feedback mechanism presented in Figure 2. These delays arise naturally as tran-
scriptional delays (time it takes the gene to get copied into mRNA) and transla-
tional delays (time it takes the ribosome to translate mRNA into protein). Fur-
thermore, recent studies [14] [15] have shown that, due to the different time 
scales in which these two processes occur, we can have an accurate dynamic 
model by considering only the transcriptional delays. As explained in [14] and 
[15], the ordinary differential equations (ODEs) associated to this system are 
given as follows  

( )
( )

0

d 1
d

1

µ α

 
 
 

= − +  
 − +   
  

m m n
m m t
t p t T

p

             (1) 

( ) ( )d
d

α µ= −p p
p m t p t
t

                   (2) 

where the time dependent variables are mRNA concentration, ( )m t , and its 
associated protein concentration, ( )p t . The constants µm  and µ p  are the 
degradation rates of mRNA and protein, α p  and αm  the synthesis rates, 0p  
is the repression threshold of protein concentration, n is the hill coefficient, and  

( )
1

0

1

−
  − +     

n
p t T

p
 is the Hill term representing the rate of delayed mRNA 

synthesis, where the delay is assumed to be positive and constant, 0>T . 

3. Linear Analysis of Two Coupled mRNA-Protein Systems 

The single mRNA-protein system was studied in detail by the author in [14]. 
Here we present a network of two mRNA-protein systems coupled via protein 
repression. The protein of the first system, 1p , represses production of its own 
mRNA, 1m , and the second system’s mRNA, 2m . The geometric representation  
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Figure 2. (a) Diagram representing the synthesis and degradation mechanisms of 
mRNA and protein. Solid and dashed lines represent chemical reactions and indi-
rect regulatory signals, respectively. The synthesis and degradation rates are given 
by α  and µ , respectively, and five small circles represent degradation bypro-
ducts. (b) Compact notation for the same mRNA-protein system presented in (a). 
Here the arrow (↑ ) represents production (upregulation) and the perpendicular 
symbol ( ⊥ ) represents repression (downregulation). 

 
of the network is depicted in Figure 3 and the associated 4-dimensional mathe-
matical model is given by  

1 1

1 2

10 20

1 1

1 1

µ= − + +
   

+ +   
   

 n n
d d

m m
p p
p p

                (3) 

2 2

1 2

10 20

1 1

1 1

µ= − + +
   

+ +   
   

 n n
d d

m m
p p
p p

               (4) 

1 1 1µ= −p m p                          (5) 

2 2 2µ= −p m p                          (6) 

where we assume ∈n , µ µ µ= =m p , 1α α= =m p , and ( )= −dp p t T  for 
both systems. Setting µ µ µ= =m p  and 1α α= =m p  sacrifices biological flex-
ibility in regards to synthesis and degradation, but it allows us to gain mathe-
matical and computational tractability for the analysis of the general network 
presented in Section 4.  
 

 

Figure 3. Network diagram of two mRNA-protein systems 
coupled through protein repression. Protein from the first sys-
tem, 1p , represses its own mRNA production, 1m , and the 
second’s system’s mRNA, 2m . Each system produces it’s own 
protein and they all share the same degradation rates 

 
µ µ µ= =m p  with production rates assumed as 1α α= =m p . 
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The first step in the linear analysis is to set 1 2 1 2 0= = = =   m m p p  in (3)-(6) 
and find expressions for the equilibrium point ( )* * * *

1 2 1 2, , ,m m p p . We substitute 
the latter and eliminate *

1m  and *
2m  to obtain  

2 *
1 * *

1 2

10 20

1 1 0

1 1

µ − − =
   

+ +   
   

n np
p p
p p

                  (7) 

2 *
2 * *

1 2

10 20

1 1 0

1 1

µ − − =
   

+ +   
   

n np
p p
p p

                  (8) 

From (7)-(8) we have that * * *
1 2= =p p p  and thus * * *

1 2 µ= =m m p . This gives 
the following expression for the equilibrium solution *p   

( ) ( )
( ) ( )

