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Abstract 
The known equivalence of 8-dimensional chiral spinors and vectors, also re-
ferred to as triality, is discussed for (4 + 4)-space. Split octonionic representa-
tion of SO(4, 4) and Spin(4, 4) groups and the trilinear invariant form are ex-
plicitly written and compared with Clifford algebraic matrix representation. It 
is noted that the complete algebra of split octonionic basis units can be re-
covered from the Moufang and Malcev relations for the three vector-like ele-
ments. Lagrangians on split octonionic fields that generalize Dirac and Max-
well systems are constructed using group invariant forms. It is shown that 
corresponding equations are related to split octonionic analyticity conditions. 
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1. Introduction 

Nonassociative algebras, apart from Lie algebras, have never been systematically 
utilized in physics, only some attempts have been made. Nevertheless, there are 
some intriguing hints that these kinds of algebras may play an essential role in 
the ultimate theory, yet to be discovered. Octonions, as an example of such a 
nonassociative structure, form the largest normed division algebra after the al-
gebras of real, complex and quaternionic numbers [1] [2] [3]. Since their dis-
covery in 1844-1845 there have been various attempts to find appropriate uses 
for octonions in physics (see reviews [4] [5] [6] [7]). One can point to the possi-
ble impact of octonions on: Color symmetry [8] [9]; GUTs [10] [11] [12]; Re-
presentation of Clifford algebras [13] [14]; Quantum mechanics [15] [16]; Space- 
time symmetries [17] [18] [19]; Formulations of wave equations [20] [21] [22]; 
Quantum Hall effect [23]; Kaluza-Klein program without extra dimensions [24] 
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[25]; Strings and M-theory [26] [27] [28] [29] [30]; SUSY [31] [32] [33] [34], etc. 
Eight-dimensional Euclidean space, in which ordinary octonions reside, pos-

sesses certain peculiarities, namely that the vector and the two chiral parts of the 
spinor are all eight-dimensional objects and there exists a rotation invariant tri-
linear form in which vectors and chiral spinors act indistinguishably from one 
another. This property, called triality [35] [36], is usually formulated in terms of 
spin group automorphisms and symmetry of D4 Dynkin diagram [13]. 

Properties of spinors and vectors have been also discussed within the context 
of split octonions. Unlike ordinary octonions, the split algebra lacks the property 
of divisibility since it contains zero divisors. On the other hand, (4 + 4)-space of 
the split octonions has Minkowskian subspaces. Hence ( )8SO  group describ-
ing rotational symmetry of the Euclidean space is replaced by its noncompact 
analog for (4 + 4)-space, namely ( )4,4SO , in which Lorentz groups ( )1,3SO  
and ( )3,1SO  are contained multiple times as subgroups. This makes the split 
octonions interesting to study in the context of geometry in physics [37] [38] [39] 
[40]. 

In physical applications, split octonions were used to provide possible expla-
nation for the existence of three generations of fermionic elementary particles 
[41] [42]. In [43] generators of ( )8SO  and ( )7SO  groups were obtained and 
have been used to describe the rotational transformation in 7-dimensional space. 
In [44] [45] real reducible 16 × 16 matrix representation of ( )4,4SO  group uti-
lizing the Clifford algebra approach was constructed and it was shown that there 
are two inequivalent real 8 × 8 irreducible basic spinor representations, potential 
implementation for 8-dimensional electrodynamics [45] and gravity [46] was 
also considered. In [47] the basic features of Cartan’s triality of ( )8SO  and 

( )4,4SO  was analyzed in the Majorana-Weyl basis, it was shown that the three 
Majorana-Weyl spacetimes of signatures (4 + 4), (8 + 0), (0 + 8) are interrelated 
via the permutation group (signature-triality). In [36] octonionic representation 
of ( )8SO  and triality was discussed, but triality symmetry is also valid in (4 + 
4)-space spanned by the split octonion algebra. Another unique concept asso-
ciated only with (4 + 4)-space is 4-ality, it’s similar to triality but deals with 
fourfold symmetry of modified Dynkin diagram 4D�  [48]. 

One of the objectives of this article is to recast results of [35] to (4 + 4)-space. 
We also want to describe split octonionic vectorial and spinorial representations 
of ( )4,4SO  group and to construct split octonionic Dirac and Maxwell Lagran-
gians underlying triality symmetry in this space. 

