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Abstract 
This paper investigates the finite-time H∞ control problem of switched non-
linear systems via state-dependent switching and state feedback control. Un-
like the existing approach based on time-dependent switching strategy, in 
which the switching instants must be given in advance, the state-dependent 
switching strategy is used to design switching signals. Based on multiple Lya-
punov-like functions method, several criteria for switched nonlinear systems 
to be finite-time H∞ control are derived. Finally, a numerical example with 
simulation results is provided to show the validity of the conclusions. 
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1. Introduction 

Switched systems consist of a series of continuous or discrete subsystems and a 
switching signal that coordinates the switching between these subsystems. As a 
special class of hybrid systems, switched systems have been widely used in the 
traffic control, network control, automotive roll dynamics control and mobile 
robot control in the past years [1] [2] [3] [4]. It should be pointed out that the 
dynamic behavior of switching systems become complicated due to the existence 
of switching signals, which has attracted much attention. Recently, there have 
been a lot of important work on switched systems, such as stability, stabilization, 
sliding mode control and so on [5] [6] [7] [8]. Specifically, the stability of switch-
ing systems is not equivalent to the stability of subsystems, as switching signals 
play a crucial role. Thus, appropriate controllers are often needed to better achieve 
system performance. Generally speaking, from the perspective of the switching 
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instant, the switching signal can be divided into two types: time-dependent [9] 
[10] [11] [12] and state-dependent [13] [14] [15] [16] (sometimes also combina-
tions of the above types). For the former type, the switching instant must be 
known in advance, and the switching between subsystems occurs at a fixed time. 
However, the switching instant is usually a priori unknown, and state-dependent 
switching that based on the current state of the system is needed under the cir-
cumstance, as is shown in Figure 1. Because the switching instant does not need 
to be predetermined, state-dependent switching strategies have been widely used 
in various fields [13] [17], such as power control, chemical system and aircraft 
control [18]-[24].  

In recent years, most of the existing literature related to the stability of switched 
systems has focused on Lyapunov asymptotic stability, which is defined over an 
infinite time interval. However, in many practical applications, it always needs to 
concern the behavior of the system over a finite time, where large values of the 
state are unacceptable. In addition, a dynamical system may show poor perfor-
mances in a finite time interval with short working time although it eventually 
satisfies asymptotic stability. Therefore, it is necessary to study the transient per-
formance of systems. In this case, the finite-time stability as a concept of short 
time stability is introduced, which is an independent concept comparing with 
Lyapunov asymptotic stability and can be used to estimate the boundedness of 
states within a prescribed bound in a fixed time interval if a bound on the initial 
condition is given. Recently, some results have been obtained about transient 
performance of systems in a finite time interval. For example, in [6], authors stu-
died the finite-time stability of switched systems based on time-dependent switch- 
ing. Furthermore, some achievements have also been made about the transient 
performances of switched systems in the framework of state-dependent switch-
ing strategy. In [25], authors investigated the finite-time stabilization and boun-
dedness problems of switched linear systems. Several sufficient criteria were 
given to guarantee the finite-time stabilization of switched nonlinear systems in 
[26]. 
 

 

Figure 1. State-dependent switching. 
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In many practical systems, the inevitable external disturbance may lead to 
system instability. In this case, we hope that not only the influence of external 
disturbance on output variables can be controlled, but also the expected perfor-
mance of the system can be obtained. H∞ control is an effective method to deal 
with these issues. The advantage is that the output has an upper bound by limit-
ing external disturbances, while ensuring internal stability. Many literatures on 
H∞ control have been reported [27] [28] [29] [30] [31]. In [27] [28], authors in-
vestigated the finite-time H∞ control of switched systems under time-dependent 
switching. Under state-dependent switching, the finite-time H∞ dynamic output 
feedback control for nonlinear impulsive switched systems has been proposed by 
[29]. In [31], authors studied asynchronous H∞ control for discrete-time switched 
systems under state-dependent switching with dwell time constraint. It should 
be noted that the finite-time H∞ state feedback control for switched nonlinear 
systems has not been fully studied, especially under state-dependent switching. 
This motivated the research of this paper. 