2 *2 1 2 * 1 *
10 20 10 20

2 *
10 20 10 202 0

µ µ

µ

+ ++ + − +

+ − =

n n n n n n n

n n

p p p p p p p

p p p p p
            (9) 

which can be numerically approximated using a root finding method. 
Next we define 1ξ , 2ξ , 1η , and 2η  to be deviations from equilibrium: 

*
1 1 1ξ = −m m , *

2 2 2ξ = −m m , *
1 1 1η = −p p , and *

2 2 2η = −p p . Substituting these 
into (3)-(6) results  

( )*
1 1 1 * *

1 1 2 2

10 20

1 1

1 1

ξ µ ξ
η η

= − + + +
   + +

+ +   
   



n n

d d

m
p p

p p

        (10) 

( )*
2 2 2 * *

1 1 2 2

10 20

1 1

1 1

ξ µ ξ
η η

= − + + +
   + +

+ +   
   



n n

d d

m
p p

p p

        (11) 

1 1 1η ξ µη= −                         (12) 

2 2 2η ξ µη= −                        (13) 

Expanding for small ηid  Equations (10)-(11) become  
2 2

1 1 11 1 21 2 12 1 22 2ξ µξ η η η η= − + + + + +

d d d dK K K K           (14) 

2 2
2 2 11 1 21 2 12 1 22 2ξ µξ η η η η= − + + + + +

d d d dK K K K          (15) 

where jiK  is given by  

( )
*

1 2 *
0

 ,    where
1

β
β

β

 
= − =   +  

n

j j
j j

jj j

n p
K

pp
            (16) 

( )
( )2 3 *2

1

2 1

β β β

β

− + +
=

+

j j j
j

j j

n n n
K

p
                  (17) 

and thus the associated linearized system coming from Equations (12)-(15) is 
given by  

1 1 11 1 21 2ξ µξ η η= − + +

d dK K                   (18) 
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2 2 11 1 21 2ξ µξ η η= − + +

d dK K                    (19) 

1 1 1η ξ µη= −                          (20) 

2 2 2η ξ µη= −                          (21) 

For 0=T  (no delay) the system (18)-(21) has the following Jacobian at the 
origin  

11 21

11 21

0
0
1 0 0
0 1 0

µ
µ

µ
µ

− 
 − 
 −
 

− 

K K
K K

                     (22) 

with eigenvalues  

{ }11 21, ,µ µ µ− − − ± +K K                    (23) 

and since 0µ >  and 1 0<jK  then all real parts are negative and the origin is 
stable. 

To find the critical delay, crT , we assume solutions of the form eλη = t
i iA  

and eλξ = t
i iB  for 1,2=i  and substitute into (18)-(21)  

( ) ( )1 11 1 21 2e λλ µ −+ = +TB K A K A                 (24) 

( ) ( )2 11 1 21 2e λλ µ −+ = +TB K A K A                 (25) 

( ) 1 1λ µ+ =A B                         (26) 

( ) 2 2λ µ+ =A B                         (27) 

Substituting (26)-(27) into (24)-(25), setting = crT T , and iλ ω=  we obtain  

( )
( )

i

1 11 1 21 22
e

i

ω

ω µ

−

= +
+

crT

A K A K A                  (28) 

( )
( )

i

2 11 1 21 22
e .

i

ω

ω µ

−

= +
+

crT

A K A K A                 (29) 

The algebraic Equations (28)-(29) will have solutions if ∃ ∈c  such that  

( )11 21

11 21

1
det det 0

1
 −  

= − =  −  

cK cK
cK I

cK cK
            (30) 

where  

( )
11 21

2
11 21

e  ,   .
ω

ω µ

−  
= =  

+  

cri T K K
c K

K Ki
               (31) 

Equation (30) yields ( )11 21 1+ =c K K  which implies Im(c) = 0, that is  

( ) ( ) ( )

( )

2 2

22 2

sin 2 cos
0

ω µ ω ωµ ω

µ ω

− −
=

+

cr crT T
            (32) 

2 2
1 2arctan ωµ
ω ω µ

 
⇔ =  − 

crT                   (33) 

https://doi.org/10.4236/jamp.2023.118146


A. Verdugo 
 

 

DOI: 10.4236/jamp.2023.118146 2258 Journal of Applied Mathematics and Physics 
 

Also, ( ) ( )11 21 Re 1+ =K K c  yields  

( )
( ) ( ) ( )

