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1. Introduction

In this paper, we study the initial boundary value problem of the following ge-

neralized Beam-Kirchhoff equation:

Ug + B(A) U +a(A) " u+ (;/M (”D"‘u

z)+5N (||ut||2))(A)zm u="f(x), (@

u(X,t):0,%=0,i=l,2,-~,2m—l,xe§Q,t>0, )
u(x,0)=u,(x),u, (x,0)=u,(x),xeQc=R", (3)
a>0,>0,7>0,0>0, (4)

m>1 is a positive integer, Q is a bounded region in R" with a smooth

boundary, 6Q denoted by the boundary, f(X) is the external force term.
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B(AY"u, is the strongly damped term, aA™u  is the beam term.
yM ("Dmu z)(A)Zm u is the kichhoff term, SN ("ut”Z)(A)2m u is the nonlinear

source term.

The Kirchhoff type equation was first proposed by Kirchhoff as an existence
of the nonlinear wave equation for free vibration of elastic strings. The equation
has great application in many fields, such as non-Newtonian mechanics, cos-
mology and astrophysics, plasma problems and elasticity theory, so the study of
this kind of equations has a profound practical significance.

In addition, attractor is the key subject of infinite dimensional dynamic sys-
tem research.

The long-term dynamic characteristics of a system are always dominated by
its own attractors, and the shape of the attractors can directly determine the type
of dynamic characteristics. Therefore, the attractors are an important index to
describe the progressive behavior of the dynamic system at t— . Global at-
tractor is the main research object of autonomous system. In the past 20 or 30
years, autonomous system has been widely studied, and the results have been
very mature both in basic theory and practical application [1] [2] [3].

In 1883, Kirchhoff [4] first proposed the wave equation that changes with time

o%u Eh.fou) . | ot
ph?‘{%ﬂ“ﬁj{, [Ej dx}y=0,0<x< L,t>0.

where, A represents the cross-sectional area of the stretched string, F is the Young
coefficient, L represents the length of the string, P, represents the initial axial
tension, p represents the mass density of the string, and u :U(X,t) is the
transverse displacement in space x and time coordinates £ The expansion model

of the equation in higher dimensional space is as follows:

u, —M (“Vurdx]Au: f(xu),xeQcR".
Q

where, u denotes the vibration displacement of the string, f (X,u) denotes the
external force, M (S) =as+bh,a,b>0. The characteristic of this equation is that
it contains non-local terms Kirchhoff terms, so it is called a Kirchhoff-type equ-
ation.

E. hoenriques, D. Borito and J. Hoale studied the initial boundary value prob-
lem of the following nonlinear Kirchhoff equation in [5]:

U, —M (“VUF deAU +ou, =0,
Q
u(0)=uy,u, (0)=u,xe[0,L],t [0,0).

the only stable solution of the equation is obtained by Galerkin’s method.
Lin Chen, Wei, Wang and Guoguang Lin [6] studied the initial boundary val-

ue problems of the following class of higher-order Kirchhoff equations:

U +(=A)"u, +¢(||V"‘u||2)(—A)m u+g(u)=f(x).

DOI: 10.4236/jamp.2023.117126

1946 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.117126

G. G. Lin, B. S. Chen

They prove the existence of bounded absorption sets and global solutions by a
prior estimation and Glerkin’s method, and prove the existence of the family of
global attractors by using the method of uniform compactness. Then they esti-
mate the upper bounds of Housdorff dimension and fractal dimension.

Yuhuai Liao, Guoguang Lin, Jie Liu [7] studied the initial boundary value
problem of the Beam-Kirchhoff equation in order to study the global stability of
the model

U +B(A)" U, +M ("D"‘u Z)ut +a (A" u+N ("Dmu

")=a)"u =t (x),

u(x,t):O,%:O,i =1,2,---,2m-1x € 6Q,t > 0,

u(x,0)=uy(x),u (x,0)=u,(x),xe Q= R".

The existence of the family of global attractors and upper bounds of Hous-
dorff dimension and fractal dimension are proved by proper hypothesis of non-
linear terms.

More results on the existence of attractors in mathematical and physical mod-
els can be seen in detail [8]-[15].

On the basis of previous studies, the existence of global solutions and the fam-
ily of global attractors for Beam-Kirchhoff equations under boundary conditions
will be studied.