This paper aims to investigate the finite-time H∞ control problem of switched 
nonlinear systems under state-dependent switching. The main contributions of 
this paper can be highlighted as follows: 1) different from time-dependent switch-
ing, the state-dependent switching strategy studied in this paper is based on the 
state of the system without giving the switching instant in advance; 2) using the 
multiple Lyapunov-like functions method, the sufficient conditions to guarantee 
the finite-time H∞ control for switched nonlinear systems are proposed, and 
sliding motion is also considered; 3) what is different from the previous method 
is that the largest region function strategy is adopted in this paper. 

The remainder of this paper is organized as follows. Section 2 introduces some 
necessary preliminary knowledge. In Section 3, several sufficient criteria for swit- 
ched nonlinear systems to be finite-time H∞ control are proposed. A numerical 
simulation is given to demonstrate the validity of our methods in Section 4. Sec-
tion 5 describes the conclusions of this paper. 
Notations. Let   denote the set of real numbers, n  represent the n-di- 
mensional real space equipped with the Euclidean norm ⋅ , +  be the set of 
positive integers. For a matrix A, 0A >  ( 0A < , 0A ≥ , 0A ≤ ) denotes that A 
is a positive definite (negative definite, positive semi-definite, negative semi-de- 
finite) matrix, ( )max Aλ  ( ( )min Aλ ) denotes the maximum (minimum) eigen-
value of A, TA  means the transpose of A and 1A−  represents the inverse of 
A. Unless otherwise specified, I stands for the identity matrix with appropri-
ate dimensions,   is the symmetric block in a symmetric matrix and Λ =
{ }1,2, , ,n n +∈�   is an index set. 

2. Preliminaries 

Consider the following switched nonlinear system  

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )

,

,

x t A x t B u t C f x t G t

y t D x t E t
σ σ σ σ

σ σ

ω

ω

 = + + +


= +

�
            (1) 
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where ( ) nx t ∈  is the neural state vector, ( )( )f x ⋅  represents the neuron ac-
tivation function; ( ) lu t ∈  is the control input, ( ) qtω ∈  is the exogenous 
disturbance, and ( ) my t ∈  is the controlled output. , , , ,A B C D Eσ σ σ σ σ , and 
Gσ  are constant real matrices. ( ): tσ σ=  which takes values in the finite set 

{ }1,2, ,NI N= � , N +∈  is the switching signal characterized by the switching 
sequence ( ) ( ) ( )0 0 1 1, , , , , ,j ji t i t i t�  and iσ =  means that the ith subsystem is 
activated. 

The state feedback controller is given by  

( ) ( ).u t K x tσ=                          (2) 

Substituting Equation (2) into system (1), we can get the following closed-loop 
system  

( ) ( ) ( )( ) ( )
( ) ( ) ( )

,

,
i i i

i i

x t A x t C f x t G t

y t D x t E t

ω

ω

 = + +


= +

��
               (3) 

where i i i iA A B K= +� . 
For further discussion, the following assumptions are made.  
(H1) For the continuously bounded neuron activation functions ( ) ,jf j⋅ ∈Λ , 

there exist some real constants ,j jl l− +  such that  

( ) ( )1 2
1 2 1 2

1 2

, , , .j j
j j

f v f v
l l v v v v

v v
− +−
≤ ≤ ∈ ≠

−
  

Define { }1 1 1diag , , n nL l l l l− + − += � , 1 1
2 diag , ,

2 2
n nl ll lL
− +− + ++

=  
 

� . 

(H2) Given a constant T, the exogenous disturbance ( )tω  satisfies  

( ) ( )T
0

d , 0.
T

t t s d dω ω ≤ >∫  

To identify a Lyapunov-like function for one of the switched subsystems, the 
whole state space n  should be divided into N pieces, denoted by iΩ  cover 
the whole state space, i.e., the following covering property holds  

1
.

N
n

i
i=
Ω = �∪  

For simplicity, we assume that each region iΩ  has the following quadratic 
representation  

{ }T| 0 ,  ,n
i i Nx x Q x i IΩ = ∈ ≥ ∈  

where ,n n
iQ i I×∈ ∈  is symmetric matrix. 

