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Abstract 
The paper highlights the concept of dimensional analysis of dynamical va-
riables to infer quantum and relativistic information. The mathematical mod-
el implements not only single dynamical variables, but also their appropriate 
combinations; this chance is the added value to infer physical information. 
The postulates of relativity are found as corollaries in this conceptual frame. 
In particular even the statistical formulation of the quantum uncertainty, which 
has been proven valuable source of physical information itself, is obtained as 
a straightforward corollary along with the wave equation and the relativistic 
invariants. It is shown in the paper how to infer information on the nature of 
black holes and dark matter. 
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1. Preliminary Considerations on the Physical Model 

This section aims to show that simple considerations on the dimensional analy-
sis of acceleration a and diffusion coefficient D enable valuable relativistic and 
quantum information. The text is organized in order to be as self-contained as 
possible. 

1.1. Dimensional Analysis of Acceleration a and Diffusion  
Coefficient D 

According to mere dimensional considerations, it is possible to introduce via a 
the basic dynamical variables 

2 3

2
1 1 ,a a c c ca a p a m a

c tc
ε= = = = = = =

� � � �
a p p      (1.1) 
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being , ,m t�  arbitrary length, mass and time in a reference system where the 
moduli a and p of acceleration and momentum are as indicated. These prelimi-
nary definitions implement c to emphasize the chance of relating the basic dy-
namical variables uniquely to a via a constant proportionality coefficient. This 
initial approach is classical, e.g. the derivatives have their standard meaning. The 
same holds to introduce combinations of dynamical variables as well as a func-
tion of a, in particular also  

2 3 2
2

2 2 energy density.Pl
e c G acG G m

t G m c Gα
= = = = =

� � �
�     (1.2) 

Moreover, since  
4 4

,Pl Pl
c caG ma F F
m G

= ⇒ = =                 (1.3) 

one finds  
6 2

2
3 2 ,c m mG mGmc G

aG c a c
τ= = ⇒ = = =

�
�

�
          (1.4) 

being τ  an arbitrary time; hence  
3 2 .mG cτ ττ τ= =� �                      (1.5) 

Analogous considerations hold for D. A further example of straightforward 
proportionality link is obtained merging a and D, whose physical dimensions are 
length2/time; e.g.  

2
3 3 3

2 .D DaD c t
a a

= = =�                    (1.6) 

These definitions are not mere exercise of dimensional analysis: the fact that 
arbitrary values of a can be uniquely related to the basic ingredients of all physi-
cal equations via combinations of fundamental constants of nature, emphasizes 
one of the aims of this paper: regarding the concept of acceleration only as mere 
change of velocity of a matter body in a force field, is reductive. Rather it is use-
ful to regard a in a more general and heuristic way, i.e. still implementing its 
physical dimensions but replacing more realistically c with a variable velocity 
modulus v depending on the specific physical problem. To account for the vec-
tor character of acceleration, for example, the dimensional Equations (1.1) are 
more conveniently rewritten as  

2

2

d :
d

v
a v

t
c

= =
�

�




                      (1.7) 

introducing the scalar function ( )2velocityϕ ϕ= , the upper line yields  
2 ,vϕ ϕ∝ ±∇ ∝a                       (1.8) 

whereas �  is such that the component a�  of the vector a  along the arbi-
trary direction �  reads in general  
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d .
d

a ϕ
∝ ±� �

                          (1.9) 

Note now that ϕ  is potential energy per unit mass, so it takes in general the 
form appropriate to the specific purposes; here however it is defined in order to 
be suitable for gravitational problems. In fact, classically  

2d d d dd d d .
d d d d 2
v vv v v const
t t v

ϕ ϕ ϕ ϕ ϕ= ± ⇒ = ± = ± ⇒ = ± ⇒ = ± +� �
� � �

�� �
(1.10) 

So in general ϕ  is a function defined by its own value of velocity; with the 
minus sign, in particular, it is the gravitational potential ϕ− . In the following 
ϕ  is regarded as a positive quantity, whereas 2ϕ−  is the classical gravitational 
potential. 

Follow some straightforward physical implications of this preliminary analy-
sis. 

1.2. Introductory Corollaries 

What are the definitions (1.1) to (1.7) for? First of all it is necessary to show their 
self-consistency, in particular as concerns (1.7), and then their physical implica-
tions. 

Consider first the lower line (1.7) that yields by differentiating 0a aδ δ+ =� �  
and thus  

a v va
t t

δ δ δ δ δ
δ δ δ δ δ

= − = − = −� � �
� � �

               (1.11) 

as δ �  and tδ  are arbitrary and independent differential ranges in defining v, 
arbitrary itself as well. Suppose that exists a function f fulfilling the following 
requirements  

,a v v L a L
t ff
δ δ δ δ δ
δ δ δ δδ

= − ⇒ = = −�� � � �
            (1.12) 

where L is a new function to be found. Then it is necessary that L fulfills in turn  

.a vL f fδδ δ δ
δ

= = �
� �

 

This function does in fact exist because, according to (1.1)  

1 1 :v v f f v t ff f f f f
t t t

δ δ δ δ δ δ δδ δ δ δ δ
δ δ δ δ δ

= ⇒ = ⇒ = ⇒ =
� �� � � �

� � � � � �
 

clearly 1δ =� �  is fulfilled for example by 0δ ′= − =� � � �  or by 0δ = −� �  
with 0 0=� . Anyway (1.11) and (1.12) yield the Lagrange equation of the gene-
ralized coordinate f, i.e.  

.a v L L
t f t f
δ δ δ δ δ
δ δ δ δ δ

− = − ⇒ = �� �
               (1.13) 

Consider now the upper line of (1.7). First of all regard again (1.1) as follows 
3 2 3 2c c c v v va m p a m pε ε= = = ⇒ = = =
� � � � � �
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and calculate  

23 2 1 :a mv pv
v

ε∂
= = =

∂
�  

of course the three energies can be made equal selecting appropriately the arbi-
trary values of the respective dynamical variables , ,p mε . Dividing all terms of 
this chain by an arbitrary volume 3V, this result reads  

22 11 ,
3 3 3

E aE pv mv
V V V V v

ε ε ε ε ε
′′ ′ ∂ ′ ′′= = = = = =

∂
�  

which in turn defines  

2 11 .
3 3 3

aP P
V v V V V

ε ε εη η η η η η
′′ ′∂′′ ′ ′′ ′= = = = = = =

∂
�  

Clearly the primed symbols η  are energy densities. The left hand side is dif-
ferent, but of course must have the same physical dimensions of energy density; 
then P can be nothing else but pressure. These results are eventually summarized 
as  

1, 2, 3,
3
jP jη= =                     (1.14) 

which relates energy density inside an arbitrary volume to the surface pressure, 
depending on whether the particles inside V are reflected and bounce or not 
when impinging on the internal surface. The chance P η=  is the state equation 
of an ideal gas. 

A similar attempt can be made with (1.3)  
4 4

,c vaG aG
m m

= ⇒ =                    (1.15) 

which can be integrated and yields  
1 34

0

0

3 tv v mGaG G v C
t m t mC m

∂  ± = ± = ⇒ = = ∂ + 
∓        (1.16) 

being C the integration constant. It appears that v is given by  
1 3

0 0
30 0 :Gv v t v

C
 ≤ ≤ ≤ ≤ ∞ =  
 

             (1.17) 

whatever 0m  and 0t  might be, v±  is bound in a well defined range  

0 0v v v− ≤ ≤  not dependent upon m itself above and below the time axis. More-
over, it also results  

1 3

0 0

3 3lim lim 0 lim :
t t t

t Gat v at v at v
mC t C→∞ → →

 = ⇒ ∝ = =  +  
     (1.18) 

i.e. the classical relationship is verified at times t mC�  only, i.e. at 0v v� . 
Eventually, since the integration constant is arbitrary, it is possible to examine 

the asymptotic case t mC� , at which (1.16) reads  

( )3
3 3 2

2
1.

3 3
vtmG mGv t
t t

ω ω≈ ⇒ = ≈ =∓ � ∓           (1.19) 
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At this point, here is a summary to check the self-consistency of these results: 
the previous (1.9), (1.7), (1.22) and (1.15) are  

4 2 4

.
2

v v v va a v
mG mG

ϕ ϕϕ∂ ∂ ∂
= ± = = ⇒ ± = ± =

∂ ∂ ∂
� � � �

� � �� � �
 

Then the condition to be checked requires solving  

( )3

2

11 ,
2

mGconstv v
mG v mG

+∂
± = ⇒ =
∂
� �

�

�
∓

�
 

i.e.  

1 ;mGv const mGconst
const

′= ± = +
′� �

 

in effect  
2

2 1
2 2
v mG m mm G const

const
ϕ ϕ

′
′ ′= ± = ± ⇒ = ± =

′
�

� �
       (1.20) 

with the minus sign is the Newtonian potential energy of m' in the field of m. 
Despite the classical approach, e.g. no care has been devoted to the reference 

system where are defined time and space coordinates and velocities, the out-
comes are not at all classical, see in particular (1.18) and (1.4); also, note that 
merging (1.1) one finds various admissible forms of energy correlatable to a, i.e.  

2
2 2.c c c c ca pc mc E pc mcε ε= ↔ ↔ ↔ ⇒ = ↔ ↔ ↔

�
� � � � �

   (1.21) 

These energies deserve special attention for their importance in relativity and 
are concerned later. At this point it is convenient to deal with the special relativ-
ity directly. 

1.3. Basics of Special Relativity 

- Consider an arbitrary constant diffusion coefficient 0D  and define  

( )0 0 0 ,D t D t tδ = −                      (1.22) 

which has physical dimensions of a time dependent square length; 0t  is an ar-
bitrary constant time, t an arbitrary time. Rewrite identically this expression as 
follows  

2 2 2 2 2 2 20 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

D DD t D t t t D t v t v t t t D t
t t

′ ′− = = − = − = = =� � �  (1.23) 

whence 2 2 2
0 0v t′ − =� � . Being 0 const=�  and t arbitrary, repeating the reason-

ing with 0 0 0D t D t′′ −  one would find 2 2 2
0 0v t′′′ ′′− =� � , whence 

2 2 2 2 2
0 0 0v t v t′′′ ′′ ′− = = −� � �                    (1.24) 

and so on; i.e., whatever the primed quantities might be, one infers with simpli-
fied notation  

2 2 2
0 .v t invariant− =�                      (1.25) 

An elementary dimensional analysis has shown that (1.25) defines an inva-
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riant because anyway both sides share a common value fixed by the arbitrary 
constant 0� . This result is particularly significant because it is shown in [1] [2] 
that the invariant interval is the foundation of all special relativity. Clearly 0v  is 
a finite velocity, it would be a nonsense to divide 0D  by 0 0t = ; usually this 0v  
is indicated in the literature as c, which cannot be infinite because 0 0D t  must 
be finite by definition. 

Moreover put 0 0 0v t = � ; multiplying both sides of (1.25) by the constant 2
0t  

yields  

( ) ( ) ( ) ( )2 2 2 2
0 0 0 0 ,t t invariant t t t invariant′ ′ ′− = = − ⇒ =� � � � �   (1.26) 

which suggests that 0t�  and 0t�  should be invariant themselves. This infor-
mation is better highlighted writing, still with notation (1.23),  

2 2
2 2 2 2 2 2 2

0 0 2
0

1inv inv
ts v t s v t

v
δ δ

 
= − ⇒ = − 

 

�
�  

whence  
2 2 2 2

2 2 2 2 2 2
2 2 2
0 0 0

1 1 :inv
inv

s t vt s s t s s
v v v
δ ττ β δ δ δ δ β β

β
 

′= = = − ⇒ = = = − 
 

�

(1.27) 

i.e. one finds length contraction and time dilation inherent the Lorentz trans-
formation of the proper quantities when, in particular, v const=  concerns in-
ertial reference frames reciprocally displacing. These considerations confirm that 

0v c≡ . From these invariant forms follows the corollary of covariance of physi-
cal laws, well known and not concerned for brevity. 

It is easy to show that the special relativity is elementary and straightforward 
generalization of the classical physics. In classical physics the energy   of a 
particle is defined an arbitrary constant apart, due to the initial boundary condi-
tions of the problem; write therefore const′ = +  . Yet the integration constant 
can also be in principle positive or negative, either because of different initial 
conditions of the problem or because one regards   in a different reference 
frame or because of other specific reasons: e.g. it could be potential energy in at-
tractive or repulsive force field. Thus is important to continue the reasoning 
simply considering also const′′ = −  , being ′  and ′′  arbitrary. At this point 
multiply side by side to merge these chances: one finds trivially  

2 2const′ ′′ = −   , i.e.  
2 2

2 2 2 2
2 2 1 .const

const const
′′′

′′′ ′′′ ′ ′′= + ⇒ = + =
 

            (1.28) 

To show as shortly as possible the implications of this result, note its consis-
tency with  

( ) ( )

( )
( )
( )

222 2
2

22
2

02 22 2
1 ,

vpc mc p
c

pc
const mc pc

mc mc

= + =

′′′⇒ = + = = =





 

       (1.29) 
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which also implies β  found in (1.27). Elementary considerations, omitted for 
brevity, justify the rest energy and the momentum definition: e.g. 2

0  resulting 
for 0p =  can be nothing but rest energy. 

Consider eventually one particle moving at rate v along an arbitrary axis with 
constant acceleration 0a  and let τ  be its proper time; thus 0a  is 3D accele-
ration in a proper reference system, with components ( )2

00,0,0,a a a c= . Then 

0v a τ=  yields, owing to (1.27),  

( ) ( )22
0 0 0,v a t t v tτβ

β
= = = =              (1.30) 

which in turn reads  

( ) ( )
( )

22
2 02 2

0 2 2
0

2

1 .
1

a tvv a t v
c a t

c

 
= − ⇒ = 

  +

 

Hence the well known result is  

( )
0

2
0

2

.

1

a tv
a t
c

= ±

+

                     (1.31) 

Note that this result agrees with in principle with (1.18) and that (1.30) yields 

0v a tβ= ±  i.e., as in (1.29),  
2 2

0 0 2 .mc mc vv a t p ma t
cβ

= ± ⇒ = = = ±





           (1.32) 

These preliminary results highlight that the fundamental postulates of modern 
physics: e.g. space-time properties of dynamical variables, four-vectors, necessity 
of covariant physical laws and so on, are by passable being actually corollaries of 
elementary dimensional considerations having classical character. 

Moreover, by differentiating (1.1) consider  
2

2 2
c c a a a aa a t

t t t
δ δδ δ δ δ
δ δ

= − = − ⇒ = − = −�
� � �

       (1.33) 

to highlight how the signs of δ �  and tδ  are related to that of aδ . 
A relevant feature of the chance to regard the physical equations via their di-

mensional analysis, is the result of their merging to introduce further dynamical 
variables into their initial definition. An example of this chance is the second 
(1.2) that reads with the help of the first (1.1)  

2 .a m
G
=
�

                         (1.34) 

Then, with the positive sign of a it is possible to write  

( )3
2 2 ;

1
a G m a mG∂ ∂

= − ⇒ =
∂ ∂� � � �

 

next, since owing to the first (1.1) ( ) 21a c∂ ∂ =� , the result is  

2
2 .bh

mG
c

=�                         (1.35) 
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The notation means that if the initial �  of (1.1), in principle arbitrary by de-
finition, fulfills the requirement resulting from its merging with (1.2), which in-
volves G; then bh�  must surely have a new physical meaning. This relevant re-
sult will be concerned later. 

As this kind of analysis appears also extensible to the general relativity, con-
sider again G to introduce a further example. Since ( ) 12

0 0G tρ
−

= , being 0ρ  a 
constant density, define  

( )02 2
0

1 1 ,G x t
t t

δρ δρ ρ ρ ρ ρ= − = − =           (1.36) 

Multiplying both sides by 2 2
0 c�  one finds  

2 2 2 2 2 2
0 0 0 0 0 0
2 2 2 2 2 2 2

0

1 0;v v vv vG v v v
c t t c c c c t v

δ δϕδρ δ δϕ
  −

= − = = = = = − < 
 

� � � �

(1.37) 

the meaning of 0v  given by (1.23) requires 0vδ <  and thus the quoted sign of 
δϕ . Write now  

( ) ( ) ( )2
0 00 0 0

0 02 2 2
1 1 ,

v v v vv v vvG
c c c
δρ ω ω ω ω

ω ω
′ ′+ +− ′ ′ ′ ′= = − = = =

′ ′′ ′ ′ ′′
� ��
� � �

(1.38) 

being ′�  an arbitrary length. This result therefore yields the well known red-
shift of the photon  

2c
δϕ δω

ω
=                          (1.39) 

subjected to the attractive gravitational potential change δϕ  along an arbitrary 
radial direction with respect to the source of ϕ . 

Consider now that, however, nothing requires in principle 0v  defined by  

0 0t�  to be exactly equal that of (1.23); actually 0�  and 0t  concerned in 
(1.38) are arbitrary constants. Examine thus the case where  

2
0 0

0
0

0 :vv v v
t v

δ ′′= = −
�   

the notation does not exclude any chance in lack of specific information about 

0v′ . So (1.38) becomes now  

( )2 2
00 0 0 0

2 2 2 0.
v v v v vG v v v

c c c t v
δϕδρ δ δϕ′′ ′+ ′−

= = = = −
′

�� �
�

    (1.40) 

Having changed the sign of δϕ , which now is no longer gravitational poten-
tial, the physical meaning of (1.40) must be redefined. Nevertheless, as the form 
of ϕ  is unchanged, it is still possible to write as in the previous (1.38)  

( ) ( )2
0 00 0 0

02 2 2 .
v v v vv v v vG v v

c c c
δρ ω τ ω τ

′ ′ ′ ′+ +′ ′− −′′′ ′′′ ′= = = =
′ ′

� ��
� �

  (1.41) 

The physical meaning of ω′′′  is by definition velocity per unit length, whe-
reas the time factor τ  defines the time function at the left hand side  
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2
0 0
2 :G

c
ρ ρ ω
τ

′  − ′′′= 
 

�
                   (1.42) 

now the sign of ω′′′  depends on that of 0ρ ρ′− . The cosmological implication 
of (1.42) will be concerned later. 