( )

2 2

11 21 22 2

cos 2 sin
1

µ ω ω ωµ ω

µ ω

− −
= +

+

cr crT T
K K          (34) 

( )2
11 21ω µ⇔ = − − +K K                     (35) 

where we have used the identities  

( ) 2 2 2 2
2 2sin sin arctan ωµ ωµω

ω µ ω µ
  

= =  − +  
crT            (36) 

( )
2 2

2 2 2 2
2cos cos arctan .ωµ ω µω

ω µ ω µ
   −

= =  − +  
crT           (37) 

The stability analysis presented above shows that the stable equilibrium point 

( )* * * *
1 2 1 2, , ,ξ ξ η η  of the system (10)-(13) loses its stability when = crT T  giving 

rise to a pair of pure imaginary eigenvalues iω±  corresponding to the solutions  

( ) ( )cosξ ω φ= +i i it A t                    (38) 

( ) cosη ω=i it B t                      (39) 

where iA  and iB  are the amplitudes of the ( )ηi t  and ( )ξi t  oscillations, and 
where φi  is a phase angle. Note that without loss of generality we may set the 
phase 0φ =i  and thus for values of delay T close to crT  we will have = + ∆crT T  
where the nonlinear system (3)-(6) is expected to exhibit a periodic solution for 
small ∆ . The nonlinear analysis for the two coupled mRNA-protein system 
follows the same computational steps as the N coupled mRNA-protein system. 
Thus to avoid redundancy we will postpone its presentation until Section 5. 

4. Linear Analysis of N Coupled mRNA-Protein Systems 

We now extend our previous linear results to a system of N coupled mRNA- 
protein systems with feedback and delay. The present analysis follows the steps 
as the one presented in Section 3, hence, and to avoid repetition, we will present 
only the main results. The system is depicted in Figure 4 and modeled by the 
following equations  

1

0

1

1

µ
=

= − +
 

+   
 

∑

N

i i n
j

jd

j

m m
p
p

                    (40) 

µ= − i i ip m p                (41) 

where 1,2, ,= i N  and ( )= −jd jp p t T . Setting 0= = i im p  on (40) and (41) 
we can show that ( )* * * *, , , , ,µ µ p p p p  is the equilibrium point, where  

02 *
*

1 0

0µ
=

− =
+∑
nN
j

n n
j j

p
p

p p
                     (42) 
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Figure 4. Network diagram representing N coupled mRNA- 
protein systems. Here each mRNA, im , is repressed through the 
interaction with every protein, jp , via a nonlinear Hill function 

as given by Equatuon (40). Protein production is affected linearly 
only by its own mRNA, im , and by the associated intrinsic de-
gradation rate µ  as modeled by Equatuon (41). The network 
exhibits negative feedback, nonlinear interactions, and constant 
delay, all of which are important components for oscillations. 

 
can be multiplied by the product ( )( ) ( )* * *

10 20 0+ + +

n n n n n n
Np p p p p p , and thus 

be made into a polynomial of degree ( 1+nN ). The roots of the resulting poly-
nomial can then be approximated using a numerical root finding technique.  

Next we define *ξ = −i im m  and *η = −i ip p  to be deviations from equili-
brium, substitute them into Equations (40)-(41), and expand for small η jd  to 
obtain  

2 3
1 2 3

1 1 1
ξ µξ η η η

= = =

= − + + + +∑ ∑ ∑



N N N

i i j jd j jd j jd
j j j

K K K           (43) 

η ξ µη= −i i i                        (44) 

where the Taylor coefficients, jiK , are given as follows  

( )
*

1 2 *
0

 ,     where
1

β
β

β

 
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n
j

j j
jj
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           (45) 

( )
( )2 3 *2

1

2 1

β β β

β

− + +
=

+

j j j
j

j

n n n
K

p
                 (46) 

( )
( )

2 2 2 2 2 2

3 4 *3

4 3 3 2 4 2

6 1

β β β β β β

β

− + + − + + +
= −

+

j j j j j j
j

j

n n n n n n
K

p
       (47) 

To show the steady state is stable when 0=T  (no delay), we consider the 
2N-dimensional linearized system coming from Equations (43)-(44)  