The following lemma gives a sufficient condition for the covering property.  
Lemma 1 ([32]). If for every nx∈ ,  

T

1
0,

N

i i
i

x Q xθ
=

≥∑  

where 0,i Ni Iθ ≥ ∈ , then 1 2
n

NΩ ∪Ω ∪ ∪Ω =�  .  
Define the switching law according to the following largest region function  
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( ) { }Targ max ,ii I
t x Q xσ

∈
=  

and define ijΩ  as follows  

{ }T T| ,   , .n
ij i j Nx x Q x x Q x i j IΩ = ∈ = ∈�  

To have a well-defined switched system, these regions have to satisfy two 
properties, that is, covering property and switching property ij i jcl clΩ ⊆ Ω ∩ Ω , 
where cl  denotes the closure of a set. 

Throughout this paper, the following definitions are needed.  
Definition 1. (Finite-Time Stable, FTS [33]) Given a positive definite matrix 

R, three positive constants 1c , 2c , T, with 1 2c c< , and a switching signal σ , the 
continuous-time switched nonlinear system (1) with ( ) 0u t ≡  and ( ) 0tω ≡  is 
said to be finite-time stable with respect to ( )1 2, , , ,c c T R σ , if T

0 0 1x Rx c≤ ⇒

( ) ( )T
2x t Rx t c< , [ ]0,t T∀ ∈ .  

Definition 2. (Finite-Time Bounded, FTB [33]) Given a positive definite matrix 
R, three positive constants 1c , 2c , T, with 1 2c c< , and a switching signal σ , the 
system (3) is said to be finite-time bounded with respect to ( )1 2, , , , ,c c d T R σ , if 

( ) ( )T T
0 0 1 2x Rx c x t Rx t c≤ ⇒ < , [ ]0,t T∀ ∈ , ( ) ( ) ( )T

0
: d

T
t t t t dω ω ω∀ ≤∫ .  

Definition 3. (Finite-Time H∞ contro [28]) The switched nonlinear system (1) 
is said to be finite-time stabilizable with H∞ disturbance attenuation level γ , 
if there exists a control input ( )u t  and a switching signal σ , [ ]0,t T∀ ∈  such 
that 

1) The corresponding closed-loop system is finite-time bounded; 
2) Under the zero-initial condition, the controlled output ( )y t  satisfies  

( ) ( ) ( ) ( )T 2 T
0 0

d d ,
T T

y t y t t t t tγ ω ω≤∫ ∫  

where 0γ >  is a prescribed scalar and ( )tω  satisfies (H2).  

3. Main Results 

Theorem 1. Suppose that (H1) holds. If there exist matrices 0iP > , T
i iQ Q= , 

iX , iM , diagonal matrices 0iW >  with compatible dimensions and constants 
0iθ ≥ , 0ijη > , 0α > , 0β >  such that  

11 12

0 0,
i i

i

PG
W

Iβ

Π Π 
 − < 
 − 


 

                     (4) 

1
0,

N

i i
i

Qθ
=

≥∑                           (5) 

( ) 0,  ,i j ij i jP P Q Q i jη− + − = ≠                   (6) 

,i i i iPB B M=                           (7) 

( )1 1 2 2e ,T c d cα λ β λ+ <                       (8) 

where 
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T T T
11 1i i i i i i i i i iA P P A X B B X LW PαΠ = + + + − − , 12 2i i iPC L WΠ = + , 

1 1
2 2

i iP R PR
− −

= , ( )( )1 maxmax
N

ii I
Pλ λ

∈
= , ( )( )2 minmin

N
ii I

Pλ λ
∈

= , 

then switched nonlinear system (3) is FTB with respect to ( )1 2, , , , ,c c d T R σ  un-

der the switching signal ( ) { }Targ max
N

ii I
t x Q xσ

∈
= . Moreover, the feedback control 

gains can be designed by 1
i i iK M X−= .  