For illustrative purposes, the following Spaces and symbols are defined:
H=L1%(Q),D=V,E =H*"*(Q)xH"(Q),(k=12,---,2m);

E, =H*"(Q)xH (Q),(u,v):ju(x)v(x)dx;

Q

And assume yM ("Dmu

conditions are met:

M (”D"‘u E)ECZ([O,+00), R)1<g,<M ("Dmu

z)(A)Zmu , ON (”ut"z)(A)zmu that the following

p
J<a
p

(A) 00,%||D2"‘*ku”2 >0

O.l,%"Dmeu"z <0
where, 0,0, isthe positive constants, k=1,2,---,2m;
) N(Ju[")ec?([0.+),R).1< A <N ("Dmut”z)g A,

where, A), A is the positive constants.

AO’%||D2m+ku||2 50

A,%||D2m*ku||2 <0

k=12,---,2m.

f s a sufficiently large constant.
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2. Existence of a Family of Global Attractors

In this part, the existence of bounded absorption set is proved by prior estima-
tion, then the existence and uniqueness of global solution is proved by Galerkin’s
method, and finally the compactibility of global solution in phase space is veri-
fied by Soboleve compact embedding, thus the existence of a family of global at-
tractors is proved.

Lemma 1. Assumes that (A), (B) is true, f(x)eH, (uyu,)eE,, v=u, +eu,
and is satisfied

1 : 0 m
e LR

0, =25, + 260, +2ae —2&° B—&°A7°" >0,
then the global smooth solution of the initial boundary value problem (1) - (3) is
(uv)eE, and ve LZ(O,T; HZ"‘(Q)).

So there is a non-negative real number R, and t,

fiml(uv), <ol +[ < RS (t>1). ®

t—oow

Proof. Due to V=uU, +&U, we take the inner product of both sides of Equa-
tion (1) with v. We can get

(ull +/3(A)2m u, +yM (|
=(f(x).v).

By using the Holder’s inequality, the Young’s Inequality and the Poincare’s

D"u

E)(A)zm u+aA*™u+5N ("u‘ "2)(A)2m u,v) (6)

Inequality and conditions (A), (B), each item in (6) is processed successively

_ii 2 2
(002 o+ 220

2 2 9-2m (7)
i L g B
(ﬂ(A)zm u, ,v) = (ﬂAZ”‘ (v —gu),v) = ﬁ"Dzmv”2 —ﬂg(Azmu,v)
(8)

> Blomf + 255 - po o]

2
m P 2m
D"u p)A u,v)

[

- M (| D"y Z)(Dzmu, D"y, )+ yM (”Dmu"z )(Dzmu,gDzmu) (9)
> 222 Lo + ool
(N ") a)"uv) z%%"DZmu “+eon, |02 (10)
()-8 fomf ol v
(W)= o + 5 12
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Therefore:
S (0, + 0, @)Dl ) (922 -3 - -
13
+(278,6 + 265 A, + 205 267 f— 22,2 ) [D*u sl||f X)) -
&

There are
%("VHZ +H(r%0+5h + 0‘)"Dzmu||2)Jr 0‘1(||V||2 +(76, + A + 0!)||D2mU||2) <C,. (14)
It’s given by the Gronwall’s inequality
M + (3,58, oo

15
< (wolf + (78, + 5, + ) o2 et = 1
@
Let L=min(L(y5,+5A, +a)), Then we can get
2 . 12
o <Ll om raloul e
L Loy
Such that there are non-negative real numbers R;,
T 2 C
fimf(uvfE, =[o*muf M < = Ron(t>1). (7)

Lemma 1 is proved.
Lemma 2. Assumes that (A), (B) is true, f (X) eH, (uo,ul) ek, v=u,+eu,

2m-k
and is satisfied C, = Miﬂ ||f (x)"z, a, = min{@, . ?pb }’
76, +SA +a

2m 2
0, :/3’721 —25-26°>0, 6, 227508—ﬂ82—%+265/%+2068>0a

then the global smooth solution of the initial boundary value problem (1) - (3) is
(uv)eE, and vel’(0,T;H’™*(Q)).
So there is a non-negative real number R, and ft,

W"(uv)”zEk :”Dz"‘*ku |2 +||Dkv||2 <R, (t>t,). (18)

t—oo

Proof. Due to (—A)k v :(—A)k u, +g(—A)k U, take the inner product of both

sides of the Equation (1) with (—A)k v,

(utt +B(A) "y + M (”Dmu"z )(A)zm U+aA?™u+6N (||ut||2)(A)zm u,(—A)k v)

=(f(x),(—A)k v).