The aim of the paper is to better explain in detail these points and, more in 
general, to highlight how to infer further physical information including con-
textually quantum outcomes. 

1.4. Classical and Relativistic Corollaries  

Implement (1.7), (1.6) and (1.1) to assess the chance of replacing c with a cha-
racteristic average velocity v : while the dimensional analysis still holds in prin-
ciple, such a specific v  does in fact exist and fits more realistically the problem. 
Three significant cases clarify the physical meaning of the respective positions 

3 4 3 4 3 3
3 3

2 2 .c v c vaD c aD v a m a m
t a t a

= ⇒ = = ⇒ = = ⇒ =
� �

� �
 (1.43) 

The coordinate system is the one where are defined the moduli of dynamical 
variables of these equations. 

1) As concerns the first (1.43), assuming v t= ∂ ∂�  and replacing v with its 
average v tδ δ= � , one finds  

2 2 21 2 :
2

Da D ta v D D t D t
v v

δ δ δ δ δ∂
= = ⇒ = = ⇒ = = ⇒ =

∂
� � � � � �

�
(1.44) 

the result is the Einstein-Smoluchowski equation of the one-dimensional Brow-
nian motion, having taken in the last step the average values of displacement and 
time at both sides. Hence v  does effectively exist. 

2) The second (1.43) is the third Kepler law with orbital parameters realisti-
cally hidden in 4v a . Since  

( ) ( )
3 4 3

2
2 4

d d ,v vt v v t t t
t v t v

= = = ⇒ =
∂ ∂

� �
� �          (1.45) 

then owing to (1.5) 

( )

1 1
32 4 33

3 2
d3 d 3 ;t t vv t const const mG

mG v t tt

− −   = − + = − + ⇒ = =     ∂ ∂  
∫ ∫

�

�
 (1.46) 

the last equation explains the chance of replacing c with the given ( )v t . 
3) The third (1.43) reads in general  

( ) ( )
3d 0 0,

d
va v m v v t v t

t± = ± = = = =
�

             (1.47) 

which accounts for the two chances a± . Integrate (1.47) keeping the notations 
of (1.23), the solutions read 

0
2
0

:
2 1

vv
mv t

± = ±

+
�

                      (1.48) 
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both signs of (1.48) describe ( )0 0v v t− < − <  or ( ) 00 v t v< <  for 0 t< < ∞ ; 
it is essential that in neither case v  diverges, as it was already found in (1.31). 
Also, if 0m =  then 0v v≡ ± . Reminding that actually 0v c≡  according to (1.23) 
and (1.25), then (1.48) is sensible. To clarify further this point, keep the same 
notation and implement  

( )
2 2

2 2 2 2
0 0 0 0

1 ;
1 2

v v V V
v v v mv t
− + = − =

+ �
               (1.49) 

sum 1 at both sides of the first equation  
2

2 2
2 2
0 0

1 1 ,v v V
v v

β β− ++ = = −                  (1.50) 

with 0v− <  and 0v+ >  by definition. 
This result is implementable in two ways. 

- Take the reciprocals of both sides of (1.50) and multiply the resulting equa-
tion by the further arbitrary velocity v v+ −′ ′+ ; this yields 

2

2

.
1

v v v vv v v vv v
c

β
+ − + −

+ − + −
− +

′ ′+ +′ ′+ = + =
+

             (1.51) 

This result is known; is relevant the fact that (1.48) and (1.51) confirm the 
previous identification (1.23)  

0 .v c≡                           (1.52) 

Anyway, deserves attention (1.51) written with the general form 2v vβ′ ′′= , 
which has physical meaning itself. Indeed, according to the upper line of (1.7),  

2 and :tv v t
t t t t

β β
β

′ ′′ ′ ′′ ′′
′ ′′ ′ ′′ ′= = ⇒ = ⇒ = =

′ ′′ ′ ′′
� � � �

� �      (1.53) 

with V of (1.50) constant, in particular, appear the Lorentz transformations de-
fining length contraction and time dilation with respect to the proper double 
primed variables, as already found in (1.27). Thus (1.51), (1.48) and (1.53) con-
firm the validity of (1.47). 
- Rewrite now (1.50) as follows  

2 2 2 2
1 2

1 22 2 2 21 ,v v V V c V v v v v
c c c c + −

′ ′ −
− = = − =           (1.54) 

which does not requires 1 2v v= , being enough that are both positive; this result 
reads  

1 21 1 ,v V v V
c c c c

′ ′
= − = +                   (1.55) 

which in turn yields  

2 2

1 1

1 .
1

v V c cv c V
v V c cv c V

′ ′+ +
= ⇒ =

′ ′− −
 

Since vc has physical dimensions of square velocity, this result is formally 
compatible with  

https://doi.org/10.4236/jamp.2023.117129


S. Tosto 
 

 

DOI: 10.4236/jamp.2023.117129 2006 Journal of Applied Mathematics and Physics 
 

2 2
0 2 2

2 2
0 1 1

.v c c V
v c c V

ν
ν

−

−

′+
= =

′−
�
�

                   (1.56) 

Actually the square ratio at the left hand side is essential if V ′  is regarded as 
the velocity at which a luminous massive source emitting a given frequency 
moves with respect to an observer, in which case the observed frequency 1ν  is 
different from the emitted frequency 2ν . 

In fact this result yields the relativistic Doppler effect where emitter and ob-
server move with relative constant velocity v. Note that because of the time dila-
tion with respect to the proper time, holds 

( ) ( )
1 0 1

2 2
2 0 2

1 ,
1

obs em

em obs

v t c
v t c V c VV c

νν
ν ν

= = = = =
− +−

�
�

      (1.57) 

having identified emt  as the proper time of the emitter and obst  as the time of 
a mobile observer at the origin of the respective reference systems. With  

em obst t<  the observed frequency is red shifted for the observer. In conclusion  

2

1

:em obs em
obs em

obs

t c Vt
c V

ν ννν
β β ν ν

′+
= ⇔ = ⇔ ≡ =

′−
         (1.58) 

the square root is not simply suggested by (1.56), it is essential to fit (1.58) and 
(1.57). 

At this point however, since in agreement with (1.54)  
2 2

2 2 1,em
obs

t v vt
c cβ

′
= ⇒ + =                    (1.59) 

the question rises: do v c  and v c′  have probabilistic meaning? In principle 
this question is sensible because the velocity range allowed to any particle is fi-
nite, so that in principle v c  can be regarded as a probabilistic property of a 
free particle. 

Let 2 1v v vδ = −  be a possible velocity range enclosing an arbitrary local ve-
locity v such that by definition 1 2v v v≤ ≤ . Consider then the actual velocity v of 
one massive particle to calculate its probability vΠ  of being effectively in-
cluded in vδ . The reasoning is Bayes-like, i.e. the probability for an event to 
occur considers explicitly also the probability that the given event does not oc-
cur. 

Let 1 1v cΠ =  be the probability of velocity 1v , and 2 2v cΠ =  that of 2v : 
then, for the particle to be described by the allowed range vδ  is necessary that 

1 2 0vΠ = Π Π ≠ , as by definition both boundary velocities are attainable by the 
particle. Moreover is also necessary to define the residual probability 1nv vΠ = −Π  
that the particle can take any velocity v, i.e. 1v v<  and 2v v> ; as in fact 2v  
can only tend asymptotically to c according to (1.49), then, whatever 2v  might 
be, it is possible to imagine another v′  even closer to c than 2v . So vΠ  is 
reasonably proportional to v cδ  and inversely proportional to nvΠ ; in other 
words it should be true that  

( )2 1
1 2 1 22

1 2

0, 0.
1 1v

nv v

v v cv c v c v v v v v
v v c

δ δ −
Π = = = ≤ ≤ ≠ ≠

Π −Π −
    (1.60) 
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This result is analogous to (1.51). Note that writing (1.60) as  
( ) ( )2

2 1 1 21v v v v c′′ ′′ ′′ ′′− − , if either 1 1v c′′ →  or 2 1v c′′ →  then 1vΠ → , i.e. one 
finds again a probabilistic meaning of the asymptotic value of sum of velocities 
found in (VT1) and (B4B); moreover it also appears that 1vΠ →  even for  

2 1v v′′ ′′→ . 
This section has shown that even relativistic results can take probabilistic 

meaning, which is a crucial step to merge relativity and quantum physics. 
Once more, the classical definitions (1.43) have implied the relativistic (1.51), 

(1.48), (1.60) and (1.58). 

1.5. Generalization of the Dimensional Analysis 

In this section the dimensional analysis of the Section 1 is generalized to concern 
quantum and relativistic equations, not only physical dynamical variables. 

In fact (1.4) is a Newtonian potential, which implies 0a <  and thus v−  at 
the right hand side of (1.43) to describe an attractive effect. The negative sign of 
a yields 

( )
6 2

:c mG
a G

= −
− �

 

then the right hand side is a Newtonian potential energy in agreement with a 
negative acceleration. 

Moreover, consider that (1.2) admits 

2 2 ,v
mG mG
c v

= ⇒ =� �                   (1.61) 

which yields  

2
3 3

2 2 .v v v
v

mG mG mGv v v
v v

δ δ τ δ τ= ⇒ = − = − =�
�

       (1.62) 

Also here the symbol v  takes the meaning of (1.43), i.e. a definite value of v 
suitable to replace c in a specific problem. As in (1.43), consider separately the 
two chances (1.61). 
- Differentiating both sides of (1.4) 

6 2

2 2 ,c a Gm
a G
δ δ

− = −
�

�
 

which reads, owing to (1.33), 

( ) ( ) ( ) ( )24
2 2 22

Pl

G mac a a aG ma c c
G F
δ δ
δ δ

= ⇒ = − =� � �
� � �

     (1.63) 

- The second chance (1.61) yields  

2
2v

v
mGv v
vv

δδ τ
δ

′ = − = =
�

�                  (1.64) 

and  
mGδ
ϕ

′ =�                         (1.65) 
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i.e., multiplying both equations by an arbitrary m′ , one finds  
2

.
2

m mG m vm mϕ ϕ
δ
′ ′

′ ′= =
′�

                  (1.66) 

The physical meaning of δ ′�  also appears noting that  

2
esc

mGv
δ

=
′�

                      (1.67) 

is the classical escape velocity of any body of matter initially δ ′�  apart from the 
gravity source m with attractive gravitational potential. 

Considering (1.64) and (1.67), for v c→  one finds again (1.35)  

2
2 ,bh

bh bh
m G
c

δ δ δ ′= =� � �                   (1.68) 

which is nothing else but the lower line (1.7). This last result will be concerned 
later; yet two properties of (1.68) deserve attention. 
- On the one hand, (1.65) shows that bh minδ δ ′≡� �  for a given m because, as it 

is obvious according to (1.52),  
2

min max max .
2
cδ ϕ ϕ′ ≡ = −�                   (1.69) 

- On the other hand, consider that the ratio bh bhm δ �  reads ( )Pl bhm δ ξ�  
once having introduced an arbitrary scale factor ξ  such that bh Plm mξ = . 
The corresponding order of magnitude of bhδ ξ�  is then  

2 32 2 2 2 .bh
Pl

Pl

c G G
G c c m c

δ
ξ

= = = =
� � � �

�           (1.70) 

It is however worth noticing that not even (1.65) is merely formal. Consider 
indeed, as in (1.10),  

2

:
2

v v v v
v v t

ϕ ϕ ϕϕ∂ ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂
�

� �
           (1.71) 

since  

,

v
t t vv vv v vt v

ϕ ϕ
ϕ

∂ ∂ ∂ ∂
∂ ∂∂ ∂ ∂ ∂= = = = = =

∂ ∂ ∂∂ ∂
∂ ∂ ∂

� �

� � �

 

where the intermediate steps must be true because of the consistency of the left 
and right sides, (1.71) yield the Lagrange equation  

.
t v
ϕ ϕ∂ ∂ ∂
=

∂ ∂ ∂�
                       (1.72) 

This confirms (1.10). The remainder of this section shows the relevant physi-
cal worth of analogous dimensional considerations on the diffusion coefficient D. 
Note the interesting relationship with �  given by  

,C
DD

m c mc
λ= = =

� �                   (1.73) 

i.e. D is directly related to �  and proportional to the reduced Compton length 
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of m; also, is significant its link to a suggested by the last (1.73), i.e.  

( ) .D velocity D energy
wavelength

= ∇ ⋅ =p           (1.74) 

The diffusion coefficient has further relevant properties directly related to these 
elementary definitions; e.g., merging the first (1.73) and (1.74) it follows 

.velocity momentum
m wavelength wavelength

= ⇒ =
×
� �     (1.75) 

The De Broglie momentum is found here. Moreover from the last (1.74) it al-
so follows  

( ) ( ) ,energyD energy Dχ χ χ χ∇⋅ ∇ = ∇⋅ ∇ = =� ��
�

       (1.76) 

being χ  any dimensionless scalar field. In practice any field is describable by  
χ : for example the thermal field characterized by a temperature distribution  

( ),T T t= �  and ( )D D χ=  requires the dimensionless form 0T Tχ = , with  

0T const= . Note that (1.74) and (1.76) imply 

( )1 1 0 0 :D energy constantξ χ ξ χ ξ ξ∇ ⋅ ∇ = ⇒ = ∇ + =� �p     (1.77) 

(1.74) is a differential equation for ( ),x t=p p , the second (1.77) introduces 
the operator ∇�  that acts on p  and relates it to an appropriate scalar field 
χ  via an arbitrary proportionality factor 1ξ  admissible for sake of generality. 
Eventually, consider the chance of p  of being real even though χ  does not: 
reasonably then χ  has a logarithmic form, i.e. ( )logχ ψ= , in order that for 
example  

( ) .
i

i
δ ψδψδχ

ψ ψ
= ≡

��
�                      (1.78) 

Thus the chance of real p  for non real ψ  allows writing (1.77) as  

( ) ( )0 1 0 0
1 ;i i const

i i i
ψ ξ ξ ψ ψ ξ ψ χ ξ

ψ ψ
= ∇ + = ⇒ = ∇ + = =
� �p p  (1.79) 

analogous reasoning holds for χ�  complex function to calculate the energy. Also, 
a relevant generalization of (1.77) is  

( )1 :D energy energyξ χ ′ ′′∇ ⋅ ∇ + =�                (1.80) 

this is not a trivial repetition of (1.77), as energy′  has the physical meaning of 
source term of the diffused term energy′′ . Eventually rewrite (1.80) identically 
as follows  

( )

3 3 3
0 0 0 0 0 0

3 3 3
0 0 0 0 0 0 0

K K :

D energy energy

source energy DT
T

χ
τ τ τ

τ τ τ

  ′ ′′
∇ ⋅ ∇ + = 

 
′′

⇒ ∇ ⋅ ∇ + = =

�
� � �

�
� � �

        (1.81) 

in this way K is the heat conductivity inferred as a function of D as watt per unit 
length and temperature, whereas (1.80) turns into the Fourier heat Equation 
(1.81) simply expressing also the right hand side as a function of T as CTρ � . 
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The usefulness of the dimensional analysis is extensible also to the electro-
magnetic vector frame. Consider for example the possible chances  

,⋅ ×v force v force                      (1.82) 

both purposely conceived to infer the two corresponding kinds of field physical-
ly definable via an appropriate velocity and involving the charge e as well. 
- The first (1.82) yields  

1

,

power force
ce e c e e

powerforce force
c

′ ′′⋅
= = = =

′ ′′ ′= =

v force forceu u u field

force u
 

being u an arbitrary dimensionless vector; as the left hand side of (1.82) reads  
2

2 ,e v ce V eev v
ce V Vv ce

ρ σ ρ
σ

′ ′⋅ ⋅′ ′ ′ ′= = = = = = =
′ ⋅

v force v force J vu u J v v u
v force

 

where V is volume, the result is  

.e
σ
= = =

J field E E force                  (1.83) 

The first (1.83) is thus acknowledged as the Ohm law with conductivity σ . 
- The second (1.82) yields  

;e e
c c e c

′
′ ′ ′′× = × = × =

v v force vforce field force  

i.e.  

.e
c

′′ ′= × =force v H field H  

With the given premises the classical Lorentz force is obtained as an identity. 
Hence write the Lorentz magnetic force ′force  as to be summed to the electric 
field force e=F E  of (1.83) in order that  

.L
ee
c

= + ×F E v H                      (1.84) 

Once having verified that in fact the dimensional analysis gives the naive (1.1) 
added value, consider that owing to (1.6) and (1.1)  

2
1 .a c

Dc
= =
�

 

Then introduce  

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 ,v v v D D v m G m G m mc mGv
D D D D D D D m D

+ + +
= + = + = = = =

� � �
 (1.85) 

which expresses c/D as a sum of two corresponding addends and yields  

( ) ( ) ( )2
1 2 1 221 2

2 2 2 ;
mG m m G m m Gm mmG v

mD D v
+ ++

= = = =�
� �

    (1.86) 

then, owing to (1.73),  

1 2

1 2

1 1 1 m mc c cF m
D m D

+
= + = = =
� � � �

             (1.87) 
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and thus  

1 2

1 1 .cF
D

 
= = + 

 � �
                     (1.88) 

This classical result is sensible. Dividing both sides by an arbitrary surface A, 
one finds  

1 2

1 1 :FP P
A A

σ σ
 

= + = = 
 � �

               (1.89) 

this is the Young-Laplace equation, being σ  the surface tension of a liquid phase 
ascending through a capillary column in opposition to the gravity force under 
the net pressure P resulting on A. The term in parenthesis expresses thus the 
curvature of the liquid surface A. 