The paper is organized as follows. In Section 2, we present 16 × 16 complex 
matrix representation of the Clifford algebra 4,4� . The Section 3 and Section 4 
are devoted to vectorial and spinorial matrix representations of ( )4,4SO  group 
respectively. In Section 5, the equivalence of (4 + 4)-vectors and chiral spinors 
(triality) is explicitly demonstrated. In Section 6, it is shown that the complete 
algebra of hypercomplex octonionic basis units can be recovered from the Mou-
fang and Malcev relations. In Section 7, the trilinear form, and the group  

( )4,4SO  under which it is invariant, is written in terms of split octonions. In 
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Section 8, split octonionic Lagrangians that can be built by quadratic and trili-
near invariant forms are presented. In Section 9, it is shown that an equation 
similar to the split octonionic analyticity condition can be reduced to the sys-
tem of the Dirac-Maxwell equations. Finally, Section 10 presents our conclu-
sions. 

2. Matrix Representation of 4,4�  

Geometric algebra of (4 + 4)-space is a Clifford algebra over the real number 
field with a diagonal metric gµν  (Greek indices, e.g. ,µ ν  take on the values 
0,1, ,7� ) having ( )4,4  signature and is usually denoted as 4,4� . As all Clif-
ford algebras, 4,4�  is associative and can be defined through anti-commuta- 
tion relations:  

2 ,e e e e gµ ν ν µ µν+ =                      (2.1) 

where eµ  are orthogonal basis units of grade-1 vectors. 
Basis unit eµ  can be represented as µΓ -matrix. To obtain an exact form of 

the µΓ -matrices for 4,4� , we can take the 8,0�  generating matrices Aµ  
described in [35] and multiply four of them by complex imaginary unit i,  

( )
( )

, 0,1,2,3

, 4,5,6,7

A

iA
µ µ

ν ν

µ

ν

Γ = =

Γ = =
                  (2.2) 

This changes the Euclidean metric into the split metric of (4 + 4)-space. Here 
we use labeling and ordering of 16-dimensional Hermitian Aµ  matrices that 
differs from the one in [35],  

†

0
,

0
A µ
µ

µ

α
α
 

=  
 

                     (2.3) 

where the 8-dimensional µα  matrices are:  

0 1

1
1

1
1

, ,
1

1
1

1

i
i

i
i

i
i

i
i

α α

−   
   
   
   
   
   = =   −
   

−   
   −      
   

 

2 3

1
1

1
1

, ,
1

1
1

1

i
i

i
i

i
i

i
i

α α

−   
   
   
   −
   

−   = =   − −
   

− −   
   −      
   
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4 5

1
1

1
1

, ,
1

1
1

1

i
i

i
i

i
i

i
i

α α

   
   
   
   −
   

− −   = =   −
   

− −   
   −      −   

 

6 7
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, .
1
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1
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i
i
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i
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i

α α

−   
   −   
   −
   
   = =   −
   
   
   
      
   

 

We see that four of the µα  matrices, and thus four corresponding Aµ  ma-
trices, are imaginary and the rest four are real. For obtaining (4 + 4)-space alge-
bra from that Euclidean version, we could have chosen any four of the eight ge-
nerators to be multiplied by the complex imaginary unit i. Choosing the imagi-
nary Aµ  matrices would have resulted in a real representation of 4,4� , which 
is indeed algebra isomorphic to the ring of 16 × 16 real matrices [13]. However, 
in the complex representation defined above (2.2), some calculations are easier 
and closer to those provided for Euclidean 8-space in [35]. 

3. Vectors in (4 + 4)-Space 

Let us take x to be a real vector in (4 + 4)-space whose components are labeled as 
xµ . Object that transforms like a vector is represented by a matrix  

7

0
,x xβ β

β =
= Γ∑                          (3.1) 

where βΓ -matrices are defined in (2.2). The vectors of (4 + 4)-space have the 
property that  

2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 ,x x x x x x x x x= + + + − − − −               (3.2) 

where we assume that the right-hand side is multiplied by the (16 × 16) identity 
matrix. 