Proof. Choose the Lyapunov function ( ) ( ) ( )T
i iV t x t Px t= , which is used to 

measure the energy in the region iΩ . 
Case 1: No sliding motion occurs. Assume ( )( )kx t jσ − =  and ( )( )kx t iσ = . 

when [ )1,k kt t t +∈ , the derivative of ( )iV t  along the trajectories of subsystem i 
yields  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )T T T T2 2 .i i i i i i i i iV t x t A P P A x t x t PC f x t x t PG tω = + + + 
� ��   (9) 

From (7), we obtain  

( ) ( ) ( ) ( ) ( )( )
( ) ( )

T T T T T

T

2

2 .
i i i i i i i i i i i

i i

V t x t A P P A X B B X x t x t PC f x t

x t PG tω

 = + + + + 
+

�
 

It follows from assumption (H2) that  

( )( ) ( )( ) ( )( ) ( )( ) 0, ,j j j jf x t l x t f x t l x t j− +− − ≤ ∈Λ  

i.e.  

( )
( )( )

( )
( )( )

T T T

T
0,2

j j
j j j j j j

j j

l lx t x tl l e e e e
f x t f x t

e e

− +
− +

 +   −  ≤       
    

 
 

for every j∈Λ , where je  indicates the column vector with j-th element to be 
1 and others to be 0. Then, for any diagonal matrices 0iW > , the following in-
equalities hold.  

( )
( )( )

( )
( )( )

T
1 2 0.i i

i

x t x tLW L W
f x t f x tW

   − 
≤           

             (10) 

Noting that no sliding motion occurs, we have β̂ β= . It can be deduced from 
(4), (9) and (10) that  

( ) ( ) ( )
( )[ ] ( )( ) ( ) ( ) ( )( ) ( )( )

( )
( )( )
( )

( )
( )( )
( )

( ) ( ) ( )

T T T T
1

T T T
2

T
T T T

1 2

T

2 2

0
0

.

i i i i i i i i i i

i i i i i i

i i i i i i i i i i i i i i

i

i

V t x t A P P A X B B X LW x t

x t PC L W f x t x t PG t f x t W f x t

x t A P P A X B B X LW PC L W PG x t
f x t W f x t

t t

V t t t

ω

ω ω

α βω ω

 ≤ + + + − 
+ + + −

    + + + − +
    

= −    
    

    
< +

�


 

(11) 

Integrating (11) from tk to t gives  
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( ) ( ) ( ) ( ) ( ) ( )Te e d .k

k

tt t t s
i i k t

V t V t s s sα αβ ω ω− −< + ∫             (12) 

When the systems switch from jΩ  into iΩ  at kt t= , it follows from the swit- 
ching rule that T T

i jx Q x x Q x>  at kt t= . Then by (6), we have  

( )T T T 0,i i ij i jx Px x Px x Q Q xη− = − − <  

which implies that ( ) ( )i k j kV t V t−< . Thus,  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

1

1

1

T

T
1

T

T
1

e e d

e e e d

e d

e e d

k

k

kk k k k

k

k

k

k

tt t t s
i j k t

tt t t t t s
j k t

t t s

t

tt t t s
j k t

V t V t s s s

V t s s s

s s s

V t s s s

α α

α α α

α

α α

β ω ω

β ω ω

β ω ω

β ω ω

−

−

−

−

− −−

− − −
−

−

− −
−

< +

 < +  

+

< +

∫

∫

∫

∫

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

T
0 0

T
0 0

0

e 0 e d

e 0 e d

e 0 .

t t st

TT T

T

V s s s

V s s s

V d

αα
σ

α α
σ

α
σ

β ω ω

β ω ω

β

−< +

≤ +

≤ +

∫

∫                   (13) 

Note that  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

T T T2 2
2 ,i i iV t x t Px t x t R PR x t x t Rx tλ= = ≥        (14) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1

T T T2 2
10 0 00 0 0 0 0 0 0 .x xV x P x x R P R x x Rxσ σ σ λ= = ≤   (15) 

According (8) and (13) - (15), we get  

( ) ( ) ( )T
1 1 2

2

e .
T

x t Rx t c d c
α

λ β
λ

< + <  

Therefore, the switched system (3) is finite-time bounded. 
Case 2: When sliding motion occurs, it will occur at states satisfying  

T Tmax max
N N

i ji I i I
x Q x x Q x

∈ ∈
= , which are states where the subsystem changes occur. A 

sliding motion may occur at surface ijΩ , i.e. T T 0i jx Q x x Q x= ≥ . When the 
sliding motion occurs along the hyper-surface ijΩ , it implies that  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