Note that the second (1.86) can be rewritten in general according to (1.8) and 
(1.65) as follows  

( ) 2
1 2 1 2

2 2 2
m m G m mmG v mϕ

+ +
= = = ± =

� �
           (1.90) 

and then, owing to (1.62),  
2 2

2 2
1 ;
2

mG v mG c
c c
ϕϕ δ δ δ± = ⇒ ± = =

� �
           (1.91) 

also, in general (1.87) reads  

1 2

1 1 1 2 2 ,m
m mG

ϕ
+ = =

� � �
                    (1.92) 

where the resulting 1−�  depends upon the ratio m m . Note that the definition 
of ϕ  is sensible, as (1.92) suggests 1mGϕ −↔ �  in agreement with with (1.65) 
and yields  

.vv v v t a
t

δδϕ δ δ δ
δ

= = = �  

It is necessary to verify that both signs (1.90) imply in fact their own physical 
meaning; / /m G �  is the key term in this respect, where actually m  is an arbi-
trary mass, because 1m  and 2m  are arbitrary themselves. 
- If in particular ϕ−  is the gravitational potential, then taking its minus sign 

in (1.91) one finds  

2
mG mGa ϕ ϕ ϕ∂

= − = = − = −
∂� � � ��

              (1.93) 

and then  

( ) 2 1 2 1
2 12 2 2 2 2 3 2 2

3
2 1

2 12 2 .

c cmG mG mG
c c c c

c c c
mG

ω ωδϕ δ
ω

ω ω ω

− = = − = − = 
 

= = =

� �
� � �

� � � �

� �
� �

    (1.94) 

Of course the actual sign of δω  is related to that of δϕ  depending on 
whether one photon, implied by c, moves radially outwards or towards the gra-
vitational source. This is the gravitational red shift of light. 
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The Equations (1.25), (1.26) and (1.85) have already shown relevant implica-
tions of (1.1) on the special relativity; now the gravitational red shift Equation 
(1.94) concerns the general relativity. 
- Instead the positive sign in (1.91) yields 

21 ;
2

mGvϕ
δ

= =
′� �

                       (1.95) 

one finds thus  

2mGv
δ

=
′� �

                        (1.96) 

that for v c→�  requires bhδ δ′→� � , which reads instead  

2
2 ,bh

mG
c

δ =�                        (1.97) 

in agreement with (1.64) and then with (1.68) as well. Furthermore it is possible 
to calculate  

( )
2 2

2 2 2 2 log ,av v v t v mG c mG c
tc c c c

δϕ δ δ δ δδ δ δ δ
δ

= = = = = ⇒ =� �
� �

� � �
 

which implies  
2

log ;mG c const= +�
�

                    (1.98) 

putting 0logconst = � , being 0�  a constant length, then  

0 0 2
0 0 0 0 0

log log logmGS S w w w
c

= − = = − = − =
� � � � �

� �
� � � � �

   (1.99) 

while being also  

0 0
02 2

0 00 0

.
2

bh m mGmGS
c m c

= − = − = − =
�
� ��


            (1.100) 

Of course the dimensionless S of (1.99) refers to the thi  quantum state of a 
given system, to which corresponds specifically 0� � ; so regarding �  as i�  
related to the thi  thermodynamic state iw  of the system, e.g. any bond length 
or energy of a solid body and everything else related to it, the entropy of the 
whole system is actually  

log .sys i i iS w w= −Σ                      (1.101) 

Reasonably the statistical form of S consits of a sum of terms, each one of 
which corresponds to the classical ratio (1.100) of two energies. 

Consider now (1.27) and check the physical meaning of t and τ  in the par-
ticular case where a body of matter is at an arbitrary distance �  from a gravita-
tional source and escv v= . Then, owing to (1.4),  

2

21 ;escvt
c

τ = −                       (1.102) 

in this case (1.67) suggests the chance of examining how t deviates from τ  be-
cause of the presence of a mass m, since the escape velocity of the body allows in 
principle comparing the the effect of m on t even in the absence of gravity field 
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when the body is infinitely apart from m. Then, owing to (1.96) and (1.90),  
2 22 21 1mG c ct t ϕτ = − = −

� �
              (1.103) 

which also shows that the proper time of the body stops running at the peculiar 
distance 22bh mG c=�  from the gravity center of m whatever t far from bh�  
might be. 

Check now the validity of (1.93) considering two possible ways to rewrite with-
out additional hypotheses  

,δ δϕ
ϕ

=
�
�

                        (1.104) 

simply exploiting the fact that both δ �  and �  itself are arbitrary. 
Foremost his result is correct, as it implies a relevant consequence simply re-

writing identically  

( )
2
02 1 2 1

2 12 2 2 2 3 2 2
0 0

;c c
c c c c c

ϕϕ ϕδϕ ϕ ϕδ
 −

= ⇒ = − ≡ − 
 

� � �
� � �

� � � � �
 

next make explicit the meaning of δϕ  and δ � . The notation at the right hand 
side does not add anything new but allows introducing the reciprocal times  

2
2 0 21c t=� �  and 2

1 0 11c t=� �  at which one photon moving radially at the con- 
stant rate c with respect to a source of gravitational potential ϕ  reaches the 
distances 2�  and 1�  where the field is described by the values 2ϕ  and 1ϕ . Then, 
in agreement with (1.94),  

2
2 1 2 1 2 1

2 12 2 2 2
0 0 0

:c c c c
c

ϕ ϕ ω ω
ω ω ω

ω ϕ
− −

= = = =
� � �
� � �

      (1.105) 

of course the sign of 2 1ω ω−  depends on whether 2 1ϕ ϕ  at 2 1� � . 

- On the one hand (1.104) yields also  

2 2
2 1

1 1

log log log log exp ;δϕ δϕδ
ϕ ϕ

 
= − = = ⇒ =  

 

� �
� � �

� �
 

hence defining reasonably the arbitrary length 2�  as 3 1±� � , i.e. as the combi-
nation of two lengths 3�  and 1�  itself, it follows  

3 1 3

1 1

exp exp 1δϕ δϕ
ϕ ϕ

±    
= =   

   

� � �
∓

� �
 

and thus  

( )
( )3 2 1

1 .
exp 1

m
mm

m

δ ϕ
ϕδ ϕ

ϕ

−
= =

 
 
 

�
�

∓

 


           (1.106) 

This result reads also  

( )

( )

3
1

31
1 3

0 0

1

exp 1 exp exp 1

exp ,

j
j

NN N
b

N N b

δε δε
ε ε

= ⇔ =
   

−      

= = = −

∓ ∓

��
� �

       (1.107) 
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being 0�  an arbitrary length. This serendipitous result and its physical mean-
ing are reasonably recognizable. The notation emphasizes that δε  defining the 
generic 1N  has nothing special or any particular properties, rather it is actually 
one among all arbitrary ranges jδε  definable by jmδϕ  of the thj  quantum 
state; this is because the same holds for (1.106), where 3�  and its correspond-
ing 1�  are lengths in turn relatable for example to bond lengths jδ �  in a mo-
lecule or in a body of solid matter. For this reason (1.107) is not based on a spe-
cific assumption, rather this way to regard (1.106) gives itself physical meaning 
to the successive (1.107): jN  are the averages numbers of particles in a given 
quantum states, whereas clearly ( )exp b−  fits, as usual, the condition jj N N=∑  
for the total number N of particles of the physical system. 
- On the other hand, it is also possible to write (1.104) as  

2 2 2 2 2 2 2

1 1 1 1 1 1 1

log log log log .S Sϕ ϕ ϕ ϕ ϕ δ ϕ ϕδ δδ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= = ⇒ = ⇒ = − = −
�� �

� � �
(1.108) 

Hold again the last considerations. If (1.93) is sensible, then the physical mean-
ing of both results must be recognizable as well. The left hand side of (1.108) is 
in fact the ratio of two energies ( ) ( )0 2 0 1m mϕ ϕ δε ε= , likewise in (1.100); hence 
nothing hinders to identify ( )2 1 0 2mδε ϕ= −� �  and 0 1mε ϕ= �  as proportional 
to the usual Qδ  and Bk T , so that (1.108) reads more expressively, with the no-
tation previously introduced for the thi  allowed state,  

2

1

log .i
i i i i

i

S w w w ϕ
ϕ

= − =                  (1.109) 

The crucial fact is that even the simple dimensional analysis here carried out 
has produced results with an identifiable physical meaning, i.e.: the added value 
due to (1.1) does exist and provides useful information. 

To implement further this strategy, consider (1.85) and define now  

1 2 1 2

1 2 1 2

,v v v v
D D D D

+
+ ≥

+
 

where the equality sign holds for 1 2D D=  and 1 2v v= ; the inequality is evident 
noting that the right hand side is ( )1 1 2v D D+  plus ( )2 1 2v D D+ . Then it is 
possible to rewrite  

2
1 2 1 2

2 2
1 2 1 2

,v v v v c v c
D D D D c v

+
+ = <

+ −
 

where now the equality holds for 0v = . Then solving  
2

2
1 2 1 22

1 1
1

v v v D D
c

ζ ξ ξ β β ξ ζ
ζ ζ

−+ +
= = − = =

+
     (1.110) 

with respect to ξ , one finds  

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

2 2

2 2 2 2

2 2 2 2

1

1 1
.

1 1 1 1 1

v c v c v c v c

v c v c v c v c

β ζ β ζ
ξ

β ζ β ζ

ζ ζ ζ ζ ζ ζ
ξ ζ ζ ζ

ζ ζ ζ

+ −
= −

+ −

+ − + − − +
= − = − = −

+ − + − − +
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As it is admissible that in particular 0ξ = , in which case the first (1.110) 
reads ( ) 21 1ζ β= + , one finds  

22 1

2

1 ;D D
D

ζ β −+
+ = =  

in turn, since 2D time length× =  by dimensional definition, this result reads  

2 12length length β=  with 12 2length length> . So, if v const= , then 2length  is 
knowledgeable as the Lorentz contraction of the proper length 12length  in two 
different inertial reference systems with reciprocal motion at v const= . Also, 
owing to (1.26), one infers the time dilation via 12 12 2 2length time length time=  i.e.  

12
2 12 2 .timelength length timeβ

β
= =              (1.111) 

in agreement with (1.53) obtained through a completely different reasoning. Even- 
tually note that the last (1.86) ( ) 2

1 2G m m v+ =�  yields  

212
12 1 22T U ,

m m
G m v m m m

′
′= = = − = +

�
          (1.112) 

which merges the classical potential-U and kinetic energy T. This result is the 
classical virial theorem and has an interesting corollary  

2 2 1 1

2

, ,

1 1

1because ;
2 t t

va
t m t v m

v v v v v
v t t t

ε ε

ε δ δ δ δ δ

∂ ∂ ∂ ∂
= = =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= = = = = −
∂ ∂ ∂ ∂� �

�
� � ���

 

since T U 2= − , then T U U 2 T− = = − ; i.e. T Umϕ = − . So, regarding  

2 1 T Uε ε ε∂ = − = − , one finds  

t
∂ ∂ ∂

=
∂ ∂∂� ��
                         (1.113) 

i.e. the Lagrangian already found in (1.72). 

1.6. Classical Force Laws and Relativistic Corollaries 

Equations (1.88) and (1.61) fulfill the physical dimensions of force, yet they 
waive the concepts of propagation time and carrier of the interaction. It is easy 
however to demonstrate how to modify these equations to introduce even in a 
classical frame these concepts, in fact required once having found the upper lim-
it 0v  of (1.23) admissible for any propagation rate. Consider first (1.87): if in 
particular 1 2m m m= + , then the equation consists of a sterile relationship be-
tween reciprocal lengths only; if instead 1 2m m m+ ≠ , then the mass appears 
explicitly in the equation and determines in general the resulting 1−� . This is 
more interesting, as in effect (1.89) suggests that the mass is somehow linked to 
the concept of curvature of the capillary liquid surface and to the pressure gra-
dient across the curved surface. To generalize this idea via the gravitational po-
tential ϕ− , consider that (1.91) yields  

( )
2 ;N

m m mG F
ϕ′∂ ′

= = −
∂� �

                  (1.114) 
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even in this result, having the form of the Newton equation in agreement with 
(1.93), is missing the propagation time of the interaction despite �  concerns 
the distance between m′  and m . This idea suggests the necessity of adding 
further information to (1.114) by modifying its form. 

On the one hand (1.87) can be formally rewritten as a function of a time τ  
as  

2
1 2

1 2

1 2 1 2

1 1 1

1 1 1 1 1 1

m mc
D c c c m

t t τ

+
= + = =

⇒ + = + =
′ ′

� � �

� � �

 

 
           (1.115) 

i.e.  

( ) ( ).τ τ= =� �                     (1.116) 

On the other hand rewrite (1.87) also introducing the reduced mass of a two 
body gravitational system 

1 22
1 2

1 2
1 2

1 2

1 1N tot tot
tot

tot

tot

F m
G

m m m m m
m m

µ

µ

− = = + ≡ = +

= = +
+

�
� � �

� � � �
 

        (1.117) 

and next rewrite identically this result via (1.88) and (1.89) putting  

( )

( ) ( ) ( ) ( )

1 2 2 1

2 1 2 1
1 2 2 1

.N tot tot
gr

gr

v t t
F m m v t t v t t
G v t t v t t

µ µ

′ ′+ = +

′ ′ ′ ′⇒ − = = + = −
′ ′ ′ ′+ −

� �

 
 (1.118) 

Equation (1.118) is more interesting than (1.114). The mere fact of having ex-
pressed the Newton law via   implies having introduced two lengths 

1 1
1 2
− −+� �  whence, without resorting to additional assumptions, follows in prin-

ciple the idea of time lapse corresponding to the space range size 2 1−� � : the 
velocity v, introduced in (1.118) without specific reference to a previous defini-
tion, is purposely related to the actual propagation rate grv  of gravitons, the 
hypothetical carriers that mediate the gravity interaction. Whatever the physical 
properties of these vector bosons might be, e.g. their spin, if grv c≡  then the 
proposed definition of v via grv  is sensible: if the graviton actually existed, then 
v fulfilling the condition (1.118) links the time coordintes 1t′  and 2t′  to the 
space distance tot�  between 1m  and 2m . However   regarded also here as 
a curvature likewise in (1.89) rises the problem of clarifying what is actually curved; 
reasonably   should concern the space gap totδ �  or the time lapse between 

1t′  and 2t′  itself, simply because these are the only parameters available and 
suitable to define it in (1.118). A possible implication of (1.115) is that the pres-
ence of 0≠  curves the space range defined by 1�  and 2�  and modifies the 
time lapse between 1t′  at 1�  and 2t′  at 2�  as well, with respect to an empty 
universe; in this respect (1.116) remark that if it is true, then   modifies both 
space and time ranges. 
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This is the motivation of this reasoning: to show that the necessity of a finite 
propagation rate implied by (1.23) requires a curved space time even in a mere 
Newtonian classical frame. 

Nevertheless if the graviton actually exists and propagates at rate grv c≡ , 
(1.116) must be regarded as the ratio of two energies  

( ) 2
1 2

2gr

m m c
mc
+

⇒ =   

rather than a massive carrier itself; this fulfills the aforesaid corollary of (1.48). 
Also, if really it consists of two massless vector bosons defining  , its spin 
should be at least 2. Eventually, if F  propagates along a curved path from 1m  
to 2m , then the Euclidean F  and a  are no longer self-aligned, which explains 
why the naive relationship of F  and ma  is inadequate in this modified con-
ceptual frame where  

( )2 1 :N totF m c t t
G

µ
δ

δ
′ ′ ′− = = −

′
�

�
             (1.119) 

the Newtonian masses 1m  and 2m  are replaced by µtotm , with   playing 
the role of massless carrier. Eventually (1.62) and (1.2) yield  

2 2 2

.N totF mc v c
G G G G

µ
δ

− = = ≡
′�

               (1.120) 

It is significant that NF  is proportional to a curvature   and that the 
propagation time lapse and the interaction carriers, possibly hidden in  , are 
in fact inherent the naive Newton law simply given by 2cµ   even skipping G, 
whereas the mass µ  only defines NF  in the field of which all masses behave 
comprehensively in the same way. 

At least in principle, this reasoning should hold even for the Coulomb law 
between static charges 1e  and 2e : indeed ( )( )1 2CF e e= � �  yields now  

2 .C tot C totF F
ce

δ δ
α′ ′= ± ⇔ = ±

� �
�

             (1.121) 

Equations (6JK) and (1.121) compare directly the relative strengths  
2 2

N C totF F m G e=  of the respective forces with the same totδ � . 
Before going on to emphasize the consequences of these considerations it is 

necessary to examine the quantum corollaries of the Section 2. 

2. Physical Implications 

This section infers relevant corollaries of the previous considerations. It consists 
of four subsections purposely aimed to exemplify the cases of classical and 
quantum physics, special and general relativity. It is necessary to specify, likewise 
as in (1.7), whether v c=  or v c≠ . 

2.1. The Quantum Corollary: The Quantization 

In addition to (1.75) and (1.79), consider again (1.1). Multiply side by side  
2p a c= �  and 2c a=� , which yields p =� � ; also, multiply a cε = �  by  
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t c a= , which yields tε = � . Hence p t= =� �  : rewriting n times all possible 

n np �  and summing, this result yields np n n t= =� �  . It is crucial the fact that 
the integer n multiplies �  and both products p�  and tε ; however n�  is 
uniquely defined with integer n, whereas ( )( )np n p n′ ′′=� �  requires n n n′ ′′ =  
with arbitrary n′  and n′′  not necessarily integers. So it is possible to define 
p p= �  and �  as conjugate variables and write  

* *

* * * * * * :
p

t p t

p n t p n p n

n t n t n n n n nε ε

δ δ δεδ δ δ

δε ε δ

= = = =

= = = =

� � � �

�

� � � �
            (2.1) 

i.e. *
pn  multiplying p�  defines a range of values 1 2p p p≤ ≤�  since  

*
1 2p p pn n n≤ ≤ , and so on. Thus, by definition, n is integer, *

in  are real numbers. 
Owing to the way of defining the ranges of dynamical variables, nothing is known 
about their sizes and position in a given reference system R: for example the 
lower boundary coordinate of a given uncertainty range 2 1x x xδ = −  could de-
termine the position of the range with respect to the origin of a corresponding R, 
whereas the upper boundary coordinate could be related to its size; however, 
neither of them is known and conceptually knowable by corollary of (2.1). This 
corollary is the fundamental assumption of the present physical model. Moreo-
ver, without knowing at least 1x  it is impossible to establish whether xδ  in-
cludes the origin of any assumed R, or it lies on the negative side of this R or on 
its positive side; i.e. in lack of any information about both range boundaries 
there is no way to identify how xδ  is related to the origin of this R rather than 
to that of any other R'. In this sense any consideration based on uncertainty 
ranges only is not related in particular to some specific R. Everything that can be 
deduced with this information (2.1) is valid in any coordinate system, because 
the form of this principle remains unchanged. 