The similarity transformations  

( ) ( )1 ,x L xLµν µνϑ ϑ−′ =                      (3.3) 

where  

( ) 1exp ,
2

Lµν µ νϑ ϑ = − Γ Γ 
 

                  (3.4) 
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result in rotations and boosts of the vector x. This represents the ( )4,4SO  
group under which the quadratic form (3.2) is invariant. Transformations of x 
under Lµν  can be divided into two types: one comprising 2 copies of ( )4SO  
in two maximal anisotropic subspaces and another comprising 16 copies of  

( )1,1SO  that mix these two maximal anisotropic subspaces in isotropic planes. 
The former type of transformations is compact and they are realized when either 

, 0,1,2,3µ ν =  or , 4,5,6,7µ ν = . The letters are Lorentz-like non-compact boosts, 
i.e. hyperbolic transformations and are realized when 0,1,2,3µ =  and  

4,5,6,7ν = , or vice versa. 
To demonstrate these two different types of ( )4,4SO -transformations, it is 

sufficient to study them in the tangential space. The space is spanned by Taylor 
expansion of the transformation matrix (3.4) in the neighborhood of the identity 
element up to the first order term,  

( ) 11 .
2

Lµν µ νϑ ϑ− Γ Γ�                    (3.5) 

Using the fact that  
1 ,L Lµν νµ
− =                         (3.6) 

the Formula (3.3) in the tangential space reduces to  

( )1 .
2

x x x xα α β β β µ ν β β ν µ
α β

ϑ ′ ′= Γ = Γ − Γ Γ Γ + Γ Γ Γ  
∑ ∑       (3.7) 

As an example let us consider rotations in 4 5e e∧  plane. For 4,5β ≠  the 
second term in (3.7) vanishes due to the defining algebraic relation (2.1), so we 
can write  

.x xβ β′ =                         (3.8) 

When 5β =  the second term in (3.7) turns into 5 4xϑ Γ , which dictates that  

4 4 5.x x xϑ′ = +                       (3.9) 

Similarly, for 4β =  we get  

5 5 4.x x xϑ′ = −                      (3.10) 

Since we have opposite sign in front of ϑ  in these two infinitesimal coordi-
nate transformations, corresponding finite transformations would result in com-
pact rotations:  

( )

4 4 5

5 5 4

cos sin ,
cos sin ,
, 4,5

x x x
x x x
x xρ ρ

ϑ ϑ
ϑ ϑ

ρ

′ = +
′ = −

′ = ≠

                  (3.11) 

We have similar compact rotations in all anisotropic planes. 
Alternatively, the transformations that mix maximal anisotropic subspaces are 

non-compact. For example, if we apply calculations similar to the previous case 
to 0µ =  and 4ν = , we would get non-compact rotations of the form:  
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( )

0 0 4

4 4 0

cosh sinh ,
cosh sinh ,
, 0,4

x x x
x x x
x xρ ρ

ϑ ϑ
ϑ ϑ

ρ

′ = +
′ = +

′ = ≠

                 (3.12) 

At the end of this section we want to introduce one of the 1680 possible grade-4 
elements of 4,4� ,  

1 3 5 7 ,B = −Γ Γ Γ Γ                      (3.13) 

which due to the property  

( )T  , 0,1, ,7B Bµ µ µΓ = Γ = �                 (3.14) 

will become useful below. 

4. Spinors in (4 + 4)-Space 

A spinor in the (4 + 4)-space can be represented as a 16-dimensional column 
vector  

,η φ ψ= +                         (4.1) 

where  

0

1

7

0

1

7

0
0

0
and

0
0

0

φ
φ

φ
φ ψ

ψ
ψ

ψ

  
  
  
  
  
  = =   
  
  
  
        

��

��

                  (4.2) 

are spinors of different chirality. We note that φ  and ψ  have 8 independent 
real components each. 

The spinor transformations under ( )4,4Spin  (double cover of ( )4,4SO ) 
are described by the same matrix (3.4) that was used for vectors, but the trans-
formation law is different  

( ) .Lµνη ϑ η′ =                       (4.3) 

Under this transformation the quantity  
T T TB B Bη η φ φ ψ ψ= +                   (4.4) 

is invariant. We prove this in the tangential space using the property of B matrix 
(3.14),  

T T T T

T T

1 11 1
2 2

1 11 1 .
2 2

B B

B B

ν µ µ ν

µ µ µ ν

η η η ϑ ϑ η

η ϑ ϑ η η η

   ′ ′ = + Γ Γ + Γ Γ   
   
  = − Γ Γ + Γ Γ =  
  

        (4.5) 

It can be noticed that two terms on the right hand side of the relation (4.4) are 
conserved independently, meaning that their terms do not mix. 
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5. Triality 

The vector x considered in the Section 3 and two kind of spinors ψ  and φ  
considered in the Section 4 are objects of same dimension in the underlying field 
 . This kind of match between the dimensions of vector and chiral spinors only 
takes place in 8-dimensional space. 