By using Holder’s inequality, the Young’s Inequality and the Poincare’s In-

(19)

equality and conditions (A), (B), the terms in (19) are obtained

(un,(—A)k v) = (vt —gut,(—A)k v)

o -l o)) )
1d ? :
T e = ot
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(;/M( D"u p)Azmu,(—A)k v)
(” " ) 2mk || m [P amk, |2
o+ m ([O7]] oD @)
_7(23 §t|D2m+ku" +7/58|D2m+k "
(B(8)"u.(-4)"Y)
= /}| Dz’”*kv"2 —ﬂg(Azmu,(—A)k v)
> ﬂ| Dzm+|<v||2 _ﬂg||D2m+ku||.| D2m+kv|| (22)
> ﬂ| D2m+kv||2 _ﬂTEZ"DzMUHZ _§||D2m+kv||2
> L Jon Lo - Lo
4 4 2
(8N (o )(2)" u. (-4 v)
oN ("U " ) 2mk 2 2mek, |2
Tolt| D +20N (Ju ) |o*u (23)
> %% D“”ku”2 +e5A| DZm*ku||2.
(aru, () v) = £ 2o+ as|om 24)
(F(0.(-a)' v)< §||D2m+kv||2 +T||f - (25)
All kinds of comprehensive can be written as
%(”D"v”z +(15,+ A, +a)| D2m+ku||2)+ AR +%ﬁ| D24y
+0 | D2m+ku||2 - 40" " f (X)Hz (26)
4 > ﬂ .
Available
i( DIF 4 (5. + 5 D2m+k 2)
(R *2(7 s+ 0 +a) D | 2 o
+a, (”Dkv” +(y5, + 5A, +a)||D2m*ku|| )SC2
And that is given by Gronwall’s inequality
[D4v[ + (76, + 54, +a)|D*u[
C (28)
(| ] + (8, + 58, + D u | Jeret + ==
2
Let L = min(l,(y§2 +0A, +a)) , then
"(U’V)Hzgk _ D2m+ku||2+||Dkv||2 S"D UO||L1+"D V°|| tto)+lf_;_ (29)
2
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So there is a non-negative real number R, and t, that make

I A L e VN

Lemma 2 is proved.

Theorem 3. (Existence and uniqueness of solutions) Assumes that (A), (B) is
true, f (X) eH, (uo,vo) € E,, then the initial boundary value problem (1) - (3)
has an unique smooth solution (u,v)e L” ([0, +0); E, ), vel? (O,T; H 2mk (Q)) .

Proof. Galerkin’s finite element method is used to prove the existence of global
solution.

The first step is to construct the approximate solution

ou

Let Unzﬁ.

Take the sequence W;,W,,--,W,, --,W, € H*", W,,W,,---,w, is linearly inde-

pendent. Linear combinations of W, are densein H 2™ The approximate solu-
m

tionis U, (t)=> 0, (t)W, in problem (1).
i=1

Where g, (t) is determined by the following conditions

(ur’; + (A" Ul + M ("Dmu

:(f(x),wj),lsjsm,

Z)(A)Zm u, +aA’™u_ + 6N (||ut ||2)(A)2m Up W, ) -

The nonlinear system of ordinary differential Equations (31) satisfies the in-
itial condition

Upo (0)=Up0,Uy, (0)=Uy. When m—+o0, (Upg,Upy)—>(Ug,ty) in H™.
We know from the basic theory of ordinary differentiation that approximate so-
lutions exist on (O,Im) .