Actually, no R is definable in such agnostic model based on (2.1), as it is evi-
dent observing that actually the former formulation of uncertainty is identical to 
the last one. In other words, considering pδ δ� �  in a given R and pδ δ′ ′� �  in 
another R' one would find  

, 2 , in , 2 , in ;p R p Rδ δ δ δ′ ′ ′= ⇔ =� �� � � � � � � �          (2.2) 

but, in fact, the right hand sides in the respective R and R' are clearly indistin-
guishable because n of (2.1) is arbitrary with the n and n' are arbitrary them-
selves, unknown and unknowable. Then R and R' are indistinguishable, and thus 
even interchangeable, because neither n nor n' take specific values but rather 
they symbolize any integer number; a possible way to obtain the covariancy is to 
formulate the physical laws implementing uncertainty ranges only. This explains 
why it is not necessary to specify in which coordinate system are defined the 
uncertainty ranges, primed and unprimed ranges become mere notations. Of 
course it is possible to acknowledge if xδ  is defined in any inertial or non-iner- 
tial R: as all ranges are inherently time dependent, xδ �  implies non-inertial R. 
Indeed, since ( )x x tδ δ= , it is possible in principle that ( ) 2

x xx n p pδ δ δ−= −� �� , 
any particle possibly delocalized in xδ  is subjected to a force field xpδ � . 

https://doi.org/10.4236/jamp.2023.117129


S. Tosto 
 

 

DOI: 10.4236/jamp.2023.117129 2019 Journal of Applied Mathematics and Physics 
 

However this chance is identically possible for R' too, so that there is now way to 
distinguish whether the non-inertial character concerns R or R'. Below it is 
shown that this corollary of (2.1) is nothing else but the equivalence principle 
concerning a non-inertial reference system. 

Eventually deserves attention the chance of rewriting (2.1) also as  

,n tδ δ δεδ⋅ = =�p x                     (2.3) 

where the scalar at the left hand side generalizes pδ δ� �  of (2.1) to an arbitrary 
number of space dimensions; in other words, any model based on (2.1) admits 
extra space dimensions besides to the time coordinate hidden inside tδ . It is 
easy to show that (2.3) is a corollary of the operative definition of space time [3]  

3

2 .G length
timec

�                       (2.4) 

Equations (2.1) suggest the necessity of replacing systematically the determi-
nistic dynamical variables with the respective uncertainty ranges. In fact (2.1) 
exclude leaves out the physical meaning of local dynamical variables, replaced 
instead by the respective uncertainty ranges: the reason is similar to that suggests 
trusting on the significance of the whole error bar, i.e. xδ , rather than to the 
random measurement values, i.e. x, falling in the bar. Thus once accepting (2.1), 
deserve consideration ratios like x tδ δ  rather than x t∂ ∂ , which are by defi-
nition local values in infinitesimal ranges. 
- On the one hand it prevents the idea of instantaneous effects. Writing  

= /∂ ∂a v t  means that v changes by dv in an infinitesimal time range dt; 
i.e. it implies the instantaneous effect of a force on the motion of a body. De-
spite both changes are infinitesimal it seems more appropriate, and physically 
more realistic, to think that a finite change of velocity vδ , in principle arbi-
trary and thus even arbitrarily small, needs an appropriate time range tδ  
arbitrary as well to occur. 

- On the other hand the classical derivative also conflicts with the Heisenberg 
principle in the case where are concerned conjugate variables, e.g. xp x∂ ∂ ; 
instead is admissible ( )2

xp x xδ δ δ= − �  with both ranges in principle fi-
nite. So, being the range sizes arbitrary, the numerical worth of this last posi-
tion is still compliant with the concept of derivative without however requir-
ing in principle the local determinism of both dynamical variables. 

To exemplify how (2.1) help formulating advantageously the physical prob-
lems, define the energy Fε = � ; the actual physical meaning of this dimensional 
way to introduce a deterministic value of ε  via local definitions of F  and 
�  appears calculating δε  in agreement with (2.1), thus in agreement with the 

idea that the uncertainty ranges and not the deterministic local values of dy-
namical variables have actual physical meaning. In fact δε  consists of two ad-
dends F Fδ δ+� �  that are in turn uncertainty ranges themselves, yet with dif-
ferent physical meaning. Consider the force F  acting against a surface A, and 
let �  be a vector normal to the surface; then δε  reads  
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0
0

,δε δ δ ′ ′= ⋅ + ⋅ = �
�

F F F F�
�  

being 0 =� �  a constant length. The first addend concerns the work δε ′  of 
the component δ⋅F �  to displace A by δ � . The second addend indicates a 
range of forces, having for example equal strength of modulus 0�F  but dif-
ferent orientations with respect to the surface unit vector 0� � ; the surface ap-
pears at rest. For example A could be the inner surface of a rigid container on 
which impact gas molecules with random orientations described by all possible 

j′F  included in δ ′F . In fact therefore F  and j′F  have different physical 
meaning, because the latter have been introduced independently of the former as 
random values within an arbitrary range of forces. It is clear eventually that 
δ δ δε⋅ =F�  is the most general situation where both contributions are allowed 
to occur. These three chances are contextually possible with but hidden in the 
mere deterministic meaning of F� . 

Are now sketched five examples to show the consistency of the present model 
with: 1) classical physics, 2) relativity, 3) quantum physics. 

1) Rewrite (2.1) as  

,x x x
xv p v
t

δδ δε
δ

= =                     (2.5) 

where �  does no longer appear explicitly. Multiply both sides by an arbitrary 
mass m; regarding classically the mass as a constant, one finds  

( ) x xm m mv pδε δ ε δ= =  and thus  

( ) ( )2 2 .x x x x xm p p p p mv m constδ ε δ δ= = = =  

Moreover ( ) ( )2 22 2 0x xm p m p constδ ε δ ε− = − + = , because of course  
( ) 0constδ = , yields  

2 2x
constp m const const

m
ε

′
′= + =                (2.6) 

i.e. the classical kinetic energy of a free particle an arbitrary constant apart, de-
terminable through the initial boundary condition of the specific problem. Also, 
since according to (1.90)  

,mm mmm G m Gϕ ϕ
δ

− = ⇒ − =
� �

 

(2.1) yields  

;mm mm mmm G G G v
t p v t p

δεϕ
δ δ δε δ δ δ

− = = = =�
� � ��

 

here appears explicitly the finite propagation rate of any interaction, because ac-
tually all ranges of (2.1) are inherently related to tδ . 

2) The right and left hand sides of the first (2.1) yield respectively  
1 i.e. 2 .

2
nh hn p p n

t
δε ω ω δ δ δ λ

δ δ λ
π =

π
= = = =� �� �

�
   (2.7) 

The concepts of quantization and uncertainty ranges are interconnected. Note 
indeed the different positions  
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2 2 :nδ λ λ=π π =� �  

in the former case the range δ �  allows a range δλ  of steady circular wave-
lengths, i.e. several quantized i in λ  such that 1 2in n n≤ ≤  and corresponding  

1 2iλ λ λ≤ ≤  require 1 2i≤ ≤� � � . The second position admits of course one steady 
λ  only for a unique � ; the chance of various i inλ λ=  requires formally dif-
ferentiating both sides, which in turn means replacing both local values of �  
and λ  with the respective uncertainty ranges linked by n. Analogous reasoning 
holds of course for δε  of the first (2.7). In fact the second (2.8) was already 
found in (1.21), as one equality of the chain reads p = � � ; therefore 2p h= π�  
could be guessed as p hλ=  along with 2 λπ =� . However the quantization 
should be purposely hypothesized, instead of being evident consequence of (2.1). 
It is interesting to note that the quantum number n of wave mechanics is actual-
ly the number of allowed states. 

3) Consider that (2.1) yields  

;x
x

x v
p t
δε δ
δ δ

= =                        (2.8) 

multiplying both sides by the ratio xpε , one finds  

( )
( )

2

2 .x
x x xx

v
p p pp

δ εε δε ε
δ δ

= =                   (2.9) 

Put now in general by dimensional reasons the right hand side as 2 2
xc v′− , 

being xv′  a velocity to be determined. Then (2.9) yields two equations 

( ) ( ) ( )

( )( ) ( )

22 2 2 2 2

2
2 22

2

and

.

x x x x
x

x
x x

v c v p c v
p

vp c p c
c

ε δ ε δ

δ ε δ

′ ′= − = −

′
⇒ − = −

       (2.10) 

It is in principle possible that the right hand side of (2.9) is a constant; putting 
thus 0xv′ = , this particular case yields  

( )( ) ( )2 22 2 2
20 .x

x x x
x

vv c p c p p c const
p c

εε δ ε ε= − = ⇒ = − =  (2.11) 

The comparison with (1.29) shows the physical meaning of this well known 
result; the notation at the right hand regards a particle moving along the x-axis 
so that xp p=  and xv v= . Merging both (2.11) one finds of course with sim-
plified notation for a massive particle  

2 2

21 ,mv mc vp
c

ε β
β β

= = = −               (2.12) 

which has an interesting corollary: v c→  implies diverging energy and mo-
mentum, whereas both uncertainty range sizes pδ  and δε  enclosing such 
divergent values must tend themselves to ∞ ; but then (2.1) requires 0xδ →  
and 0tδ →  for the particle to have a finite number of quantum states. How-
ever one particle with an infinite number of allowed states cannot have definable 
physical properties; so, as time t flows in its allowed range tδ  just as x varies in 
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its space range xδ , then 0tδ →  implies asymptotic vanishing of time flow for 
matter moving at v c→ . 

Consider now also the more general case where the right hand side of (2.9) is 
not constant, in which case (2.11) needs to be corrected via 0xv′ ≠  according to 
(2.10). A relevant example of why this correction should be significant is at the 
Planck scale and when v c≈  i.e. 0β → . Rewrite then (2.9) in order to find 
again (2.11) as a particular case. Multiply both sides of the first (2.10) by the 
momentum 2p′ ; with the last notation one finds  

( ) ( )2 2 2 .vp v p c p
p

ε′ ′ ′ ′= −                  (2.13) 

Put then  

( ) ( )22 2 2
0 ,p v m cε′ ′ ′= −                   (2.14) 

so that  

( ) ( )
2 22 2 2

0 .vm c p c p
p

ε ε′ ′ ′− = −                (2.15) 

By definition v c′ ≤ : thus (2.14) agrees with ( )2 2p v ε′ ′ ≤ , in fact it is the 
standard (2.11). Also, (2.9) fulfills ( )22 2

0m cε ′→  for 0v′→  and  
( ) ( )22 2 2

0p c m cε′ ′= −  for v c′→ ; moreover in this limit (1.10) requires 0v → , 
in which case 2 0p pε ′ →  as well while (2.15) and (2.13) coincide. Therefore 
(2.14) is reasonable. Eventually p′  is defined by 0m′ , so that (2.15) has still the 
standard form of the special relativity for 0v → . The result 

( ) ( )222 2 2
0

0

1.vp c m c p
p m

βε ζε ζ′ ′ ′= + − = =
′
�         (2.16) 

is the known equation of quantum gravity that solves cosmological paradoxes 
[4]. In this respect remind now (1.28), according which  

2 2
0 0 0′ ′ ′ ′′= + = − = +           

yields  

2 2 2 2
0 0 0

0 0

.′ ′ ′′ ′ ′′ ′ ′ ′′= − ⇒ = + −
′′′ ′′′
 

         
 

 

indeed there is no reason that 0  be actually a constant; this position has been 
introduced in (1.29) to introduce the usual energy equation of the standard spe-
cial relativity. Yet, at least in principle, the last equation holds even though  

2 2 2 2
0 0 0 0

0 0

1 :
 

′ ′ ′′ ′ ′′ ′ ′ ′′= + − ⇒ − = − ′′′ ′′′ 

 
         

 
 

as a matter of fact the last implication has been quoted here because it fits (2.15). 
The physical meaning of (2.15) has been explained; however now further con-
siderations are stimulated by this new way to find the same result. Write indeed  

( ) ( )( ) ( )
2 222 2 2 2 2

0 0 0 02 2
0

1v vmc
c c

δ δ δ
 

′ ′ ′′= − = = ⇒ = − ′′′  


     


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whence  

( )22 2
0 2 0

02

2

:
1 v

c

δ δ
β

 ′ ′′ = ≡  
 −

 
    

this way of defining ′ ′′   is analogous to that of (2.12), despite appears here 

0δε  instead of 0ε . This is the reason why this quantum correction to the clas-
sical energy equation of standard special relativity is small, being due to a small 

mδ , likewise as 2
0′ ′′    corresponding to 0δ β . Eventually note the chance 

of writing  

( ) ( )2 22 2
0

0 0

1 .p c p c
 

′′′ ′ ′ ′′ ′′′ ′ ′′= + − = − ′′′ ′′′ 

 
     

 
 

i.e. once more the standard form of the special relativity. This is a well well 
known statement, according which the general relativity admits a particular ref-
erence frame where holds locally the special relativity. Anyway, it is worth em-
phasizing once more how the dimensional approach (1.28) is extensible very 
simply and shortly to include even the quantum gravity. 

4) Consider (1.35) that reads owing to (2.7)  

22 4 ;bh
bh bh

m G n
c

λ= =π π�  

next, multiplying this result by bh�  one finds  
2

2
22 8 .bh

bh bh bh
m G n

c
λ = = 


π π


� �  

Eventually, since  
2 3

2 2

2 2 2 2 ,
2

bh bh bh bh bh
bh Cbh

Cbh bhPl

m G n m ccn n
G m cc

λ λ
λ= = = =

π� �
� ��

�
�

 

the result is  
2

2 2

4 2 .
4 4

bh bh bh
BH

CbhPl Pl

AS n λ
= =

π
=

�
� � �

                (2.17) 

The physical meaning of BHS , which results quantized when expressed via 

bh Cbhλ � , will be concerned later. 
5) Consider the angular momentum δ δ= ×M r p  and its component  

Mu δ δ= × ⋅r p u  along an arbitrary direction defined by the unit vector u . Im-
plement ( ) ww pδ δ δ δ δ δ× ⋅ = ⋅ = ±u r p w p  having put δ δ= ×w u r  and  

wδ δ= w . Thus 0l =  if δ δ⊥w p , otherwise ww p nδ δ = �  so that  
0,l integer= ±  owing to (2.1) i.e. 

M 0, .u l= ± �                         (2.18) 

This is the only possible result: changing u  to find a further component 

uM ′  would trivially mean repeating the same, unique information. Although l  
agrees with the quantum numbers of standard wave mechanics, it takes here the 
physical meaning of numbers of allowed quantum states of Mu , if any. Next, 
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Mu  is enough to infer 2M . If it is true that 2 2 2M M Mx y z= =  in a range 
of arbitrary values of L l L− ≤ ≤ , then  

( )
2

2 2 2 2 2 2 2M M M M M 1 ;
2 1

i
i x y z

i

l L L
L

= ⇒ = + + = +
+∑� �  (2.19) 

i.e. 2M  is inferred from Mu  only. This procedure shows explicitly the statis-
tical meaning of 2M . 

Note that the same result is obtained summing all l states of angular momen-
tum component in a given interval of allowed states from -L to L. One finds 

( )
0

0 2 1 ,
l L l L

l L l
l l L L

= =

=− =

= = +∑ ∑                 (2.20) 

which shows that the quantum numbers are numbers of allowed states in the 
conceptual frame of (2.1). 

To highlight the significance of the second (2.20) and introduce the relativistic 
concept of spin in this conceptual frame, write the identities 

( ) ( )22 2 2 11 M M ,
2

L L s L s s+ = ⇒ + = + =         (2.21) 

whereas the same reasoning for 1L +  yields  

( ) ( ) ( )2 221 1 1 .L L s L s+ − + + = + −  

However, since L symbolizes arbitrary integers, what holds for L must also 
hold for 1L + . So it must be true that  

( )22 2 2 20,1, 2, M :L s J J L s= ⇒ + = = ±�         (2.22) 

in other words ( )22 2M s L s+ = ±  means ( )2M 1L L= ±  with the right hand 
side calculable once with L or admissibly also with 1L − . As anyway 2J  is an 
allowed square angular momentum in 2�  units, because (2.21) is an identity, 
then 2J  has actual physical meaning. An analogous reasoning holds for 2ss n=  
with sn  arbitrary integer. 

Since both L and 1L +  represent allowed states of angular momentum, (2.22) 
is an admissible generalization of (2.20); accordingly a further indicator of the 
quantum states accessible to the system is s, which of course represents quantum 
angular states of half integer values 2s�  of the spin component to be added or 
subtracted to l± � . Thus (2.22) implies, likewise the steps (2.18) to (2.20),  

( ) ( ) ( )2 2 2 2M 2 1 1 .L s J S S s S S± ⇒ = + ⋅ + + = +L S     (2.23) 

Equation (2.23) keeps its own validity even though 0L = . To infer the spin of 
particles, are enough a few elementary considerations on the standard orbital an-
gular momentum. 