In order to extract another peculiarity of (4 + 4)-space, which relies on the 
previous one, let us apply the following linear basis change to the spinor (4.1):  

2 3

0 1

7 6

5 4

5 4

7 6

0 1

2 3

2 3

0 1

7 6

5 4

5 4

7 6

0 1

2 3

1 .
2

i
i
i
i
i

i
i
i

i
i
i
i

i
i
i
i

φ φ
φ φ
φ φ
φ φ
φ φ
φ φ
φ φ
φ φ

ξ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ

− + 
 − 
 − −
 
− + 

 − −
 

− 
 − − 
 − −

=  − 
 − −
 
− − 
 − +
 

+ 
 − + 
 − +
 
− − 

                      (5.1) 

In this basis, the invariant quadratic form (4.4) for 8-spinors φ  and ψ  
yields  

T 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7

T 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7

,

,

B

B

φ φ φ φ φ φ φ φ φ φ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

= + + + − − − −

= + + + − − − −
           (5.2) 

which are analogous to the invariant quadratic form for the vector (3.2). Then 
one can construct a trilinear form  

8 8 8: × × →                         (5.3) 

on x, φ  and ψ ,  

( ) T, , ,x Bxφ ψ φ ψ=                      (5.4) 

which is preserved under simultaneously transforming x and η φ ψ= +  under 
the vector (3.3) and spinor (4.3) transformation rules with the same Lµν . Proof 
is provided in the tangential space:  

T T T

T T T T1 11 1 .
2 2

Bx L BL xL L

B x Bx

µν µν νµ µν

ν µ µ ν

φ ψ φ ψ

φ ϑ ϑ ψ φ ψ

′ ′ ′ =

   = + Γ Γ + Γ Γ =   
   

       (5.5) 

Let us look closely at these transformations. For example, the infinitesimal 
( )01L ϑ  rotations of vector and spinors are:  
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0 0 1 0 0

1 1 0

0 0 1

2 2 31 1 0

2 2
3 3 2

3 3

4 4
4 4 5

5 5

6 6 5 5 4

7 7

6 6 7

7 7 6

1 1
2 2
1
2
1
2
1
2, ,
1
2
1
2
1
2
1
2

x x x
x x x
x x
x x
x x
x x
x x
x x

φ φ ϑφ ψ ψ ϑ

φ φ ϑφ
ϑ

φ φ ϑφϑ

φ φ ϑφ

φ φ ϑφ

φ φ ϑφ

φ φ ϑφ

φ φ ϑφ

 ′ ′= + = +

 ′ = −

′ = − 
  ′ = −′ = + 
 ′ =
 ′ = +′ = 
 ′ =  ′ = −
 ′ =
 
′ =  ′ = +

 ′ = 
′ = +



′ = −

1

1 1 0

2 2 3

3 3 2

4 4 5

5 5 4

6 6 7

7 7 6

1
2
1
2
1
2 .
1
2
1
2
1
2
1
2

ψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ




 ′ = −

 ′ = +



′ = −


 ′ = +


 ′ = −



′ = −



′ = +

      (5.6) 

As usual one full rotation for a vector x is only half a rotation for spinors φ  
and ψ . However, since Lµν  matrices form a group under matrix multiplica-
tion, we can construct transformations for x that exactly reproduce transforma-
tions (5.6) of φ ,  

( )10 23 54 67 1 0 2 3 5 4 6 7
11  ,

2 2 2 2 4
L L L Lϑ ϑ ϑ ϑ ϑ        − Γ Γ + Γ Γ + Γ Γ + Γ Γ       

       
�  (5.7) 

which results in  

0 0 1 0 0 1

1 1 0 1 1 0

2 2 3 2 2 3

3 3 2 3 3 2

4 4 5 4 4 5

5 5 4 5 5 4

6 6 7 6 6

7 7 6

1 1
2 2
1 1
2 2
1 1
2 2
1 1
2 2,
1 1
2 2
1 1
2 2
1 1
2
1
2

x x x

x x x

x x x

x x x

x x x

x x x

x x x

x x x

ϑ φ φ ϑφ

ϑ φ φ ϑφ

ϑ φ φ ϑφ

ϑ φ φ ϑφ

ϑ φ φ ϑφ

ϑ φ φ ϑφ

ϑ φ φ

ϑ

 ′ ′= + = +

 ′ ′= − = −

 ′ ′= − = +


′ ′ = + = −



 ′ ′= − = +


 ′ ′= + = −


′ ′= + = −



′ = −

0 0 1

1 1 0

2 2

3 3

4 4

5 5

6 6

7 7

7

7 7 6

, .