T T T

T

2

2 0,

i i j i j i i j i

i j i

x t A Q Q Q Q A x t x t Q Q C f x t

x t Q Q G tω

   − + − + −   
 + − < 

� �
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

T T T

T

2

2 0.

j i j i j j i j j

i j j

x t A Q Q Q Q A x t x t Q Q C f x t

x t Q Q G tω

   − + − + −   
 + − > 

� �
 

The system dynamic on the sliding surface can be expressed as  

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) [ ]1 ,  0,1 .

i i i

j j j

x t A x t C f x t G t

A x t C f x t G t

ρ ω

ρ ω ρ

 = + + 
 + − + + ∈ 

��

�
      (16) 

From (6) and 0ijη > , we have  
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

T T T

T

2

2 0,

i j i j i i j i i

j i i

x t A P P P P A x t x t P P C f x t

x t P P G tω

   − + − + −   
 + − < 

� �
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

T T T

T

2

2 0.

j j i j i j j i j

j i j

x t A P P P P A x t x t P P C f x t

x t P P G tω

   − + − + −   
 + − > 

� �
 

It follows from Case 1 that  

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

T T T T

T T T T

T T

2 2

2 2

,

i j j i j i j i

i i i i i i i i

i

x t A P P A x t x t P C f x t x t P G t

x t A P P A x t x t PC f x t x t PG t

x t Px t t t

ω

ω

α βω ω

 + + + 
 < + + + 

< +

� �

� �  

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T

T T T T

T T

2 2

2 2

.

j i i j i j i j

j j j j j j j j

j

x t A P P A x t x t PC f x t x t PG t

x t A P P A x t x t P C f x t x t P G t

x t P x t t t

ω

ω

α βω ω

 + + + 
 < + + + 

 < + 

� �

� �  

Then the derivatives of ( )iV t  and ( )jV t  along the trajectories of system (16) 
yield  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T T T

T

T

T T

T T

T T

1

2 1

2 1

1

,

i i i i i j i i j

i i i j

i i i j

i

j

i

V t x t A P P A A P P A x t

x t PC PC f x t

x t PG PG t

x t Px t t t

x t P x t t t

x t Px t t t

ρ ρ

ρ ρ

ρ ρ ω

ρ α βω ω

ρ α βω ω

α βω ω

 = + + − + 
 + + − 
 + + − 

 < + 
 + − + 

= +

� � � ��

 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T T T

T

T

T T

T T

T T

1

2 1

2 1

1

.

j j j j j i j j i

j j j i

j j j i

j

i

j

V t x t A P P A A P P A x t

x t P C P C f x t

x t P G P G t

x t P x t t t

x t Px t t t

x t P x t t t

ρ ρ

ρ ρ

ρ ρ ω

ρ α βω ω

ρ α βω ω

α βω ω

 = + + − + 
 + + − 
 + + − 

 < + 
 + − + 

= +

� � � ��

 

Then the rest of proof is the same as Case 1. This completes the proof.        
Remark 1. In [34] [35] [36], authors studied the FTB of switched systems, but 

most of them are based on time-dependent switching, that is, the switching in-
stant needs to be given in advance. There are few results using state-dependent 
switching strategy, especially for nonlinear systems. Moreover, the system state 
may generate sliding mode motion on the switching surface under the switching 
signal ( )tσ . However, with the help of the multiple Lyapunov method and LMIs 
technique, the FTB of the nonlinear switched system (3) can be ensured by Theo-
rem 1 whether the sliding mode appears or not under the state-dependent switch-
ing signal we designed.  
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Theorem 2. Suppose that (H1) and (H2) hold. Given constant 0γ > , if there 
exist matrices 0iP > , T

i iQ Q= , iX , iM , diagonal matrices 0iW >  with com-
patible dimensions and constants 0iθ ≥ , 0ijη > , 0α > , 0β >  such that  

T
11 12

T

0 0
0,

i i i

i

i

PG D
W

I E
I

β
δ

 Π Π
 

−  < −
  − 


 
  

                  (17) 

1
0,

N

i i
i

Qθ
=

≥∑                          (18) 