2.2. The Dynamical Mass 

According to (2.12) it is possible to write  
2

20
21 .dyn dyn kin dyn kin

m vm m c m v p
c

β
β

= = = = −       (2.24) 
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The question rises then: do these ways to define kinε  and kinp  have mere 
formal meaning or have themselves physical significance and implications? This 
question has general character, yet is particularly interesting in the present mod-
el where not only dynamical variables but also their combinations are proven 
useful to provide physical information: e.g. (1.2) shows that �  is related to m 
via the constant factor 2G c ; this holds similarly for t, while m is also linked to 
t via the constant 3c G . In principle there is no reason to exclude that the de-
pendence of t and �  state of motion of a body of matter can be extended also to 
the concept of dynamical mass. It is necessary thus to verify the physical mean-
ing and the possible implications of all (2.24), to demonstrate that these defini-
tions are not merely formal. Start from the differentials of the first (2.24); owing 
to (1.65) regarded with both signs for generality, and thus not with the meaning 
of gravitational potential only as assumed in the steps (1.93) to (1.100), the clas-
sical differentials yield  

2
20 0

0 2 2 2 2 2 .
1dyn dyn kin

m mv cm m v m c
v c c

δϕ δϕ
δ δ δ δ

β β
= = ⇒ = =

−
    (2.25) 

Follow now some significant implications. 
1) Owing to (1.113), (2.25) yield  

( ) ( )
2

0 02kin kin kin
v m m T U
c

δε δ δϕ δ ϕ δ δ− = ⇒ − = − =    

whence  
1 .
2 dynm

δϕ
δ

=
                        (2.26) 

2) Is also interesting the corollary of (1.65)  

2 2 2
2 2 2 :

kin kin

mG mG
c c c

δ ϕ δδ δ δ
δε δδ

′′′ ′′′ ′′= = ⇒ = =
′′

� � �
�

 


      (2.27) 

here δ ′′′�  yields once more (1.35). 
3) Consider now the reciprocal of dynm  and calculate  

0 0

0 0 0 0 0 0 0

0 0

1 1 1 log log

log .

dyn

S
m m m m m m

S

β βδβ δβ β βδ β βδ β
β β β

β β
β β

 
= = − = − = − →  

 

= −

 (2.28) 

Let jv  be the velocities defining the various jβ  of the respective momenta 
and energies (2.24); then (2.28) turns out to be the j-th allowed state jS  of a 
given physical system represented by the respective jβ , i.e. 

0 0

0 0 0 0

j
jS S

m m m m
δββ βδβ

= ⇒ =                  (2.29) 

Then, summing over all states of the system, all jS  just found define the di-
mensionless entropy sysS  of the system, i.e. 

1 .
jdyn sys

j
m Sδ − =∑                       (2.30) 
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4) The first (2.25) reads  

2 2
0 0

log log expdyn dyn dyn
dyn

dyn

m m m
m

m m mc c
δ δϕ δϕδ

β β
 

= = = ⇒ =  ′ ′  
 

and yields  

0 0
2

0 0 0 0 0 00

1 1 11 exp 1dyn dyn dyn dyn

dyn

m m m m m m
m m m m m m mm c

δϕ
β

′′±  
= = ± ⇒ = − = ± ′ ′′ ′′ ′′ ′ ′′ 

∓ (2.31) 

and thus  

0

0
2

0

1 .
exp 1dyn

m
m m

m c
δϕ

β

′′
=

 
 
 

∓
 

Hence, regarding this equation as in the steps (2.28) to (2.29), the result is  

0 0
2

0 0 0
2 2

0 0

,
exp 1exp 1 exp 1

j j j j j j

jj jdyn

m m
m mm E m c

Em c m c

δϕ ε ε ε δε δϕ
δεδϕ δϕ β

β β

′′
= = = =

     
     

    
∓∓ ∓

(2.32) 

0 0 0 0.
exp 1

j
j j j

j j
m m

E

ε
δε ε ε ϕ ϕ

δε
= = − = −

 
 
 

∑
∓

        (2.33) 

Also this result is easily recognizable in agreement with (1.107). The link of 
(2.32) to (1.107) is straightforward; the fact that these results have been inferred 
with different reasoning supports their validity. 

5) To better understand the last (1.29) consider (2.11) written as follows  

( ) ( ) ( ) ( )22 2
2 022 2

0

m cpc
pc m c δε= + ⇒ − = = 

 
 

which therefore yields  

( )22
0 2 2

0 0 ;
m c n m c m c t n

t
δε β βδ

ε δ
= = = ⇒ =

�
�  

regarding once more n�  as referred to one of the allowed states of a physical 
system, in which case jβ β→  and jn n→� � , this result reads  

2
2 2

0 0 21 .j j j
j j j

vn m c t n m c dt
c

β δ= ⇒ = − = −∑ ∑ ∑ ∫� �        (2.34) 

The right hand side is related to the Lagrangian of a relativistic free particle. 
These results show that actually the definitions in (2.24) have their own phys-

ical meaning. 

2.3. Thermodynamic Implications 

Equations (2.1) are compliant with the basic concepts of thermodynamics. As 
(1.101), (1.107) and (2.33) have shown the chance of obtaining thermodynamic 
results, here some further considerations appear appropriate to explain why the 
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link between (2.1) and thermodynamics is in fact more profound. 
Multiplying (2.1) by c one finds  

( ) ( )
2 2

,x
e ex p c n c ct ct

n c
δ δ δεδ δεδ α

α
= = = = = = = −� � �

�
    (2.35) 

which can be represented graphically in the Minkowski plane �  vs xx v t= ; in 
the present conceptual frame the coordinates are implemented as ( )ctδ  vs 

xδ  via the factor ( ) 1x xp c c vδ δε = ≥ . 
Since xδ δ≥�  as it appears in (ZZ0) and (HJG), it follows that ( )xp cδ δε≥  

and thus according to (2.11) 

( ) 0 :x
x

v p c
c

δ δε δ ε  ≥ − ≥ 
 


                (2.36) 

from a physical point of view these inequalities are equivalent, yet their different 
analytical forms allow complementary corollaries. The notations emphasize that 
δ  and δε  are in general different energy ranges: the former comes from the 
definition of xpδ  at the left hand side of (2.35), the latter is just that at the 
right hand side of (2.1). Of course   is any random value corresponding to 

xp  in its own δ , consistently with the second inequality. 
Consider therefore separately the general case where δε δ≠   and that where 

in particular δε δ=  . 
- In the case δε δ≠   write the first inequality (2.36) and its correlation to 

thermodynamic energies as follows  

x
x int

vv T S W U
c c
δ δε δ δ δ δ≥ − ⇔ ≥ +


            (2.37) 

having put  

;x
x int

vv T S W U
c c
δ δ δε δ δ δ= = − =


             (2.38) 

moreover, writing the last (2.37) as T S Qδ ξδ=  via the numerical factor 1ξ ≥ , 
one merges the first and second laws  

.intQ W U T S Qδ δ δ δ δ= + ≥                 (2.39) 

In these results intU  is the usual internal energy of a thermodynamic system, 
whereas W is the work performed by or done on the system; Q heat energy that 
completes the total energy conservation. 

To check the correspondences (2.38), consider for simplicity mechanical work 
only in a reversible transformation where holds the equality symbol; as (2.11) 
yields  

( ) ,x x
x int

v vp c U T S
c c

δ δε εδ δ δ= + = − +  

then ( )x intT S p c Uδ δ δ− =  reads with the proposed correspondences  

( )because x x
int x x

p FT S P V U p c c t F A P V
t A

δ
δ δ δ δ δ δ δ δ

δ
− = = = = =� �  (2.40) 

as it is known from the elementary thermodynamics. Note anyway that hold the 
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relationships xv v≥  and xv vδ δ≥  between the modulus v = v  of velocity 
v  and its component xv ; hence it is possible to write as a function of v instead 
of xv  not only the initial (2.37)  

vv
c c
δ δε δ≥ −


                       (2.41) 

but also all subsequent equations. Keep the given notation. Some remarks de-
serve attention. 

1) If 0Wδε δ= =  and 0δ = , so that 0intUδ =  as well, then const=  and 
0T Sδ ≥ ; this holds for an isolated system. 

2) If 0δ ≠ , then according to (2.38) intU x c tδ δ δ δ= −   yields  

;int
x

UF c t
x

δ δ δ δ
δ δ

= − = =�
�
  

so intUδ  results defined likewise to the change of potential energy  

x potF U xδ δ= −  due to an external force xF  acting on the system. Also, since 

,int int

V const

U UVT P T
S S S

δ δδ
δ δ δ =

≥ + =              (2.42) 

it is possible to write the first (2.38) with the help of (GK0) as  

. . .

int

V const

int

V const

Ux S
c x x S

Ux x ci e h S T S
x x S x

δδ δ
δ δ δ

δδ δ δ δ ν
ν δ δ δ δ

=

=

=

= = = =

�

� �




       (2.43) 

3) Consider the following chain of equalities  

( ) 2 1
2 1

2

1 2 2 2 2
2 1 1 2 1 2

2
2 2 12

1

11 1 ;

x x
x x x

x

x x x x x x

x x xx

v vv v v
c c c v

v v v v v v
c v c v vv

δ

−

 
= − = − 

 

   −
= + − =   +   

 

 
       (2.44) 

owing to (2.38) this chain defines T Sδ . Moreover define an analogous equation 
to account for Qδ ; introducing an analogous equation as a function of a dif-
ferent 1xv′  write  

2 2
2 1

2
2 1 2

2 2
2 1

2
2 1 2

1 1

1 1 .

x x
x

x x x

x x
x

x x x

v vv T S
c c v v v

v vv Q
c c v v v

δ δ

δ δ

 
= − = +  

 ′
′ = − = ′+  




             (2.45) 

As T S Qδ δ≥ , it is reasonable to put the velocity component 1 1x xv v′= −  with 

1 0xv′ ≥  in order that  
2 2
2 1

2
2 1 2

22
2 2 11

2
2 1 2 12

1 1

1 1 ;

x x

x x x

xx x x

x x x xx

v v T S
c v v v

vv v vQQ
c v v T S v vv

δ

δδ
δ

 ′
− = ′−  

 ′ ′− − = =
 ′ ′+ + 




          (2.46) 

https://doi.org/10.4236/jamp.2023.117129


S. Tosto 
 

 

DOI: 10.4236/jamp.2023.117129 2029 Journal of Applied Mathematics and Physics 
 

in this way is surely fulfilled the second law (2.39), whereas the equality sign is 
fulfilled for 1 2x xv v�  e.g. 1 0xv → . The energy ratio of the last (2.46) defines  

2 1
2 1

2 1

0 0x x
x x

x x

v v QS v v
v v T

δδ
′ + ′= ≥ ≥ ′− 

             (2.47) 

with the inequalities ensuring that S Q Tδ δ≥ , this is the usual definition of 
entropy alternative to logw w− ; it clarifies that a reversible heat exchange is that 
with 1 0xv′ = . Are also definable the velocity components  

2 2
2 2 1 2 2 1

2 2 2 2
1 2 1 21 1

x x x x x x
xS xQ xS xQ

x x x x

v v v v v vV V V V
cT S c Qv v v vδ δ

′ ′− +
= = = = ≤

′ ′− −
      (2.48) 

via (2.46), which at this point clarify that  

xQ xS xQV c V V= ≤                       (2.49) 

to ensure the second inequality in agreement with 1 0xv′ > . In other words, the 
entropy thermodynamic condition T S Qδ δ≥  requires the velocity relativistic 
condition v c≤ , in agreement with (1.51) or its probabilistic formulation (1.60). 
A subtle connection links thermodynamics, statistics and relativity; precisely this 
link suggests that these well known concepts are appropriate in this theoretical 
frame. 

2.4. CPT Theorem  

Are useful in this section (2.1) and (2.35). Consider first (2.1) and replace  

2 1x x xδ = −  with xδ−  by exchanging 1x  and 2x ; in principle this way of re-
writing the coordinate uncertainty range does not affect the theoretical formula-
tion of present model, as all ranges are by definition arbitrary and unknown; the 
positive sign due to 2 1x x>  is merely assumed by uniformity with that of n�  
and the other ranges. Formally this choice identifies allowed values on the posi-
tive side of the x axis, whereas the negative sign means moving all coordinates in 

xδ  to the negative side of the x-axis. Yet the sign reversal due to the mere ex-
change of range boundaries cannot be regarded as an unphysical operation; be-
ing however xx p nδ δ = � , this change of sign compels replacing x xp pδ δ→ −  
unless rewriting xx p nδ δ− = − � , which trivially means multiplying by −1 both 
sides and considering the component xpδ−  of the vector δp . These steps are 
summarized simply writing ( )( )xx p nδ δ− − = � . From a physical point of view, 
however, the coordinate sign reversal has an interesting implication on the con-
jugate momentum component: replacing x xδ δ→ −  implies implementing a 
mirror imagine of the momentum uncertainty range, while in turn  

x xp pδ δ→ −  has an analogous implication for the velocity component. But since 

x xp mv= , changing sign to the velocity component means considering  

x xv v→− , i.e. ( )x tδ δ− . This holds whatever xv  might actually be, e.g. even if 

xv  is defined as 2 21x x xv v v cβ ′ ′ ′= − . Yet in principle there is also the chance 
that x xv v→−  can be also due to ( )x tδ δ− : no physical reason excludes that 
the mirror image of the space range xδ  correspond to the time mirror change 
of tδ  too, as time and space coordinates are both concerned in the same way 
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and physical role in (2.1). In other words, changing contextually  
( ) ( )x t x tδ δ δ δ→ − −  leaves unchanged both xv  and thus xp  and eventually 

xpδ . This reasoning triggers however a further consideration about the second 
equality (2.1): for the same reasons already exposed, the position t tδ δ→ −  
requires in turn changing δε δε→ −  once keeping unchanged the sign of n�  
and thus of c�  in (1.2). Now the meaning of this requirement is less intuitive 
than before, as there are no components of vectors with signs to be arbitrarily 
changed. In the case of Coulomb energy, for example, it is enough to regard 

2e e e= ×  and thus e e− ×  to fulfill the attractive effect between opposite charges; 
it is significant that the sign changes just described require the contextual change 
of charge sign. 
- On the one hand these short notes enunciate the CPT theorem: the mirror 

x xδ δ→ −  implies t tδ δ→  that in turn implies e e→− , which however 
holds for the Coulomb energy. 

- On the other hand the meaning of δε−  must have a general valence as long 
as related to time reversal whatever its specific nature might be, which sug-
gests regarding these states as the ones of antimatter. 

Even the CPT theorem appears as a natural corollary of the “mirror uncer-
tainty”: strictly speaking, it is self-evident that the Heisenberg principle cannot 
be contradicted in the mirror image of the physical reality described by the space 
and time ranges of values. 

Thus (2.1) provides a concurring explanation to the Dirac see, in agreement 
with the quantum principle of superposition of solutions admissible and even 
extensible to negative solutions; the Dirac equation admits operations, e.g. com-
plex conjugate and matrix multiplication, which convert a negative solution into 
a positive solution for a particle traveling in the opposite direction with reversed 
spin and charge. Anyway, the explanation proposed here does not contradict the 
Dirac reasoning. 

2.5. Quantum Uncertainty and Equivalence Principle 

In this model the equivalence principle is not postulated, rather it is a corollary 
of (2.1); since (2.1) contain explicitly the time dependence of all ranges, it ap-
pears in principle rational to formulate the concept of force via that of time de-
pendent uncertainty. Considering for simplicity one space dimension only along 
with the time, define in general  

( ) ( ) ( )

2 1

, , ,

;

x x

x
x x

x x x t p p x t n n x t
pxv F t t t

t t

δ δ δ δ

δδ δ
δ δ

= = =

= = = −
           (2.50) 

if for any physical reason the range sizes change as a function of time, then  

2 .x x x
x x x

n n nx x x x p p p
t p p t tp
δ δ δδ δ δ δ δ δ δ
δ δ δ δ δδ

= = ⇒ = − =
� � �� � � �  (2.51) 

To figure out xδ � , let be 2 1x x xδ = −  a range in a flat space time and let then 
this initial size stretch by keeping fixed its boundary coordinates 1x  and 2x : 
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postponing the physical explanation about why this stretching should occur, a 
possible way to describe xδ �  is to convert the linear range xδ  into a curved 
profile, say a circular arc, by keeping fixed its boundaries. As a result, the coor-
dinates 1x  and 2x , whatever they might be, define in this example an initial 
diameter of size xδ  strained into one half circumference of radius 2xδ  and 
length ( )2 2 2 2x xδ δπ = π  consequent to this particular kind of space time 
deformation. Therefore is definable a “stretch coefficient”  

str unstr

unstr

x x
x

δ δ
δ
−

Ξ =                      (2.52) 

given in this specific example by 12π − . Regardless of the oversimplification 
deliberately introduced for simplicity only, any xδ �  implies a corresponding pδ �  
because of (2.1); in general, the chances of shrinking or stretching the range size 
is in principle compliant with forces of both signs. The analytical form of (2.1) 
accounts for the conceptual link between deformation rate of space time and 
rising of a corresponding force; in effect it has been shown [5] that actually (2.51) 
is nothing else but the Einstein equivalence principle, shortly sketched here for 
completeness. Equations (2.1) provide themselves a possible hint in this respect; 
calculate  

( ) ( )
2 2 1 1

2 2 1 1
, ,

1, , x
x x x

x t x t

vx x xx x v x t v x t v
t t t x x

δδ δ δ δδ δ δ
δ δ δ δ δ δτ

= = − = − = = =
�

� (2.53) 

and analogously  

( ) ( )
2 2 1 1

2 2 1 1
, ,

, , .x x
x x x x x

x t x t

p pp p F x t F x t F
t t t

δ δδδ δ δ
δ δ δ

= = − = − =�   (2.54) 

As concerns this last result, it is also true that  

2
1

0.

x x

x

n n x n xp n m x F
t x x t n t xx

n integer F

δ δ δ δ δδ δ δ
δ δ δ δ δ δδ

δ δ

 = = − = − = 
 

=

� �� �� ��


     (2.55) 

Of course nδ  concurs itself to the link between xδ �  and xFδ ; is interest-
ing the chance that 0xFδ =  despite 0xδ ≠�  simply because ( )n n t x xδ δ δ δ= � , 
in which case 0xFδ =  means xF const=  and in particular even 0xF = . The 
inertia principle for a steady motion requires thus 0xδ =�  and 0nδ = , i.e. a 
steady motion with 0xpδ =� . Anyway it is self-evident that the force field inside 

xδ  due only to the space time stretching xδ �  is nothing else but that post-
ulated by the Einstein equivalence principle, found in [5] and summarized as 
follows: given any 2 1x x xδ = − , in principle 2 1x x xδ = −� �  implies a force field 

xF  inside xδ , having considered for simplicity to ( )1 1x x t=  only. Let be for 
example 1x  the boundary coordinate related to the position of xδ  with re-
spect to the origin O of an arbitrary reference system R, and 2x  that determin-
ing the size of xδ . During xδ �  an observer sitting on 1x  would move at rate 

1x�  with respect to O, i.e. he thinks that its displacement is due to xF ; another 
observer sitting on 2x  still experiences via an appropriate experiment the same 
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xF  although being at rest, i.e. he thinks to be in an external force field, e.g. in par-
ticular the gravity field. Yet 1x  and 2x  are boundary coordinates by fundamen-
tal assumption completely equivalent, i.e. the role of 1x  and 2x  can be exchanged 
while the conclusions of the respective observers are identical: i.e. space time de-
formation xδ �  and gravity field are indistinguishable themselves. If the range 
size xδ  is small enough, the force field turns into a local force, which shows 
that (2.1) define in fact a sort of “state equation” of the space time, in agreement 
with their direct link to the operative definition 2G c�  of space time [3]. 