2
1
2

ψ ψ ϑψ
ψ ψ ϑψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ
ψ ψ

ϑφ

φ φ ϑφ







′ = −
 ′ = +
 ′ =
 ′ = 

  ′ = 
  ′ =
 

′ = 
  ′ =



′ = +

      (5.8) 

What’s peculiar here is the ways in which vector x and spinors φ  and ψ  
transform have interchanged between the three, namely x and φ  appear to be-
have like a spinors now and ψ  looks like a vector, since full rotation in ψ  
gives half a rotation in x and φ . This is the property of the eight dimensional 
space, which was named as triality, similar to the duality for dual vector spaces. 

For the completeness let us also write out boost-like non-compact transfor-
mations, which are only realized in anisotropic spaces, for example the trans-
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formations generated by ( )04L ϑ ,  

0 0 4 0 0

1 1 5

0 0 4

2 2 61 1

2 2
3 3 7

3 3

4 4 0
4 4 0

5 5

6 6 5 5 1

7 7

6 6 2

7 7 3

1 1
2 2
1
2
1
2
1
2, ,
1
2
1
2
1
2
1
2

x x x
x x
x x
x x
x x x
x x
x x
x x

φ φ ϑφ ψ ψ ϑ

φ φ φ ϑ
ϑ

φ φ ϑφ

φ φ ϑφ

ϑ
φ φ φ ϑ

φ φ ϑφ

φ φ φ ϑ

φ φ ϑφ

 ′ ′= − = −

 ′ = −

′ = + 
  ′ = −′ = 
 ′ =
 ′ = −′ = 
 ′ = +  ′ = −
 ′ =
 
′ =  ′ = −

 ′ = 
′ = −



′ = −

4

1 1 5

2 2 6

3 3 7

4 4 0

5 5 1

6 6 2

7 7 3

1
2
1
2
1
2 .
1
2
1
2
1
2
1
2

ψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ

ψ ψ ϑψ




 ′ = +

 ′ = +



′ = +


 ′ = −


 ′ = +



′ = +



′ = +

      (5.9) 

We see that, similar to the compact case, the hyperbolic transformation of one 
of the three objects (vector and two chiral spinors) in the isotropic plane 0 4e e∧  
generates spinorial transformations of other two objects in corresponding four 
isotropic planes, 0 4e e∧ , 1 5e e∧ , 2 6e e∧  and 3 6e e∧ . Again, it is possible to 
replicate transformations of x in one of the spinors which would trially swap 
their behavior. 

6. Split Octonions 

It is known that spinors and vectors of (4 + 4)-space, considered in Section 3 and 
Section 4, can also be represented using split octonions instead of matrices [44] 
[45] [46] [47]. Split octonions ′  form non-associative algebra with the prop-
erty of alternativity. The algebra can be defined through the algebraic relations:  

( )2 1, , , , , , 1,2,3

, .

n n m n mn mn

m n mn mn m n mn mn

I j I J j j j m n

J J j J j I J

δ ε

δ ε δ ε

= = = − + =

= + = −

∑

∑ ∑

� �
�

� � � �
� �

�
     (6.1) 

From the above relations and the alternativity property one can extract the 
entire multiplication table for basis units  

     (6.2) 

Now we want to show that complete algebra of the seven hypercomplex basis 
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units of the split octonions follows from the Moufang and Malcev relations 
written for only three vector-like split octonionic elements nJ . It is known that 
the anti-commuting basis units of octonions and split octonions, xy yx= − , are 
Moufang loops [49]. The algebra formed by them is not associative but instead is 
alternative, i.e. the associator  

( ) ( ) ( )( )1, ,
2

x y z xy z x yz= −                  (6.3) 

is totally antisymmetric  

( ) ( ) ( ), , , , , , .x y z y x z x z y= − = −                (6.4) 