1
1

ξ µξ η
=

= − +∑

N

i i j jd
j

K                    (48) 

η ξ µη= −i i i                       (49) 

with its associated Jacobian matrix  

2 2×

 
=  
  N N

M K
J

I M
                    (50) 
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where I is the ×N N  identity matrix, µ= −M I , and  

1,1 2,1 1,1 ,1

1,1 2,1 1,1 ,1

1,1 2,1 1,1 ,1

1,1 2,1 1,1 ,1

−

−

−

− ×

 
 
 
 =
 
 
  





    





N N

N N

N N

N N N N

K K K K
K K K K

K
K K K K
K K K K

               (51) 

To find the eigenvalues, λ , of the block Jacobian matrix, J, we compute  

( )( )2det det 0
λ

µ λ
λ

 −  
= + − =  −  

M I K
I K

I M I
          (52) 

which gives the following eigenvalues  

1
1

,µ µ
=

  − − ± 
  

∑
N

j
j

K                        (53) 

where 0µ >  (multiplicity 2 2−N ) and since 1 0<jK  ∀j  then the square 
root term in Equation (53) will be imaginary and thus ( )Re 0λ <  for all λ . 
This shows that the equilibrium solution is stable for 0=T . 

To find the critical delay, = crT T , we assume solutions of the form eλη = t
i iA  

and eλξ = t
i iB , substitute them into (48)-(49), and set = crT T  and iλ ω=  to 

obtain the linear system  

1
1=

= ∑
N

i j j
j

A c K A                          (54) 

where 
( )

i

2
e

i

ω

ω µ

−

= ∈
+


crT

c . System (54) will have nontrivial solutions when  

( )det 0− =cK I  which gives 11= =∑N
jjc K N  and thus  

2 2
1 2arctan ωµ
ω ω µ

 
=  − 

crT                      (55) 

2
1

1
ω µ

=

= − −∑
N

j
j

K                        (56) 

where we have used the identities (36)-(37) and where the nonlinear system 
(40)-(41) is expected to exhibit periodic solutions for = + ∆crT T  when 1∆ . 

5. Nonlinear Analysis of the N Coupled System 

We use the Poincare-Lindstedt’s perturbation method to find closed form ap-
proximate expressions for the amplitude of the limit cycle born at the Hopf bi-
furcation. This will be accomplished by considering the full nonlinear system 
(43)-(44) and perturbing off of the critical delay, = crT T . We start by combin-
ing Equations (43)-(44) into a system of second order DDEs  

2 2 3
1 2 3

1 1 1
2   η µη µ η η η η

= = =

+ + = + + +∑ ∑ ∑ 


N N N

i i i j jd j jd j jd
j j j

K K K        (57) 

where 1,2, ,= i N , and 1jK , 2jK , and 3jK  are the Taylor coefficients given 
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by Equations (45)-(47), respectively. Next we introduce a small parameter ε  
via the following scaling  

  ,η ε=i iu                            (58) 

stretch time by defining a new independent variable  

  ,τ =Ωt                            (59) 

and expand Ω  in a power series in ε  as follows  
2

2  ω εΩ = + +k                        (60) 

where we omit the ( )εO  term since it turns out to be zero. We substitute Equ-
ations (58) and (59) into (57) to obtain  

2
2 2 2 2 3

1 2 32
1 1 1

d d2   
dd

µ µ ε ε
ττ = = =

Ω + Ω + − = + +∑ ∑ ∑ 

N N N
i i

i j jd j jd j jd
j j j

u u u K u K u K u   (61) 

which will be used after perturbing the delay about crT  and Taylor expanding 

iu  and jdu . We accomplish the latter by scaling the detuning ∆  as follows  
2    ε δ= + ∆ = +cr crT T T                       (62) 

and expanding ( )τiu  in a power series in ε   

( ) ( ) ( ) ( )2
0 1 2  .τ τ ε τ ε τ= + + +i i i iu u u u             (63) 

Substituting Equations (60) and (62) into ( )τ= −Ωjd ju u T  and Taylor ex-
panding about 0ε =  we obtain  

( ) ( )( )
( ) ( ) ( )

2
2

2
2 .