Returning to (2.55), the following comments are worth noting: 
- If the number of allowed state of the system is such that ( )n n t x xδ δ δ δ�� , 

then (2.55) takes the form 2
xp n x xδ δ δ≈ −� ��  similar to (1.120); indeed, as 

x xp F=�  and thus x xp Fδ δ=� , one finds  
1 .x

xF n
x x

δδ
δ δ

≈ − − = ≈
�

�                  (2.56) 

As in general 0x x xF F Fδ = −  even though the initial 0 0xF = , (2.56) implies 
the rising of a force xF  related to   in an initially flat space time. 
- The Einstein intuition of mass curving the space time is found here in a 

slightly different form involving the uncertainty ranges: the space time cur-
vature, regarded through the one dimensional ratio x xδ δ� , is mere range 
size deformation that implies itself an energy 2mc  defined by the presence 
of m that triggers the strain rate xδ � , i.e.  

;x
x

δ
δ τ

= ±
� �

�                         (2.57) 

so it is reasonable to expect that  
2

2 ,m
C

x c cm mc
x

δ ω
δ τ

= ± = ± = ± =
� �

� �
             (2.58) 

i.e. the mass m is related to the stretching coefficient (2.52) previously intro-
duced. 
- Einstein aimed to describe specifically the gravity, whereas the model so far 

exposed admits in general the chances of range size shrinking and stretching 
the space time range sizes; this implies the existence of forces both attractive 
and repulsive emphasized by the double sign allowed in (2.58), whereas for-
mally m refers to positive or negative states of energy. 

- The crucial point to explain without specific hypotheses the reason of such a 
space deformation about what can cause stretching of an initial flat space 
time is that is the uncertainty range xδ  shrinks or stretches simply because 
(2.1) allow this chance, so that a force field xFδ  is expected throughout it. 
Let therefore xδ �  and xpδ �  imply the space time curvature, then (1.87) in-
dicates that the concept of mass triggers the concept of force in (1.88) and 
acceleration (1.93) likewise as it appears in (1.89) too. 

These remarks hold even considering n unchanged in (2.55) during tδ  of 
(2.53); however nδ  is the added value to the mere geometric view of the gravi-
tational interaction. Instead of describing the gravity through the curvature of 
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space time only, the geometric information must be completed by quantum con-
siderations about the change of number of allowed states inherent the transition 
from an ideal flat space time without matter and the actual universe filled with 
matter; in other words, the matter contributes with its own number of allowed 
quantum states to modify that of the quantum vacuum, i.e. matter vacuumn n nδ = − . 
Considering the former without the latter, Einstein has actually concerned one 
half only of the whole story. Replacing the deterministic formalism of gravity 
based on the geometrical tensor metrics with a non-deterministic quantum 
model based on the uncertainty, appears reasonable the idea that the second ad-
dend of (2.55) is related to the cosmological term reluctantly added by Einstein 
to its original tensor driven formulation: neglecting the nδ  contribution, i.e. 
the quantum aspect of the gravity, phenomena like entanglement or quantiza-
tion are obviously “a priori” excluded. In fact this is shown by (2.16) and (2.23), 
and will be further emphasized in the next section. The proposed idea of replac-
ing the postulate of mere space time curvature with that, more general than 
(2.52), deductible from the space time uncertainty ranges, sounds as follows: 

“the matter tells the space time how to deform; the space time deformation 
tells matter how to move and, in doing so, how to change its number of al-
lowed quantum states”. 

2.6. Quantum Contribution to the Dark Matter  

It is instructive to show first that a key result of the general relativity neglecting 
in fact the term nδ  of (2.55). If in particular n nδ � , then owing to (2.7), 
(2.53), (2.54) and (1.73) the third equality (2.55) reads approximately  

( )2

:xx vF n const
m x

δδ
δ

− ≈ =  

having neglected the nδ  term and taken 0xδ > , the sign of xFδ  results nega-
tive, as it is in fact possible in (2.55). According to (2.1), it means concerning an 
attractive local force xF−  defined in a range of values 1 2x x xF F F− ≤ − ≤ −  in-
cluded in the attractive force field ( )2 1x x xF F Fδ− = − − . For example xF  could 
be the local Newton force NF−  acting on a point 1 2x x x− ≤ ≤ ; hence  

x NF F− ≡ − , whereas the same holds for the force range boundaries 2 2x NF F≡  
and 1 1x NF F≡ ; this is possible because the range boundaries are arbitrary and 
unknown by fundamental assumption. So in practice the force field range is a 
positive range; however, to remind that xFδ  is in fact an attractive force field, 
use the notation xFδ . A typical case to exemplify this physical situation is that 
of a photon moving radially with respect to a gravity point source. Hence mul-
tiply both sides by 2

xv  and rewrite  

( ) ( )
2

22 2 2 0;x xx x x
x x x x

v vF F Fv v x v x F
m x m m

δδ δ δ
δ δϕ δϕ δ δ

δ
−

− ≈ − ≈ ≈ ± − >  

as  
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( )( ) ( )( )

2 2
0

2 2 2 2 2
00

2 2 2
0 0 0 .

x xx x

x x

F x F xv m v
c mc c mc m c

m v F x mc m c

δ δ δ δδϕ δ

δ δ δ

≈ ± = ± =

= =




 

        (2.59) 

Next, since owing to (2.7) one infers = nδε δω�  with n constant=  by as-
sumption, (2.59) yields  

0 02
0 0 0n

n
c δ

δϕ δω δω ω δ δω
ω ω=

≈ = = =
�

� �
�

           (2.60) 

in agreement with (1.94). 
This result of the general relativity can be in fact obtained even without in-

cluding the change of number nδ  of allowed quantum states. 
Clearly however the incompleteness of a theory based on the geometrical of 

the space time only appears weak when attempting to describe physical prob-
lems where the quantum effects are crucial. To highlight this further point, con-
sider (2.55) in the case where instead n n t x xδ δ δ δ�� ; thus, owing to (2.53),  

1 1 ;x
x

F n nx v
m n t n t
δ δ δδ δ

δ δ
≈ =

′ ′
�  

then, as before,  

2

2
1 .1

x x

x x

v F
v F n mc

nm n t c
n t

δ
δ δ δϕδϕ

δδ
δ

≈ ⇒ ≈
′

′

 

In this case the result is  

2
2 2 2

0 0

.x x x
x

x

v F x Ft n n F x mc
n n nc mc mcδ

δ δ δδϕ δ δ δ δ δ
δ δ δ→

′ ′ ′
′ ′≈ = = = =

′�


 


 (2.61) 

- On the one hand the form of 2cδϕ  in (2.61) is similar to that in (2.60); this 
means that the gravitational effect 0δ ′ ′   of ( )n n tδ δ  is in principle ana-
logous to that of the space time stretching/curvature x xδ δ� . 

- On the other hand, as necessarily n nδ ≤  because the change nδ  cannot 
be greater than n itself, comparing (2.60) and (2.61) one infers 

0
2 2

0 0 0

1

x n

n
n nc cδ δ

ωδϕ δϕ δ
δ δω→ =

′ ′
≈  ′ �




               (2.62) 

Strictly speaking, this conclusion is reasonable because the number of allowed 
states of a physical system affects its energy, while it is known that in relativity 
energy and mass are equivalent as concerns their gravitational effects. However 
the gravitational effect of the mass is easily recognizable once having established 
that precisely the mass induces the space time curvature, whereas instead the 
change of the number of states is not a tangible and visible source of gravity like-
wise the matter; yet δϕ  that causes the red shift of (2.60) is the same,  

2 2x x xv v vδ δ≡ , as that defined in (2.61). 
It is therefore interesting to learn more about this topic by considering both 

concurring effects. 

https://doi.org/10.4236/jamp.2023.117129


S. Tosto 
 

 

DOI: 10.4236/jamp.2023.117129 2035 Journal of Applied Mathematics and Physics 
 

As (2.55) reads  

( ) ,x
x x n x x n

F x na x
m x n t
δ δ δδ ν ν ν δ ν ν

δ δ
= = − = =

�
 

then it follows  

( ) ( )
( )

( ) ( )

0

0 0

0

0 0

,

x
x n x n x

x x

x n x
x

a cv x
c x v

c x
v h

c x v

δ
δ ν ν δ ν ν

ν δ

δ
δ δε ν ν

δ

= = − − =
+

⇒ = = −
+

�
�

�
�

       (2.63) 

being 0�  and 0xv  dimensional parameters. The second position is reasonable 
because xvδ  must be defined in order that 0 xv cδ≤ ≤ , which in effect is ful-
filled for 0xδ =  and xδ →∞ . Regarding in particular x per centrv v vδ = −  re-
lated to the peripheral velocity of a rotating body of size x rδ =  around its 
center, then with x perv vδ =  and 0centrv =  this result reads  

( )
( )

0
0 0

0 0

.lim
per lim r

lim r

v r
v v const v const

v r v
′= = =

+
�

�
�

       (2.64) 

This simple function fits well the rotation velocity of spiral galaxies as a func-
tion of the increasing distance from their rotation center [6]. Of course the best 
fit parameters 0�  and 0rv  must be determined case by case to match the var-
ious observed curves; in other words limv  replacing c depends on the mass, size 
and evolution of specific galaxies, whereas c of (2.63) has been implemented be-
cause in principle neither xv  nor its variability range xvδ  can trespass this 
threshold rate. Works is in progress in this respect. However such best fit calcu-
lation is not the crucial point; the essential facts are: 1) that the quantum term 

nν  has a physical meaning analogous to the relativistic space time deformation 
rate xν  of (2.61) and 2) that just for this reason both addends xFδ  of (2.55) 
account for the observed velocity profile without invoking the presence of dark 
matter. Also, ( )n xh ν ν−  is one quantum of dark matter. 

As a closing remark, a further interesting property of (2.55) is due to the chance 
of writing  

1 xFn xm
n t x x

δδ δ
δ δ δ

 − = 
 

�
�

 

whence  

1 1 .x xF Fn x m x n xm
t n t x t x x n t x x

δ δδ δ δ δ δ δ δ
δ δ δ δ δ δ δ δ δ

   − = − =   
   

� � �
�

 

If  

1 1 ,x xF Fn x x n xm m
t n t x x n t x t x x

δ δδ δ δ δ δ δ δ
δ δ δ δ δ δ δ δ δ

   − = − ⇒ =   
   

� � �
�

 

then  

1 1 ;x Y n xY m
x Y t n t x

δ δ δ δ
δ δ δ δ

 = = − 
 

� �
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therefore, since log log logY Y Y Y Yδ δ ′′ ′= = − , the result is  

( ) 1exp .x
x x

vxY Y t
x x t

δδν ν
δ δ δ

′′ ′= = = =
�

 

Note eventually that  

2 2 ,xpmass momentum force n n tY Y
time length velocity x x x

δ δ
δ δ δ

= = = ⇒ = =
� �  

i.e. Y is related via (1.75) to the De Broglie momentum. 

2.7. The Quantum Concept of Force 

Since (2.1) contain explicitly the time dependence of all ranges, it appears natu-
ral to formulate the concept of force via that of time dependent uncertainty; in 
fact, this means changing the quantum states of a particle delocalized in xδ  
before and after stretching of its xδ  during tδ . This generates a force that 
cannot depend upon xpδ  only. This point is explained writing (2.55) as fol-
lows  

:x
n x n nF

x x t
δ δδ

δ δ δ
 = − + 
 

��                   (2.65) 

from a macroscopic point of view the space time geometry is enough to account 
satisfactorily for several experimental observations; yet it is reasonable to pay at-
tention also to the quantum contribution, crucial for a full understanding of the 
concept of force and required to merge relativity and quantum theory. 

Examine these hints writing first, according to (2.54) and (2.53),  

2 1 2 12 0;x
x x x x x x x

vp F F F n v v v n
x

δ
δ δ δ δ

δ
= = − = − = − =� �    (2.66) 

in turn ( ) 2
2 1 2 1x x x xF F n v v xδ− = − −�  reads indistinguishably either  

2 1
2 12 2

x x
x x

v vF n F n
x xδ δ

= − = −� �               (2.67) 

or  

1 2
2 12 2 ,x x

x x
v vF n F n
x xδ δ

= =� �                (2.68) 

depending on whether the final and initial states are defined by the indexes of 

xF  or xv . 
First of all, whatever the signs of velocity components 2xv  and 1xv  might be, 

one infers two chances in defining the force component xF  resulting from the 
time deformation rate of the range ( ),x x x tδ δ=  summarized in general by the 
form  

2 ;x xF n v
xδ

= ± = �


                   (2.69) 

then, taking the minus sign and regarding in particular xv  as a constant in or-
der to write xv Gm m′=�  as in (1.114), xF  takes the form (1.120). However 
(2.1) allow writing xx t pδ δεδ δ= , so that x xp vδε δ =  yields xx v tδ δ= ; (2.69) 
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turns into  

( )2 .x x
xx

F v
pv t
δε
δδ

= ± =


                 (2.70) 

Hence (2.1) bypasses the necessity of introducing purposely the propagation 
time of the gravitational interaction, as done in the steps (1.117) to (1.119), be-
cause their form implies inherently the link of xδ  and tδ . As the interaction 
propagates at rate c, then in this case it is convenient to write explicitly  

( )2 .G
G x GF p n c Gm m

cc t
δεδ

δ
′= − = = =�


          (2.71) 

Then (2.1) account for the propagation time of any interaction, because they 
anyway require the time range inherently related to the space range size, but also 
allow to find two invariants of the special relativity along with the Newton law. 

In this context, where 2
x xp v cε=  is a quantum result obtained in (HH1) 

and (2.9) as a straightforward corollary of (2.1) only, thus bypassing relativistic 
considerations about flat space time and curved space time, it is possible to write 
with vector notation 

( )2

2 2 2 :
c m m m

t t t t t tc c c

δ δδ δ δ δ
δ δ δ δ δ δ

= = = + = + =
 

   vp v v vF v    (2.72) 

having written all dynamical variables via their uncertainty ranges, and not via 
their local coordinates implied by the symbols ∂ . Note that the second addend 
at the right hand side is obvious, it is just m a ; the first addend is more inter-
esting because it shows that the definition of F  implies an additional mass m′  
inherent m m mδ ′= −    during the time range tδ . This term additional to the 
classical m  defining F  is just that exchanged via force carriers between the 
bodies interacting according to F , being thus tδ  the time necessary for m′  
to propagate the force; by definition 2m cδ δ=   shows that the carriers can 
even be massless. This generalizes the mere F ma=  of the classical mechanics 
and fits the idea of finite propagation time of any interaction mediated by force 
carrier. 

Consider now the left hand side of (2.55) that reads according to (1.29), (2.55), 
(2.58) and (2.65)  

.

x
v t nU x n n n nF U n

x x t t t x n
U

δ δ δδ δ δ δδ
δ δ δ τ δ δ δ

 
= − = − = ± − = ±  

 
= −∇

� � � � �
� ∓

F

  (2.73) 

If a potential function actually exists, then the key parameters defining xF  
are: 1) the general minus sign in the first (2.73), due to the initial dependence of 

xpδ  upon xδ  in (2.55) according to (2.1), and 2) the double sign of τ  due 
to the specific kind of deformation rate xδ �  of the space time range xδ  de-
pending on whether 0xδ �  in (2.58). This in turn implies 0Uδ   itself in 
the second (2.73). In fact from a physical point of view the double signs of Uδ  
anyway fulfills its standard definition in the first (2.73); although in the case of 
the gravity is of interest the negative potential, for sake of generality both signs 
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in principle compatible with (2.55) are still considered from now on. 
Nevertheless, whatever in particular Uδ  might be, replacing �  via the 

Planck mass Plm c G= �  one finds owing to (GD3) and (2.57)  
2

1 1Pl
x

nGmn n n n nF
x x t x t n c x t n

δ τ δ τ δ
τδ δ δ τδ δ τδ δ

   = ± − = ± = ±   
   

� � �
∓ ∓    (2.74) 

having put  
2 2

2 2 ;Pl
Pl

nGmn Gm m nm c
c

τ
τ τ

= = = =
�

�
�

           (2.75) 

hence, by comparison with (2.73),  
2 2

2
2 1 1 .x

Gm n Gm n xF x x U
t n t n t x tx
τ δ τ δ τ δδ δ δ
δ δ δ δ δδ

   ′= ± = = ± =   ′    
∓ � ∓

��
(2.76) 

This result is acknowledged thinking tδ →∞  and/or n →∞ , so that the 
second addend in parenthesis becomes negligible with respect to 1 for large times 
and finite change nδ  of the number of gravitational states; then at  

t n nδ τ δ� , force and potential take the standard form  

( ) ( )

2
1 2 1 2 1 2

2 2 2 2

2

.

x
x x

x
x

Gm m Gm m Gm mGmF
x x t p v t

Gmv U
p

δ δ δε δ δ δ

δε δ
δ

≈ ± ≡ ± = ± = ±
′ ′ ′ ′ ′ ′ ′

′
′ = ≈ ±

′ �

      (2.77) 

The chance of rewriting 2
1 2m m m=  is due to the arbitrariness of m, i.e. any 

values of 1m  and 2m  arbitrary themselves are certainly compatible with m. 
Clearly the primed notation xδ ′  is irrelevant, being instead essential that xF  
results expressed via the ratio of two masses 1 2m m  over a square range 2xδ ′ . 
This classical limit case with the minus sign corresponds therefore to the New-
ton law; yet even in this approximation are significant: 1) the fact that �  does 
no longer appear in the equation, replaced by G, 2) the chance suggested by the 
positive sign concerned later, and 3) the fact that the propagation time tδ ′  ap-
pears explicitly in (2.76) and implicitly in (2.77) via xv tδ′ ′  defining xδ ′ . 