Consequently, any two units x and y generate an associative subalgebra and 
obey the following mild associative laws:  

( ) ( ) ( ) ( )2 2, , .xy y xy x xy x y xy x x yx= = =            (6.5) 

The octonionic basis units also satisfy the flexible Moufang identities:  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ), , .xy zx x yz x zyz x z y zx x yzy xy z y= = =     (6.6) 

In the algebra we have the following relationship between the associator,  

( ) [ ] [ ] [ ]( )1, , , , , , , , ,
3

x y z x y z y z x z x y     = + +              (6.7) 

and the commutator  

[ ] ( )1, .
2

x y xy yx= −                      (6.8) 

Since the hypercomplex octonionic basis units anti-commute, their commu-
tator can always be replaced by the simple product, [ ],x y xy= . 

It is also known that basis units of octonions and split octonions form the 
Malcev algebra (see, for example [50] [51]). Due to non-associativity, commuta-
tor algebra of split octonionic units is non-Lie and instead of satisfying the Jaco-
bi identity, they satisfy the Malcev relation:  

( )( ) ( )( ) ( )( ) ( )( ) ,xy xz xy z x yz x x zx x y= + +             (6.9) 

or equivalently  

( )( ) ( ), , , , ,x y xz x y z x=                   (6.10) 

where  

( ) ( ) ( ) ( )( )1, ,
3

x y z xy z yz x zx y= + +              (6.11) 

is so-called Jacobiator of x, y and z. Indeed, using anti-commutativity of ele-
ments, we find:  

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )

3 , ,

3 , , .

x y xz xy xz y xz x xz x y

xy z x yz x x zx x y y xz x xz x y

xy z yz x zx y x x y z x

= + +

= + + + +

= + + =





(6.12) 

In Malcev’s algebra two types of products are defined: bilinear xy yx= −  and 
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trilinear ( ), ,x y z , which can be expressed using bilinear products as:  

( ) ( ) ( ) ( )( ) ( ) ( )1, , , , , , .
3

x y z x yz y zx z xy y x z x z y= + + = − =    (6.13) 

We also have identities containing four and five elements of the algebra:  

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )
( )( )

, , , , , , 0,

, , , , , , ,

, , , , , , , , , , , ,

, , , , .

xy z w yz x w zx y w

x y zw x y z w z x y w

x y z u v x y z u v z x y u v

z u x y v

+ + =

= +

= +

+

  

  

     

 

   (6.14) 

So, one can generate a complete basis of the split octonions by the multiplica-
tion and distribution laws of only three vector-like elements nJ . Indeed, we can 
define pseudo-vector like basis units of the split octonions nj  by the commu-
tators (or simple binary products) of nJ ,  

1 ,
2n nmk m k

m k
j J Jε= ∑∑                    (6.15) 

where nmkε  is the totally antisymmetric unit tensor. Also using Moufang iden-
tities for 1J , 2J  and 3J  we can identify the seventh basis unit I with the Ja-
cobiator,  

( )1 1 2 2 3 3 1 2 3, , .J j J j J j J J J I= = = − =             (6.16) 

As a result, from the Moufang and Malcev relations we can recover the com-
plete algebra of all seven hypercomplex split octonionic basis units (6.1). The 
non-vanishing associators of these basis units are:  

( ) ( )
( ) ( )

( ) ( )

, , , , , ,

, , , , , ,

, , , , , .

n m k nm k nk m n m k nmk nk m mk n

n m nmk k n m nmk k
k k

n m k nmk n m nmk k
k

j J J j j j j J I J J

j j I J j J I j

J J J I J J I J

δ δ ε δ δ

ε ε

ε ε

= − = − − +

= = −

= − =

∑ ∑

∑

 

 

 

 (6.17) 

General split octonion x ′∈  over the field of real numbers and its conju-
gate are  

( )

( )

0 4 4

0 4 4

,

,

n n n n
n

n n n n
n

x x Ix j x J x

x x Ix j x J x

+

+

= + + +

= − − +

∑

∑
               (6.18) 

where 1,2,3n =  and 0 1 7, , ,x x x ∈�  . Quadratic form : ′→   is defined 
as multiplication of x ′∈  with its conjugate  

( ) .x xx=                            (6.19) 