( ) 0,  ,i j ij i jP P Q Q i jη− + − = ≠                  (19) 

,i i i iPB B M=                         (20) 

( )1 1 2 2e ,T c d cα λ β λ+ <                      (21) 

where 
2e Tαγδ
β

−

= , 11 12 1 2, , , λ λΠ Π  are the same as in Theorem 1, then switched 

nonlinear system (1) is finite-time stabilizable with H∞ disturbance attenua-
tion level γ  with respect to ( )1 2, , , , ,c c d T R σ  under the switching law ( )tσ =

{ }Targ max
N

ii I
x Q x

∈
. Moreover, the feedback control gains can be designed by 

1
i i iK M X−= .  

Proof. Choose the Lyapunov function ( ) ( ) ( )T
i iV t x t Px t= . The FTB can be 

easily proved following the proof procedure of Theorem 1. Moreover, by schur 
complement lemma, condition (17) is equivalent to  

11 12 13

33

0 0iW
 Π Π Π
 

− < 
 Π 

� �

�

 

 

where 

T T T
11 1

1
i i i i i i i i i i i iA P P A X B B X D D LW Pα

δ
Π = + + + + − −� , 

T
13

1
i i i iPG D E

δ
Π = +� , T

33
1

i iE E Iβ
δ

Π = −� . 

Then, we have  

( ) ( ) ( ) ( )( ( ) ( ) ( ) ( )

( ) ( )) ( ) ( )

( ) ( ) ( ) ( ) ( )

T T T T T T

T T T

T T

1

1 .

i i i i i i i i

i i

i

V t V t x t D D x t w t E D x t x t D E w t

w t E E w t t t

V t y t y t t t

α
δ

βω ω

α βω ω
δ

< − + +

+ +

= − +

�

 

It can be derived that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T
0 20

ee 0 e d .
Tt t st

iV t V y s y s s s s
α

αα
σ β ω ω

γ
−  

< + − + 
 

∫  
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Note that ( ) 0iV t >  and ( ) ( )0 0 0Vσ =  with the given conditions in Theorem 2. 
It follows that  

( ) ( ) ( ) ( ) ( )T T
20

ee d 0,
TT t s y s y s s s s

α
α ω ω

γ
−  

− + > 
 

∫  

which implies  

( ) ( ) ( ) ( ) ( )T 2 T
0 0

d e e d .
T T t sTy s y s s s s sααγ ω ω−−<∫ ∫  

Therefore,  

( ) ( ) ( ) ( )T 2 T
0 0

d d .
T T

y s y s s s s sγ ω ω<∫ ∫  

The switched nonlinear system (1) is finite-time stabilizable with H∞ perfor-
mance γ . This completes the proof.                                   

Remark 2. In [28], based on time-dependent switching, authors investigated 
the finite time H∞ control for switched systems. In [36], authors studied the FTB 
problems of switched systems under time-dependent switching. Different from 
the time-dependent switching, the switching instant of the state-dependent swit- 
ching is unknown, which is more practical. The finite-time stabilization and FTB 
of switched systems were considered based on state-dependent switching in [25]. 
Several sufficient conditions for the finite-time stability and L2-gain analysis of 
switched linear systems were derived in [33]. However, the systems they consi-
dered are linear and the resultes do not involve the investigation of the finite- 
time H∞ control. Moreover, the output only depended on the states of the system. 
By designing the appropriate switching law and considering the output related to 
both the system states and the external disturbance, some sufficient conditions 
are provided to guarantee the finite-time H∞ controllability of the nonlinear 
switched system (1) in Theorem 2, which extends and enriches the results in [25] 
[33].  

Corollary 1. Suppose that (H1) holds. If there exist matrices 0iP > , T
i iQ Q= , 

diagonal matrices 0iW >  with compatible dimensions and constants 0iθ ≥ , 
0ijη > , 0α >  such that  

11 12 0,
iW

Π Π 
< − 

                       (22) 

1
0,

N

i i
i

Qθ
=

≥∑                          (23) 

( ) 0,  ,i j ij i jP P Q Q i jη− + − = ≠                  (24) 

1 1 2 2e ,T c cα λ λ<                         (25) 

where 
T

11 1i i i i i iA P P A LW PαΠ = + − − , 12 2i i iPC L WΠ = + , 

1 1
2 2

i iP R PR
− −

= , ( )( )1 maxmax
N

ii I
Pλ λ

∈
= , ( )( )2 minmin

N
ii I

Pλ λ
∈

= , 
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then switched nonlinear system (1) with ( ) 0u t =  and ( ) 0tω =  is FTS with 

respect to ( )1 2, , , ,c c T R σ  under the switching law ( ) Targ max
N

ii I
t x Q xσ

∈

 =  
 

. 