Is easily identifiable the meaning of x xδ δ�  even at the cosmological level: 
the first addend in the parenthesis is nothing else by the Hubble law, as it ap-
pears replacing the generalized coordinate x with the radius r of the universe. 
This term has been calculated in (2.53) and compares with (1.42) where  

2
0 0
2 :x G

x c
ρ ρδν ω

δ τ
  ′− ′′′= ⇔ = 
 

� �                 (2.78) 

the left hand side concerns space time ranges, the same holds for the right hand 
side that concerns a frequency inferred from and related to G only. This agrees 
with the idea of cosmological valence of (2.78). 

2.8. Gravitational Waves 

To shorten as much as possible the exposition of this section, let us start from 
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the early Einstein result of energy loss rate of an orbiting system of masses 1m  
and 2m  that generate gravitational waves  

4
6 2 2 3

5
1 2

1 1 12 2 32 5 ;tot
E rG m G
t m mc

δ ω µ ω δ
δ µ

π= ≈ =π− = + �    (2.79) 

the original integration factor 32/5 has been replaced here by the more signifi-
cant 2π for physical reasons clarified below; the difference between these nu-
merical values is less than 2% only. So (2.79) reads 

( ) ( )2 26 4 3 2
22 2

5 3 32 2 2 2 ,
Pl

aE G GG a c
t c Fc c c

µδ ω δ ω δµ µ µ
δ

 
− = = = = π π


π 


π

� �
 (2.80) 

where 3 2 cω δ �  has been regarded as modulus of acceleration by dimensional 
reasons: it is the centripetal acceleration 2ω δ �  times the dimensionless tangen-
tial velocity cωδ � . To identify this term, implement the last (2.79) inferred in 
(1.5); then ( )3 2

totc m G cω δ ω δ=� �  yields  

( )
3 2

tot tot totm G m G m Ga
c c c

ωω δ
δ ω δ δ δ

− = = = =
′

�
� � � �

          (2.81) 

so that  

21 2
2

totm G m ma Gµ
µ δ δ δ

δ δ δ
′′ ′= − = − =

′ ′′
� � �

� � �
          (2.82) 

i.e. aµ  is nothing else but the Newton law. Then write  

( )2

2 ,
Pl

a
E c t

F
µ

δ δ δ δ− = =π � �                (2.83) 

being tδ  the time range necessary to propagate the gravitational interaction at 
rate c between 1m  and 2m  through δ � . The modulus of acceleration a has 
been acknowledged by dimensional reasons, being indeed the classical 2ω δ �  
times the tangential velocity ωδ � . In fact (2.83) is simply a rewrite of the initial 
(2.79). 

However new information is suggested by a possible way to regard (2.83) ac-
cording to (2.7), i.e.  

( )2

2

2

.

gw gw
Pl

yx

Pl Pl Pl Pl

a
E n n

F

aaW a En n W
W F F F t

µ
δ λ δ λ

µµµ δ
δ

− = =

 
⇒ − = = =



π




�

          (2.84) 

The second equation is the quantization condition concerning the number n 
of steady waves allowed along a circumference of radius δ � ; the notation em-
phasizes the gravitational wavelengths gwnλ  allowed around a gravity center 
δ �  apart, which escape out of the orbiting system in lack of a black body-like 
constrain. So the energy loss Eδ  corresponds to the emission of a number n of 
quantum energy ( )2

gw Pla Fλ µ . Both W and aµ  are referred to the respective 
Planck quantities, i.e. they are expressed in Planck units. 

Reverting the steps from (2.84) back to (2.79) one realizes that the formula of 
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gravitational waves has mere Newtonian root. However, new information is 
provided by (2.84). 

If this way of reading Eδ  is correct, then the fate of gravitational systems is 
not, sooner or later, their unavoidable collapse: likewise two electromagnetic 
systems, one gravitational system decays and emits quanta of gravitational wave 
that in principle can excite another resonant gravitational system. The universe 
would appear accordingly much more interconnected, via resonant light and 
gravitational waves. 

Eventually it is worth comparing (2.84) and (1.63); owing to the first (1.1)  

( ) ( )2 2 2

2 .
Pl Pl Pl Pl

c maW a an
W F F G F

µ 
− = ⇔ − = 

 

�
�

            (2.85) 

Apart from n, the quantization due to (2.1), the right hand sides of these equ-
ations correspond well. Whatever the left hand side of (1.63) might be, it comes 
directly from the first (1.4), whose classical differential corresponds then to one 
quantum of gravitational wave energy. 

2.9. Black Hole 

By comparing (1.105) and (1.94), one infers via (2.7)  

2 2
0 02

mG n mGλϕ = =
π

�
� �

 

and thus, via (1.65)  

2
0 22 ;

2
n mG n mG

v
λ λ
ϕ

= =π�  

hence  
2
0

2 2 2

2
2

n mG
v
λ

=
π
′ ′
�
� �

 

and eventually, by identifying 0 bh=� �  and Pl′ =� �  in order to express the 
black hole radius in Planck units,  

2 2

02 2

4 .
4

bh
bh bh Pl

Pl

nm mGS
m v

λπ ′ ′
′= = = = =

′ ′ ′
� �

� � � �
�

 
 

      (2.86) 

This result is the dimensionless Beckenstein-Hawking surface entropy, which 
of course results expressible as the ratio of two energies. Consider now (1.68), 
whose physical meaning is extrapolated from that of (1.64). However it is ap-
propriate to introduce a further way to get (1.68), more directly related to first 
principles and thus more significant from a physical point of view. 

Equations (2.86) and (1.97) suggest an actual chance of obtaining the physical 
features of the black hole independently of the Einstein field equations and 
Schwarzshild metrics, by following instead a quantum approach; according to 
(1.69), bhδ �  is simply expression of the maximum gravitational potential con-
sistent for any given m with the finite value of c, which is essential also in this 
respect. The ability of this model to bypass the idea of black hole similar to an 
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event horizon around a singularity, along with its ability of accounting correctly 
and straightforwardly for the Hawking surface entropy, suggests instead the 
more sensible concept of an extremely compact body consisting of particles packed 
at the minimum lattice spacing physically admissible. This is a possible meaning 
of the macroscopic minδ ′′�  resulting in (1.69); for example is reasonable in this 
respect a body of matter with lattice spacing given by the Compton length mc�  
of the constitutive particles, defined by their individual mass m contributing to 
the whole bhm  of (1.69). 

To check the implications of this idea, start from (1.61) and (TZL) to define 
the following length  

2
0

1 22 21 :dyn
dyn dyn dyn

dyn

m G mv m
m cc c

ξ ξ β
β

Λ = + = + = − =
�

� �    (2.87) 

from a physical point of view Λ  is a linear combination of the length dyn�  of 
(1.61) traveled by a corpuscle of mass dynm  and its Compton wavelength dyn� , 
according to the wave/corpuscle behavior of a quantum particle, 1ξ  and 2ξ  
are the constant coefficients of the linear combination. Regard β  as a free pa-
rameter determinable looking for the minimum of Λ  as a function of 2 2v c . 

Trivial considerations show that minΛ  corresponds to a specific value of  

bhv v=  such that  

( )
( )

( )

2
0 01 1

2
2 2

222
01

1 22 2 222

21 ,

min
Pl Pl

bh Pl
min

Pl

m m c
m m c

m cv m G
c cm c

ξ ξ
β

ξ ξ

ξ
β ξ ξ

ξ

= ± = ±

⇒ + = Λ =

       (2.88) 

i.e. 0m  defining dynm  is expressed in Plank mass units Plm c G= � . The first 
(2.88) requires equal signs of 1ξ  and 2ξ , which however must be positive for 
both coefficients to define Λ  in (2.87). The resulting minβ  is compliant with 
the existence of states of negative energy 2

0m c−  and also consistent with  

( )
( )

( )22 22 2

2 2 2 2

0
1

0 0 2 2

1

1 ;

vv

c Pl Plc

bh
v c Pl

mchm
m h
v mc m m

νν
ν ν

ν ν ξ
ξ ξ

+ = + =

= = = = <
� �

           (2.89) 

owing to the coefficient 2 1ξ   in principle arbitrary, the last inequality holds 
whatever 0m  of (2.87) might be. So the condition 1 2 1ξ ξ =  allows two results: 
- On the one hand (2.89) merges quantum and relativistic concepts of energy 

and emphasizes the probabilistic meaning of the mass/energy equivalence 
and corpuscle/wave behavior, in such a way that the sum of these probabili-
ties yields the certainty of the actual behavior of the particle compliant with 
both properties. 

- On the other hand, replacing the positive solution minβ  in (2.87) one finds  

( ) 2

2 2 2 ;Pl
min min Pl

Pl

m G
m cc

βΛ = Λ = = =�
�             (2.90) 
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thus, multiplying both sides of this result by an arbitrary constant factor 1ξ ≥ , 
one finds again (1.68)  

2

2 .bh
bh bh Pl bh min

m G m m
c

ξ ξ= = = Λ� �             (2.91) 

The scale factor ξ  defines the macroscopic length bh�  as a function of the 
macroscopic mass bhm . It is not surprising that (1.68) is found here scaling the 
minimum of the function (2.87). This result, already found in (1.70), and evident 
here with the same physical meaning of ξ , confirms the validity of (2.87). 

Now bh�  is no longer lucky extrapolation of classical escape velocity (1.67) 
towards the limit c of (1.68) to escape the gravity field at the threshold distance 
δ ′′�  from the gravity center; rather (2.91) is rooted on the basic principle of 
superposition of states, corpuscular and wavelike, typical of the quantum physics. 
This appears appropriate at the Planck and macroscopic scales, both uniquely 
described by the arbitrary values of a single parameter ξ . Since according to 
(1.4)  

23 26 3

2 2 3

3

32 3 1 3 3
3 32 4 8 8 4

,

bh bh
bh bh

bhbh

bh
bh

m G c cV
G m G Gc m G

c
m G

ω
ρ

ω

  = = = = 
π
 
   π π π

=

 (2.92) 

it is possible to infer a Poisson-like gravity equation  
2 3

21 1 34
8bh

bh

cG
m G

ρ ϕ ϕ = = −∇ ⋅ = ∇ = ± = −∇ 
 

π
 

g g     (2.93) 

being 1−  frequency. The last (2.92) also yields the event horizon energy 
33 32 2

8 8 2

3 ,
8 2

bh
bh bh

bh

bh
bh bh bh

h c
m G

a a c
c

ω

ω

= = = ⇒ =

⇒

π π
π

= =
π

�� �

�

 
 



       (2.94) 

where the last equality expresses bhω  via the black hole surface acceleration 

bha . The last (2.94) is acknowledged thinking to the Hawking and Unruh tem-
peratures, both having the form 2kT a c= π� ; the agreement is reasonable, a 
numerical factor 8 3 1.63≈  apart due to this quantum approach. Also, (2.94) 
defines the black hole energy per unit surface  

2 2 3
3 1 .
84 4

bh
bh

bh bh

cσ = =
π π

�
� �


                (2.95) 

The further idea that follows up on the steps from (2.87) to (2.91) is to identify 
the space range minΛ  with the Compton length �



 of a mass m


 plus that 
�


 of a further mass m


; so (2.90) is rewritten as  

2 2

2 .

min

Pl Pl

m G m G
m c m cc c

m m m

ξ ξΛ = + = + =

+ = = =

� �
�

� �

�

�

 

   

 

   

       (2.96) 
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The masses defined in this way fulfill 

( ) ( ) .bhξξ ξξ+ =� ��
   

                 (2.97) 

The fact that �


 and �


, both necessarily positive, are of the order of or 
smaller than the Planck length, suggests that m



 and m


 could actually be two 
virtual particles at an average distance of 2 Pl� ; the probabilistic meaning of 
(2.89) justifies this idea, which in fact concerns the minimum minβ  of (2.87) 
and does not exclude quantum fluctuations around this minimum. The scheme 
hitherto proposed consists of three conditions 

2

22 = 2 ,min min
m G ec Gm m

m cc α
Λ = = = Λ

�
�

 



       (2.98) 

which are checked right now: 
- On the one hand, when considering m



 only, bhm mξ=


 agrees with (2.91). 
- On the other hand, dividing the c�  term by δ− � , (1.73) implies the New-

tonian/Coulomb forms 

2 2N Pl
Pl

m mc G
m c

δ
δ δ

= = − =
−
� �

� �
� �
  

          (2.99) 

when considering both m m
 

; the second option holds for charged virtual par-
ticles. 
- Eventually, when considering m



 only, one finds owing to (1.73) 

2 2 ,min min
D t t

m c c
δ δ= Λ ⇒ = Λ

�




            (2.100) 

which surprisingly yields  

( )2 22 .minD t c tδ δ δ δ= = Λ� �


             (2.101) 

The second equation defines a mean value of the square range ( )c tδ δ�  to 
concern the fact that the mass m



 does not travel at speed c but at an effective 
speed reduced by averaging with the path minΛ . Is remarkable that the statistical 
meaning of the Brownian motion (1.44) holds even in this case where are rea-
sonably expected virtual particles; furthermore, it would be even more interest-
ing if in particular m



 and m


 would be oppositely charged, e.g. in connec-
tion with the Hawking vacuum polarization and radiation beyond the black hole 
event horizon. 

Note that (2.98) and (2.99) suggest that both m


 and m


 can be effectively 
charged, because 2e  corresponding to m m

 

 does not seem accidental. If this 
idea is true, the black hole should be regarded as a space time region of pure 
energy whose vacuum fluctuations are precisely the virtual particles m



 and 
m


. 
These results should be conceivably related to the extreme features of the black 

holes; the right hand side of (2.91), obtained through the Compton and corpus-
cular lengths of m, implies the minimum distance physically definable for each 
one of the two particles. Therefore a macroscopic black hole is a collection of 
virtual m



 and m


 waves and corpuscles oppositely charged, tightly bound 
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by a Newton-like/Coulomb-like potential allowing the reasonable lattice packing 
with mean spacing 2 2=� �

 

 physically admissible by Compton lengths inside 

bhV  of (2.92). 
Note anyway that no singularity appears in this model once having bypassed 

the Schwarzschild deterministic metrics via the quantum approach. This sug-
gests merging (2.96) and (2.97) as follows:  

( )2

2
2

.

=
2

bh
bh

bh
bh

max
bh

m m G
m c m

m m m G
m c

m G cξ
ϕ

+
=

+
=

=

�
�

�

 



 









      (2.102) 

This result consists actually of identities, it is mere way of rewriting (2.91) to 
emphasize the actual physical meaning of m



 and m


; the former accounts for 
the rest energy of the black hole, the latter for the total gravitational potential 

maxϕ . In other words the black hole is pure 2m c


 mass energy plus maxmϕ


 
wave energy in agreement with the first (2.89) and (2.98). 

Eventually consider that the factor 2 in (2.90) has an interesting interpretation 
simply rewriting, without any specific hypothesis,  

( ) ( )
2 2 1 1 ,s

bh bh

c
m G ξξ ξξ

= = + =
� �


�

   

          (2.103) 

and that in (2.92) and (2.93) appears the reciprocal time 3
bhc m G ; this result 

suggest rewriting identically (2.103) multiplying both sided by c ξ , with ξ  of 
(2.91), in which case one obtains  

( ) ( )
31 1 1 1 1 .t t s

bh

c c
c c m Gξξ ξξ ξ

+ = ⇔ + = = =
�

  
  �

     

(2.104) 

In fact, further ideas about how to regard the reciprocals of space time coor-
dinates are deductible by implementing the black hole equation only to calculate 
also the Einstein gravitational light beam bending. Start uniquely from the initial 
(2.91): squaring both sides  

2
2 2

4 bh bh
bh

m G m G
c c

=�  

it reads  

2 2

4 .bh bh
bh

bh

m G m G
c c

  =   
  

�
�

                 (2.105) 

Multiply both sides by a dimensionless parameter 1ξ  and introduce in (2.105) 
a further parameter 2ξ , both arbitrary, to find  

( )
( )

( )1 2
1 1 2 12 2

2

4
1 2 1:bh bh

bh
bh

m G m G
c c

ξ ξ
ξ ξ ξ ξ

ξ
  

= > > >     
�

�
 

the ratio 1 2bh bhmξ ξ �  smaller than the initial bh bhm �  means that the related 
term does no longer concern the pertinent mass/radius ratio of a black hole 
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event horizon, i.e. both sides implement lengths beyond the event horizon. In 
other words, the parameters 1ξ  and 2ξ  convert the black hole radius and mass 
into a different non-black hole scenario; write then  

1 1 2 22 2
4 .bh bh bh bh

m G m G m m m m
c c

ξ ξ ξ ξ
′ ′′  ′ ′ ′ ′′ ′′= = = = =  ′′  

� � � � �
�

 (2.106) 

In (2.106) appear two lengths, ′�  and 2m G c′′ , both outside the initial event 
horizon of the black hole; it is compliant with the idea of describing the curved 
space time around the black hole of mass bhm , at a distance ′′�  from its center; 
the first factor implies in this respect 2 12ξ ξ>  to have bh bhm m′′ ′ >� � . The 
bending effect of a photon passing at ′′�  from the gravity center corresponds to 
and is described by the local space time curvature. Approximating this curvature 
as an arc sδ  of circumference of radius � , the tangents at the boundaries of 

sδ  define and angle sδφ δ= �  on a Euclidean plane. Yet define δφ  by cal-
culating sδ  and �  via the space time curvatures ′  and ′′  deductible 
from (2.106) itself, i.e. 1′ ′≈ �  and 2c m G′′ ′′≈ . Then the geometrical  

sδ �  of a flat space circumference is actually given in the curved space time by 
′′ ′  , i.e. by 2c m G′ ′′� : once more and again in agreement with the Lap-

lace-like (1.85), the curvature radii are the reciprocals of the respective lengths. 
More specifically, a glance to (2.106) shows that in effect  