The quadratic form cannot be used to construct a norm since it’s not positive 
definite and also evaluates to zero for nonzero split octonions. Symmetric and 
non-degenerate bilinear form , : ′ ′⋅ ⋅ × →    is defined in terms of the qua-
dratic form as  

( ) ( ) ( )1 1 1, .
2 2 2

x y x y x y= + − −              (6.20) 
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Explicitly it is  

( ) ( )
3

4 4
0

1,  .
2 n n n n

n
x y xy yx x y x y+ +

=

= + = −∑           (6.21) 

At the end of this section we define split octonionic gradients:  

( ) ( )

( ) ( )

3

0 4 4
0

3

0 4 4
0

1 1 ,
2 2
1 1 ,
2 2

n n n n
n

n n n n
n

I j J

I j J

+
=

+
=

∂ = ∂ + ∂ + ∂ + ∂

∂ = ∂ − ∂ − ∂ + ∂

∑

∑
           (6.22) 

where n∂  is a partial differentiation operator with respect to nx . They are de-
fined in such a way that they mimic properties of regular derivative for →   
functions and Wirtinger derivatives for →   functions, namely  

1 ,
0 .

x x
x x
∂ = ∂ =

∂ = ∂ =
                      (6.23) 

But these properties do not extend to higher order terms in x and x  [52], 
since they already fail for quaternionic derivatives [53]. 

7. Split Octonions and Triality 

Now let us express the triality of (4 + 4)-space in terms of split octonions. We 
can write split octonionic representation of the (4 + 4)-space vector and chiral 
spinors, (3.1) and (4.2), as  

0 1 1 2 2 3 3 4 5 1 6 2 7 3

0 1 1 2 2 3 3 4 5 1 6 2 7 3

0 1 1 2 2 3 3 4 5 1 6 2 7 3

,
,

.

j j j I J J J
x x x j x j x j x I x J x J x J

j j j I J J J

φ φ φ φ φ φ φ φ φ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

= + + + + + + +

= + + + + + + +

= + + + + + + +

     (7.1) 

Note that unlike the Clifford algebraic representation of spinors and vectors 
(considered in Section 3 and Section 4), where they are represented by different 
type of objects, here they are a same type of object. Furthermore, the invariants 
constructed by the split octonionic vector and spinors (7.1), can also be written 
identically to each other, namely  

( ) ( ) ( ), , .x xxφ φφ ψ ψψ= = =                (7.2) 

These expressions respect the fact that they evaluate to same quadratic forms 
(3.2) and (5.2) and are interchangeable in the trilinear form (5.4) as we have seen 
above. 

Trilinear form (5.4) represented with split octonions can be written using bi-
linear form (6.21) as [54],  

( ), , , .x xφ ψ φ ψ=                     (7.3) 

Split octonionic vectorial and spinorial representations of ( )4,4SO  can be 
constructed similarly to octonionic representations of ( )8SO  as described in 
[36]. Let us denote two distinct basis units of split octonions by u and v and de-
fine an object:  
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cos sin  ,
2 2

cosh sinh  ,
2 2

uv

u v uu vv
T

u v uu vv

ϑ ϑ

ϑ ϑ

    + =       = 
    + = −       

             (7.4) 

Then any group transformation can be constructed by compositions of trans-
formations  

( )uv uvx T uxu T′ =                        (7.5) 

for ( )4,4SO  and  

( ) ,uvu Tφ φ′ =                         (7.6) 

( ) ,uvT uψ ψ′ =                        (7.7) 

for ( )4,4Spin . For example, the transformation ( )01L ϑ , whose infinitesimal 
version is written out in (5.6), is achieved by taking 1u =  and 1v j=  in (7.5), 
(7.6) and (7.7), since 1 and 1j  are the first two units of split octonions. Order-
ing of the rest of the basis units is same as in the multiplication table (6.2). 

8. Split Octonionic Field Theories 

Using the expression of trilinear form (7.3) we can construct a Lagrangian by re-
placing x ′∈  with the derivative defined in (6.22) that act to the right,  

, .φ ψ= ∂
�

                        (8.1) 

By stationarizing the action integral  
8d ,S x= ∫                          (8.2) 

we get right-analyticity and left-analyticity conditions on φ  and ψ   

0,

0,

φ

ψ

 ∂ =

∂ =

�

�                          (8.3) 

These equations represent the generalized Cauchy-Riemann and Cauchy- 
Riemann-Fueter [55] conditions for split octonions. Split octonionic conjugation 
of the first equation in (8.3) turns the system into  

0,

0,

φ

ψ

∂ =

∂ =

�

�                         (8.4) 

Adding quadratic terms in φ  and ψ  to the Lagrangian  

1 2
1 1, , ,
2 2

φ ψ λ φ φ λ ψ ψ= ∂ + +
�

              (8.5) 

results in mixing of the these split octonionic fields at the equation level,  

2

1

,

.