τ τ ω ε ωδ

τ ω ε ωδ τ ω

= −Ω = − − + +

′= − − + − +





jd j j cr cr

j cr cr j cr

u u T u T k T

u T k T u T
       (64) 

Substituting Equations (60), (63) and (64) into (61), and collecting like powers 
of ε  we find  

( )
2

2 20 0
0 1 02

1

d d2 0
dd

ω µω µ τ ω
ττ =

+ + − − =∑
N

i i
i j j cr

j

u u u K u T         (65) 

( ) ( )
2

2 2 21 1
1 1 1 2 02

1 1

d d2
dd

ω µω µ τ ω τ ω
ττ = =

+ + − − = −∑ ∑
N N

i i
i j j cr j j cr

j j

u u u K u T K u T   (66) 

( )
2

2 22 2
2 1 22

1

d d2
dd

ω µω µ τ ω
ττ =

+ + − − =∑ 

N
i i

i j j cr
j

u u u K u T        (67) 

where   stands for terms in 0iu  and 1iu , omitted here for brevity. 
The next step is to solve Equations (65)-(67). We start with Equation (65) by 

setting the solutions, 0iu , as  

( )0
ˆ cosτ τ=iu A                        (68) 

where by Equation (58) we know 0 0
ˆ cos cosη ε ε τ τ= = =i iu A A . Next we substi-

tute (68) into (66) and obtain the following expression for 1iu   

( )1 1 2 3sin 2 cos2τ τ τ= + +i i i iu m m m               (69) 

where 1im  is given by the equation:  
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( )
( )

2 3 2
2 1

1 6 4 2 2 3
1 1 1 1

ˆ ˆ ˆ2 2 3
ˆ ˆ ˆ ˆ16 39 18 9

µω µ

µ µ µ

+
= −

+ + −
i

A K K
m

K K K K
            (70) 

where  

1 1 2 2 3 3
1 1 1

ˆ ˆ ˆ ,     and  
= = =

= = =∑ ∑ ∑
N N N

j j j
j j j

K K K K K K              (71) 

and where we omit the expressions for 2im  and 3im  for brevity. 
Next we substitute Equations (68) and (69) into (67), and after trigonometric 

simplifications have been performed, we equate to zero the coefficients of the 
resonant terms sinτ  and cosτ . This yields the amplitude, A, of the limit cycle 
that was born in the Hopf bifurcation  

2 = ∆
PA
Q

                         (72) 

where  

( )( )2 2 2 6 4 2 2 3
1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ8 16 39 18 9ω µ µ µ µ= − + + −P K K K K K       (73) 

0 1= +crQ Q T Q                        (74) 

and  
2 8 2 8 3 6 2 2 6

0 3 1 2 1 3 1 2 1

4 4 2 3 4 5 2 2 4 2
3 1 2 1 3 1 2 1

6 2 5
3 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ48 16 69 32
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ63 162 81 108
ˆ ˆ ˆ ˆ27 30

µ µ µ µ

µ µ µ µ

= − + +

− + − +

+ −

Q K K K K K K K K

K K K K K K K K

K K K K

       (75) 

9 2 9 2 7 2 7
1 3 1 2 3 1 2 1

3 5 2 2 5 4 3 2 3 3
3 1 2 1 3 1 2 1

5 2 4
3 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ96 64 138 16
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ126 308 162 296

ˆ ˆ ˆ ˆ54 12

µ µ µ µ

µ µ µ µ

µ µ

= − + − +

+ − + −

− +

Q K K K K K K K

K K K K K K K K

K K K K

     (76) 

and where the ˆ
iK ’s are given by Equation (71) and Equations (45)-(47). Equa-

tion (72) gives the amplitude of the limit cycle born at the Hopf bifurcation in 
terms of the original system parameters. The numerical values are calculated via a 
computer routine and the outcome for different N will be presented in Section 6. 