2

2

4 1

1

m G
m Gc
c

′ ′
= ′′′′

�
�

 

must be regarded according to  

-

2

1 1 1
1

curv
curv curvEucl non Eucl

curv

s
m Gs

c

δδδφ δφ δ
δ
′

= ≡ ⇒ = = = ′′′ ′
�

� �


 


 

and therefore  

2
4m G
c

δφ
′

≈
′′�

                       (2.107) 

for a mass m′  passing at a minimum distance r′′  from the gravity source. 
Returning to (2.103) and (2.104), their possible explanation assumes that  

2 2
bh Pl bhc m G F m c=  corresponds again to the Laplace curvature s  of a black 

hole sphere of radius �bh , as if the event horizon would actually be a shell with 
its own characteristic surface tension (2.95). If so, then t  extrapolates the 
meaning of space curvature (2.103) to the corresponding time curvature  

3
bhc m G  of (2.104) still related to bhm . In this non-relativistic quantum model, 

the non-Riemann but Laplace-like space and time curvatures imply inherently 
each other; in other words (2.103) and (2.104) are not hypotheses but non-me- 
tric ways of rewriting (2.97) according to (2.96), which however are consistent 
with (2.86) and (2.94). Throughout this paper the deterministic Einstein metrics 
has been systematically waived, whereas in analogy with (1.120) now the result 
of (2.91) 22 bh bhc m G=�  is  
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2 .bh bh sF m c=                       (2.108) 

Moreover owing to (2.92) the energy density bhη  inside a black hole is, as an-
ticipated in (1.2),  

( )2 23 3 ,
8 4 8 4bh

c a
G G

ω
η

π π
= =  

to which corresponds a surface pressure reminiscent of that found in (1.89). 
To take a step forward, implement now the results of the Section 3.2 and re-

gard (2.91) according to (2.97), obtained by up scaling (2.96) via the parameter 
ξ  in order to infer (2.102); therefore implement  

2 2
dyn dyn

bh

m G m G
c c

= +�  

with the right hand side conceptually equivalent to the first (2.96). Rewrite thus 
(2.91) according to (2.87) and (2.24); i.e., owing to ( )ξξ �

 

 and ( )ξξ �
 

 of 
(2.97), write identically by analogy  

( )2

0
2 2 2 4

dyndyn dyn
bh bh

m Gm G m Gm G
c c c c
β

= + ⇒ Λ = +�       (2.109) 

that in turn reads  

( ) ( )2 22 22
0 00

2 4 2 2 2 61 .dyn dyn
bh

m G m Gm G m G vm Gv
c c c c c c

   Λ = + − = + −   
  

 (2.110) 

This form of bhΛ  consists of two addends, in the second of which the dy-
namical character of dynm  has been resolved in order to introduce the square 
root where appears rest mass 0m  only; this aims to highlight the dynamical 
meaning of the second addend (2.109) as follows 

( ) ( )

2 22 2 2 2
20 0

3 2 2 2 2
0 0

.dyn
bh

Pl Pl

m Gm G m GQ J Q Jv
F Fc c cm c m c

   = + ⇒ Λ = + − −   
   

(2.111) 

The first addend of bhΛ  is a dynamic mass quantity, likewise the terms of the 
square root where the dynamic meaning is made explicit. For brevity, the step 
from (2.110) to (2.111) is in fact guessed and sketched only: the aim is to show 
that even the generalization from (2.91) to the charged and rotating black hole is 
straightforward, elementary and embedded in the general frame hitherto de-
scribed without additional hypotheses. 

This section has aimed to be as self-consistent as possible, while being com-
pliant with two crucial literature concepts, Equations (2.86) and (2.94). However 
the more in-depth analysis carried out in this section has shown that the black 
hole condition is actually probabilistic: (2.88) leads to (2.90), which in turn 
scales to (2.91) at a macroscopic level. This means that the black hole condition 
is compatible in principle with a non-black hole excited quantum state. Clearly 
this quantum property has to do with the ability of excited black hole quantum 
states to evaporate. 

https://doi.org/10.4236/jamp.2023.117129


S. Tosto 
 

 

DOI: 10.4236/jamp.2023.117129 2047 Journal of Applied Mathematics and Physics 
 

3. Closing Remarks 

The strategy of any model aimed to be as self-contained as possible is: 1) to 
check step by step, wherever possible, the validity of the results as they are 
achieved and 2) to emphasize a recognizable physical meaning of the corollaries 
of these results. This goal is in turn achievable in various ways. 
- The sought approach should reveal unexpected links between results appar-

ently non-correlated. In fact relevant examples found in this model are the 
heat Equation (1.76) obtainable along with the De Broglie momentum (1.75), 
or the statistical distribution (1.107) obtainable in the same conceptual con-
text of the gravitational red shift Equation (1.105). Attention deserve in this 
respect also the Brownian displacement (1.44) and the third Kepler law (1.46), 
while the way to infer (1.28) is closer to the classical physics than expected. 
This holds even for the “naive” Newton law. 

Consider the third (1.2) with the appropriate sign of a, formally obtainable 
multiplying both sides by −m to find the Newtonian force, and its classical diffe-
rential  

2 2

2 .N
m cF G m

G
δ δ= − = �

�
                 (3.1) 

The differential of NF  reads  

( )

2 2

2 3 2 3 2

2

2 2 2

2 2 2 2

2 1 ;

N
mG m G mG m G GF m m m

c
mcmG Gm

c c

δ δ δ δ δ

δ

= − + = −

 = − 
 

�
� � � �

� �

      (3.2) 

it vanishes for  

( )
2 4

* * 2 *
2 *2 20 .Gm m c cF mc F

Gc G
δδ δ= → = = =�
�

 

The right hand side of (3.2) contains three interesting factors  

2
2 2

2 1 :bh
N bh

mG GF Z mc Z
c c

δδ = − ⇒ = = = −
�

�
� � �


      (3.3) 

the first one is again (1.35), the second one is the rest energy (1.29), the third one 
reads  

2
2 2

2 21 .G bh bh
G G pr G

G G pr

V GZ V F F
c

δδβ δ β δ
β β

= − = = ⇒ = = =
� �

� �
� � � �


 (3.4) 

The first position, possible by dimensional reasons, implies the last equation 
written in terms of the proper length pr� . Elementary manipulations of (3.1) 
reveal a hidden content, showing that the simple Newton law consists actually of 
three key results of special relativity. 

This highlights that regarding the general relativity as a conceptual world far 
from and alternative to the classical physics is a superficial and misleading atti-
tude. 

Even the crucial concept of statistical basis of the reality shown by the proba-
bilistic meaning of (1.60), a typically relativistic formula, has been inferred in 
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(1.51) via classical reasoning. 
- The key point is not the classical or relativistic or quantum approach; is cru-

cial instead that the starting point of any reasoning is sufficiently inclusive to 
provide a wide variety of outcomes, even serendipitous, yet all clearly recog-
nizable and controllable. In fact, nothing can be more general than the sys-
tematic dimensional analysis of the physical dynamical variables. With this 
kind of approach in mind, the black hole does not imply any singularity, as it 
is found in (1.35), (1.68), (1.97) and once more in (3.3). Also, the analysis of 
the allowed quantum states of a system must prove capable of not containing 
concepts to be validated themselves; in fact (2.65) surrogates the elusive idea 
of dark matter, as shown in (2.62) and mostly in (2.64). 

- In agreement with the fact that the space coordinates xδ  are actually gene-
ralized coordinates, note that x xδ δ�  is also representative of the Hubble 
law; it appears more evident replacing x, which merely symbolizes any space 
coordinate, with the universe radius ( )u ur r t= . Indeed the rate at which the 
universe boundary expands is  

;u
u

u

rxx r
x r

δδ ω
δ

′′′⇔ ⇒ ≡ ≡
��

                 (3.5) 

here has been quoted also (1.42), completely analogous to (2.53) although ob-
tained via dimensional considerations on G only. 
- The textbook [1] implements the deterministic metric of relativity to calcu-

late the transformation properties of the three components of angular mo-
mentum. As of course the reasoning is correct, what is conflicting with the 
quantum theory is the starting point, i.e. the space time metrics itself. For this 
reason the present model bypasses systematically the deterministic metrics to 
implement instead an approach free of the implications that make the stan-
dard relativity difficult to reconcile with the quantum physics. Even classical 
assumptions appear more reliable in this respect, e.g. the third (1.43) to find 
(1.51) and the relativistic Doppler shift (1.58). Moreover the quantum Equa-
tion (2.1) allows inferring (2.23) i.e. the spin of particles. 

- The mere definition (1.27) of β  implies with the help of (1.27) and (2.74)  
2 22 2 2 2 2

2
2 2 2 2 2 2 2 2 2

2 21 t bh t

t bh

v v h mG
c c t c t h c
t

τ τ

τ

τ ϕ τβ

τ

= + = + = + = + = +

< > <

�
��

� �

 
 

 
      (3.6) 

One expects that this chain of equations is sensible because: 1) the proper time 
τ  fulfills the first condition of time t dilation, 2) the definition of energy h/t in-
versely proportional to t is coherent with the second condition and 3) the mini-
mum length bh�  consistent with a given m with respect to any other �  agrees 
with the third condition. If so, then (3.6) is corollary of these three basic re-
quirements consistent with the initial Lorentz form at the left hand side. How-
ever is in principle reasonable also the reversed interpretation of this chain, i.e.: 
actually is precisely the probabilistic character of this result, regarded as a fun-
damental statement, that requires itself the three conditions (3.6). Either option 
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is acceptable, yet the second one is more attracting: in fact it gives the relativistic 
results the probabilistic meaning, without which deterministic relativity and 
quantum physics would remain irreconcilable. In other words, requiring the 
time dilation and thus the length contraction as well to allow the first inequality 
(3.6), means introducing a relativistic model fully compliant with the quantum 
Equation (2.1), whereas the form (1.59) of the Lorentz factor is functional to this 
aim; this consideration holds also for (2.89) and (1.28) itself. This explains why 
in [3] [5] have been contextually obtained quantum and relativistic results in a 
systematic way. Trying to introduce the quantization in the relativistic results is 
a secondary problem; the main point is to introduce the concept of probability as 
an alternative to the metrics, the quantization is next introduced via (2.1). 
- Let 1m  and 2m  be the masses of two particles δ �  apart, i.e. 0δ = −� � �  

is the space range through which propagates the gravitational interaction at 
rate c. Owing to (2.73) and (1.5) consider the classical positions  

2 3UU a mGµ ω δ∂
= −∇ ⇒ = − =

∂� �
�

F            (3.7) 

to examine the cases where a�  is given by  
3 2 4 3

2
2 ;a a a

c c
ω δ ω δω δ′ ′′ ′′′= = =
� �

� �  

all definitions fulfill the dimensional property of acceleration, yet they differ 
substantially in describing a two body orbiting system. For simplicity is consi-
dered uniform motion for which holds the last (3.7). 

1) In the first case a′  is the centripetal acceleration and yields  

3 2

2 2 2 21 .
2 2

N
mG m Ga F

G UU m T m

µδ
δ δ
µ ω δ ω δ
δ

′ ′= ⇒ = −

′ = − = − = − =

�
� �

� �
�

 

2) a a cωδ′′ ′= �  has been already concerned in (2.81), it yields directly the 
Newton law (2.82). 

3) Is particularly interesting the third case, a a cωδ′′′ ′′= �  not considered 
before but allowed because it is still consistent with the meaning of acceleration 
and thus acceptable in the present conceptual frame where the properties of 
physical systems are determined by the physical dimensions of their dynamical 
variables. Thus  

( )24 3 3

2 6 2

mG
a

c c
ω δ δ

δ
′′′ = =

� �
�

 

yields  

( ) ( )2 22

2 3 2 2 2 2
1
2

mG mGm G Ga a U
c c cδ δ δ δ

′′′ ′′′ ′′′= ⇒ = = −
� � � �

 

however, since ( )2G c δ �  has physical dimensions of 1mass− , the resulting terms 
of this reasoning are  
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( )22 2

2 2 2 2
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2N N
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Gc
δ

δ δ δ
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� � �
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i.e. one finds again the Newton law, whereas the potential energy is that indi-
cated, in addition to the mere const δ− � . The fact that also 2U const δ= − �  
is compatible with the Newtonian force, has crucial implications. 
- The interesting consideration is that all kinds of accelerations stimulated by 

(2.80) have their identifiable physical meaning; in particular it appear also the 
non-Newtonian potential U ′′′ . It is emphasized in [2] that the perihelion 
precession is easily deductible with elementary methods via a central poten-
tial having the form 2const r , which however is not expected in the stan-
dard classical gravity. The fact that U ′′′  fits the present approach implies 
the chance of calculating the other result of the general relativity. For exam-
ple, it is shown in the quoted textbook that the potential form 2const δ− �  
allows calculating the perihelion precession of planets with elementary cal-
culus; however the Authors remark that this potential form cannot be justi-
fied in the frame of the Newton law, so that the relativistic approach is re-
quired for such calculation. However, the quantum approach just highlighted 
that this non-Newtonian potential is obtainable. For this reason, the problem 
of planet precession has not been concerned in this paper: it is already solved 
in the quoted textbook. 

- The key requirement to unite quantum physics and relativity is not the quan-
tization, but to abandon the deterministic metrics. The link merging classical 
physics and special relativity is simple; yet even the general relativity is a 
simple generalization of the quantum uncertainty, as it appears for example 
in (2.16) and (2.86). The most significant results are the elementary (2.84) 
obtained from (2.79) and (2.107) merely obtainable from (1.97) only. This 
justifies why the Riemann curvature, deterministic, has been waived while 
however still inferring (2.107) and (2.111). 

On the one hand the equivalence principle concerns the impossibility of dis-
criminating non-inertial R and gravity field, precisely because the uncertainty 
requires the physical equivalence of the range boundaries 1x  and 2x  of xδ  
before and after xδ � ; in other words the force field xF  rising within xδ �  can-
not discriminate 1x�  with 2x  at rest or 1x  at rest with 2x� , both concurring 
indistinguishably to xδ �  driven xpδ � . 

On the other hand, however, the range boundaries cannot explicitly affect phys-
ical information implied by their replacement of the local coordinates; in effect 
they are arbitrary and unknowable as required by (0F1). But this implies that 
since two different ranges xδ �  and xδ ′�  fulfill identically the equivalence prin-
ciple regardless of the masses therein possibly delocalized, then both ranges must 
be compliant with a unique conclusion: the amount of mass does not appear ex-
plicitly in this reasoning, i.e. all masses behave in the same way in a gravity field. 
For the same reason are illusory concepts like behavior of gravitational mass in 

xδ  and inertial mass in xδ ′  or vice-versa, which would contradict the equi-

https://doi.org/10.4236/jamp.2023.117129


S. Tosto 
 

 

DOI: 10.4236/jamp.2023.117129 2051 Journal of Applied Mathematics and Physics 
 

valence principle itself as formulated here in the frame of the quantum uncer-
tainty. Uncertainty ranges and local coordinates are physically different from the 
local coordinates as usually intended: the former have physical meaning, the lat-
ter do not. Consider by analogy the error bar characterizing a series of mea-
surements of any physical amount: the total scattering of all results that defines 
the confidence interval of the measurement process has physical reliability, not 
the single outputs of the measurement process. Likewise the uncertainty ranges 
have actual physical meaning instead of the possible local values allowed in the 
ranges, here regarded as random and unknowable and unpredictable. In effect it 
is acknowledged that the coordinates do not exist “a priori” in nature, being ra-
ther artifices introduced to describe physical events, and thus should not play 
any role to formulate fundamental physical laws. This is the reason why in fact 
the uncertainty ranges, and not the local coordinates, have physical meaning in 
this model. 
- The gravitational red shift is inferred from (2.7) thinking a photon of wave-

length λ  and frequency ν  traveling in the vacuum along the radial direc-
tion with respect to a gravitational energy field. As c λν=  implies  
δλ λ δν ν= − , let the gravitational potential ϕ  change by δϕ  in the space 
interval corresponding to δλ  be  

( )0 2
0 02 2

0 00

0 ;

m h c m c
c m c

ch m

δ ϕδϕ δε δν δλ δλν ε
ε ε λ λ λ

ε ν ϕ ν
λ

= − = − = − = = =

= = =

 

then, in agreement with (1.94)  

2 1
2 .

c
ν νδϕ δλ δν

λ ν ν
−

= = − =                    (3.9) 

Since owing to (1.8) 2velocityϕ ∝  by dimensional reason, then δϕ  related 
to δλ  can be nothing else but the gravitational red shift. 

This result has been mentioned as it legitimates the quantum/relativistic link 

0h mν ϕ= , which is not self-evident, and justifies the interest of finding again in 
(3.9) a result already inferred in (1.105). Moreover (3.9) allows a possible inter-
pretation of the gravitational red shift reminiscent of the rotational/linear frame- 
dragging of the Lense-Thirring effect: the wavelength stretching δλ  is actually 
guessable as a space stretching induced by the presence of a gravity field, ana-
logous to that of (2.52), which in turn extends the local wavelength electromag-
netic wave passing locally. Then also the Doppler effect has an immediate and 
intuitive explanation: if a luminous solid body travels towards an observer and 
“compresses” the space ahead it, then the light emitted that crosses this region of 
space appears blue-shifted to the observer; the contrary occurs if the body 
stretches the space behind it, in which case the light is red-shifted for the ob-
server. 
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4. Conclusion 

The main purpose of this model is to produce ideas, not numbers. Despite the 
dimensional analysis does not include numerical coefficients, its validity has been 
checked throughout the paper. It is convenient to start from (1.1) and (1.6) than 
from the elementary dynamical variables to infer physical laws in a self-consistent 
and self-contained conceptual frame. The other conclusion inferred in this paper 
is that the deterministic metrics of the standard general relativity can be suc-
cessfully bypassed, whereas an alternative quantum approach is easily imple-
mentable. 
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