φ λ ψ

ψ λφ

∂ =

∂ = −

�

�                        (8.6) 

If we take 2 0λ =  and use the property of alternativity, then equations reduce 
to eight independent Klein-Gordon like equations for (4 + 4)-space  
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, 0.ψ∂ ∂ =
� �

                          (8.7) 

9. Dirac and Maxwell Equations 

We define a new gradient operator D in terms of ∂  as  

,D I I= ∂                           (9.1) 

which has the opposite sign for imaginary parts nj  and nJ   

( ) ( )0 4 4
1 1 .
2 2 n n n n

n
D I j J += ∂ + ∂ − ∂ + ∂∑               (9.2) 

We also consider fields (the case of split quaternions see in [56] [57]):  

0 1 1 2 2 3 3 0 1 1 2 2 3 3 ,A j j j I J J J= + + + + + + +                (9.3) 

.F DA=
�

                           (9.4) 

If we take the quadratic Lagrangian defined above (8.5) with parameters  

2 0λ =  and 1 1λ = − , set Fφ =  and Aψ =  and use D instead of ∂  we get  
1, , .
2

F DA F F= −
�

                     (9.5) 

Using the definition of F in terms of A (9.4) and the fact that , ,F F F F= , 
the Lagrangian simplifies to  

1 , .
4

F F=                         (9.6) 

Equation of motion for this Lagrangian is  

, 0.D D A =
� �

                         (9.7) 

In the limit when ( )1 2 3
1
2 x y z tD j j j I→ = − ∂ − ∂ − ∂ + ∂D  the equation (9.7) 

reduces to free dyonic Maxwell equations in Minkowski space  

, 0,A =
� �

D D                         (9.8) 

where n  and n  for 0,1,2,3n =  are electromagnetic and dyonic 4-potentials, 
split octonionic form of which was first introduced in [58] [59]. 

For the following Lagrangian with mass parameter m  

3 3
1 1, , , ,
2 2

D m J D mJφ ψ φ ψ φ ψ = − = − 
 

� �
            (9.9) 

two independent equations of motion result after stationarizing the correspond-
ing action  

3

3

1 0,
2
1 0,
2

D J m

D J m

φ

ψ

 − =  

  − =  

�

�
                     (9.10) 

second of which reduces to Dirac equation in the limit D →D . 
Lagrangian for a single field ψ  obtained by setting 3Jφ ψ=  and taking the 

limit D →D  
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3 3
1,
2

J J mψ ψ = − − 
 

�
 D                  (9.11) 

is equivalent to Dirac Lagrangian and consequently resulting equation of motion  

3
1 ,
2

J mψ ψ=
�

D                       (9.12) 

is equivalent to the regular Dirac equation. 

10. Summary and Concluding Remarks 

In this paper, the equivalence of 8-dimensional spinors and vectors is discussed 
for (4 + 4)-space within the context of the algebra of the split octonions. It is 
shown that the complete algebra of hypercomplex split octonionic basis units 
can be recovered from the Moufang and Malcev relations for the three vector- 
like elements. The trilinear form, together with ( )4,4SO  and ( )4,4Spin  group 
transformations, under which it is invariant, is represented using split octonions. 
It is shown that, unlike matrix cases, this representation respects the triality sym-
metry. Subsequently Lagrangians on split octonionic spinorial and vectorial fields 
were constructed using the group invariant quadratic and trilinear forms. Split 
octonionic analyticity conditions were obtained by stationarizing action corres-
ponding to the simplest trilinear Lagrangian. It is shown that similar Lagran-
gians correspond to the system that reduces to the free Dirac and dyonic Max-
well equations when extra four spacetime dimensions are removed. It is worth 
noting that the trilinear relation is exactly of the form used in supersymmetric 
theories (see, for example [33] [34]), so it is only natural that the overall symme-
try of such models is given by triality algebras. 
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