4. Example 

In this section, an example is given to illustrate the effectiveness of the proposed 
methods. 

Two subsystems are considered, i.e., ( ) { }1,2Nt Iσ ∈ = . Consider the switched 
nonlinear system (1) with parameters as follows  

1

0.37 0.47
1.8 0.79

A  
=  
 

, 1

1.15
0.64

B  
=  
 

, 1

1.15 0.21
0.59 0.2

C  
=  
 

, 

1

0.59 0.15
0.15 0.62

G  
=  
 

, ( )1 1.05 0.45D = , ( )1 0.16 0.59E = , 

2

0.29 0.97
1 0.9

A  
=  
 

, 2

0.27
0.56

B  
=  
 

, 2

1.2 0.64
0.45 1.12

C  
=  
 

, 

2

0.62 0.1
0.16 0.58

G  
=  
 

, ( )2 1.05 0.95D = , ( )2 0.26 0.29E = , 

( ) ( )
( )

0.2cos 2.7 1
0.2sin 2

t
t

t
ω

 − +
=   
 

, ( ) ( ) ( )tanh 0.4rf s f s s= = . 

It is easy to get that { }1 diag 0,0L = , { }2 diag 0.2,0.2L = . We choose 0.01α = , 
0.65β = , 1 0.015c = , 2 0.6c = , 1 2 1θ θ= = , 0.9ijη = , 0.9γ = , R I= , 10T = . 

Then solve the inequality in Theorem 2 by using Matlab LMI toolbox, one may 
find the following feasible solutions  

1

5.5107 0.1112
0.1112 6.9027

Q
− 

=  − 
, 2

6.5242 0.1112
0.1112 5.1322

Q  
=  
 

, 

1

1.4711 0.2079
0.2079 0.7740

P  
=  
 

, 2

0.5589 0.0077
0.0077 2.3675

P  
=  
 

, 

1

3.2795 0
0 3.2795

W  
=  
 

, 2

5.5623 0
0 5.5623

W  
=  
 

, 

( )1 7.8213 5.2151X = − − , ( )2 9.1366 19.7584X = − − , 

( )1 5.2742 3.5168K = − − , ( )2 4.4955 9.7217K = − − , 

1 1.4829M = , 2 2.0324M = . 

As we can see, the switched nolinear system (1) is unbound without control in 
Figure 2. Figure 3 shows that the trajectories of the closed-loop system (3) with 
the state feedback controller (2). Moreover, we can clearly see that the system (3) 
is FTB with respect to ( )0.015,0.6,0.41,10, ,I σ  from Figure 4. And Figure 5 
illustrates the switching signal ( )tσ . Furthermore, the system (1) has H∞ dis-
turbance attenuation level 0.9γ = , which is shown in Figure 6. 
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Figure 2. The state trajectories of 1x  and 2x  without control. 

 

 

Figure 3. The state trajectories of 1x  and 2x  with the state feedback controller (2). 

 

 

Figure 4. The trajectories of ( ) ( )Tx t Rx t  with the state feedback controller (2). 
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Figure 5. The switching signal ( )tσ . 

 

 

Figure 6. The H∞ disturbance attenuation level 0.9γ = . 

5. Conclusion 

In this paper, the problem of finite-time H∞ control for switched nonlinear sys-
tems with a state-dependent switching signal has been investigated, where the 
output considered is related to both the current states and the external distur-
bance. By using the multiple Lyapunov method and the free weight matrix tech-
nique, several sufficient conditions for finite-time H∞ control of the system with 
and without sliding mode motion are proposed respectively. Finally, the validity 
of the conclusion is verified by numerical simulation.  
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