6. Numerical Results 

In this section we use our closed form expressions to investigate the nonlinear be-
havior of Equations (40)-(41) close to the Hopf bifurcation. Setting = + ∆crT T , 

0.2µ = , 0 2=jp , and 3=n , we compute the amplitude of the limit cycle born 
at the Hopf by using Equation (72). Our results for 2=N , summarized in Fig-
ure 5, show that the Hopf occurs at 0.3087=crT  and the amplitude of the limit 
cycle grows as ∆  becomes larger. Several points along the amplitude curve 
were tested using MATLAB’s built-in function dde23.m on the original DDE 
system (40)-(41). Figure 5 shows a comparison between our perturbation curve 
and eight points computed with MATLAB, all of which were in agreement. In 
addition, we also present one dde23.m numerical simulation, point a5, which 
shows that the amplitude is approximately 4.350 when 0.05∆ = .  
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Figure 5. Amplitude VS Detuning graph. 0.3087=crT  was calculated using Equatuon (55) 
and the amplitudes calculated using various detuning (Delta) values as described in the table. 
Here we present one explicit numerical simulation result for 0.3087 0.050= +T , labeled as 
point a5, which was obtained using MATLAB’s built-in function dde23.m. The rest of the 
amplitude values were confirmed using MATLAB on the full nonlinear system (40)-(41). 
 

 

Figure 6. Amplitude VS Detuning plots for N = 2, 7, 15, and 30. Other parameter values 
were set as 3=n  and 0 2=jp  for 1, 2, ,= j N . Table shows numerical values for the 

different amplitudes obtained for various N. 
 

Figure 6 shows the same analysis described above for 2,7,15=N  and 30. 
Different values of crT  were found for each N and the detuning was set as 
0 0.230≤ ∆ ≤  for comparison purposes. These results were all confirmed with 
MATLAB and they show the accuracy of our closed form expressions in pre-
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dicting the critical delay, stability, and amplitude of the oscillation for large val-
ues of N. In addition, they also show the influence and significance of the origi-
nal model parameters on the system’s dynamics, where (regardless of N) our 
model will always exhibit a transition between equilibrium and oscillation due to 
a Hopf bifurcation. We point out, however, that our perturbation results did not 
match MATLAB’s numerical findings for 0.230∆ > . This is attributed to the 
nature of our perturbation technique, where the results are guaranteed for small 
ε  as given by Equation (62). Thus, the limits of this approach rely on 1∆ , 
that is, they are limited to a small neighborhood about = crT T , which is com-
monly the case with any kind of perturbation technique.  

7. Conclusions 

In this paper we investigated the periodic solutions of a mRNA-protein nonli-
near model with negative feedback and delay. Nonlinear models exhibiting these 
features are usually good candidates for periodic behavior. In this work we show 
that, regardless of the size of the network, having these features yields a dynami-
cal system that always transitions from a stable steady state to a limit cycle oscil-
lation via a Hopf bifurcation. The standard approach to study Hopf bifurcations 
for DDEs is to use the more conventional center manifold approximation [17] 
[18]. However, for a network of this size, this would be a computationally in-
tractable endeavor and thus our approach presents a new way on how these 
perturbation techniques are a useful tool to better understand the dynamics of 
large networks with nonlinear interactions and delays. 

Our closed form approximate expressions for the amplitude of the limit cycle 
provide a useful way to understand the different roles that the system’s parame-
ters play in the dynamics of the periodic motion. We point out, however, that 
our linear and nonlinear computational analyses are possible due to the symme-
tric nature of our network: where we have assumed that all the systems share the 
same degradation rate µ , every mRNA is equally repressed by every protein, 
and biological location within the cell is not taken into account. Regardless of 
these simplifications, this study shows the importance of the nonlinearities aris-
ing from the Hill term in Equation (40) and the delay, both of which give rise to 
the periodic dynamics of the system. Future research efforts should be directed 
towards relaxing these symmetric conditions. For example, including a “weight-
ing” function on the Hill term of Equation (40) would take into account the net 
effect that a protein has on each mRNA. The latter would be more significant, 
from a biological viewpoint, because not every protein represses equally each 
mRNA. Another direction would be to assume different degradation rates µi ’s 
for each protein and mRNA. Finally, considering different synthesis rates, αm  
and α p , would be another interesting direction that could allow us to classify 
the significance of each of these biological parameters with regards to the sys-
tem’s periodic behavior. The analysis of the system in these new directions 
proves to be computationally cumbersome from a perturbation analysis point of 
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view. However, new findings in the fields of DDEs and perturbation theory will 
prove that these research directions will provide more insight into the rich dy-
namics exhibited by these networks. 
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