The second step is prior estimation

Multiply both ends of Equation (31) by g, (t)+ EQm (t), and sum over j to

get
(ur’T’] +ﬁ(A)2m u’, +yM ("D"‘u"i)(A)zm u, +aA’™u, +SN ("D’“ut”z)(A)zm um,vm)
:(f(x),vm),ls j<m,
(32)

A prior estimate of the solution in E; is obtained from lemma 1:

t—o0

] O A N R T e )

And that’s given by lemma 2:

Bl ), =0 [0 <R,

t—w
so (Up.V,) isboundedin L”([0,4+w];E, ).
The third step is limit process
Danford-Pttes theorem tells us that space L~ ([0,+oo]; H 2™k« H k) is conju-
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gate to L7 ([0,+oo]; H2™* xH ’k) . Choosing subcolumn u, from the sequence

u

m

causes (u# WV, ) —(u,v) to converge weakly *in L” ([0, +oo)) :
It is known from Rellich- Kohr paiiiob theorem that E, compact embedded
in E,,and (u H,V#) —(u,v) converges strongly almost everywhere in E;.
In (31) let m=pu and take the limit, for fixed jand x> j

() = (v w; ) = (20, ) > (vow; ) = (o, w; ). (33)
Weakly * converges in  L”[0,+00).
(B(A)" uw;) > B((a)°
[l

L ([0,+oo)).

In the space L~ ([0,+oo]; H 2™k Hk ) , u: weakly converges to u”, u

" w, ) converges weakly * in L” ([0,+oo)) .

D™u D™u

p .
)(Azmu,wj ) converges weakly * in
p

r

. Wweak-

ly converges to u’, and there is

:
Lmj£|u;—u'|dxdt=o,

So (§N (||ut ||2)(A)2m u,,w; ) - (5N (||ut||2 )(A)zm u,wj) converges weakly * in

L* ([0, +0)).
(aAzmu”,Wj)%(aAzmu,Wj) converges weakly * in L°°([O,+oo)).

Derivable

(urr +ﬂ(A)2m u, +yM (|
:(f(x)'wj)’jzl,zr--,m.

D"u

)8y u et N () (A" v (34

Therefore, the existence of the weak solution of problems (1) - (3) is obtained.
The existence is proved, and the uniqueness of the solution below is obtained.

Let u,v be two solutions to the problem, and let W=u-V have w(0)=0,
w,(0)=0

-+ (A" w M (D7 Ja%u = M (Jom|] Janv s antow

(35)
+6N (| D"y, |2)(A)2m u—5N (||D"‘vt ||2)(A)2"" v=0.
* We take the inner product of w, in both sides of this equation,
(Wtt +B(A)" W+ M (| D"yl )Azmu —yM (| D[ )Az’"v+ ah*™w
p p (36)
+ON (Juf? )Y u= 8N (] )(A)" v ) =0,
* Each item is processed successively
1d
(W W) = Ea”Wt "2 ' (37)
(B(8)™ww )= po™w ", (38)
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D"u

[

From lemma 1, lemma 2 and differential mean value theorem and Young’s

E)Azmu—yM ("Dmv”Z)Azmv,wt). (39)

inequality

)Azmu -yM (”Dmv"p)Azmv,wt)

[l
[l

*Jazmu—m (Joral’ )AzmyM (”D"‘u" Jamu—pm(Jon] Jaimv.w

; M( D"y );t A™W —)/"M’ (¢ ||( pu[" +[D™v]° ) v]-|amw
S 75 d A™ 2 E”mer _ﬁ A, 2
2 dt 2 2
"l +(1-0)|o™ .0 e(0.0).
Similarly,

(5N (||ul I )Azmu AN (||vl I )AZ"‘V, W, )

= (§N (l”)a?u =N ([l ) a7+ SN (lu ) A = SN )Az”‘v,wt)

SN (lul’) 4 . @
Gl —||a (V). 1o
e e L
2 dt
where g=9||ut|| +(1-0")|m, || 0'<(0,1).
(aAZ"‘ww) Z:t D’ (42)
Substitute (37) - (42) into Equation (36)
A05 am M2 | mo 2 2
Sl (s Ao mo -m
+(2/3—B4—Bz)|D2"‘WI <0.
Since [ is a sufficiently large number, we get
&l + (A o] |-mfomef -8 0. (e
19y mou?
I {55 v o |
(45)
<B,|o"w +B3||Wt|| <B " [D2"w]" + B, w .
Let ngmaX{Blﬂ.l_m,B3},
Then
{" " (75 Ao j|Dsz2}
dt
(46)

<, Juff (224210

From the Gronwall’s inequality

DZm

WZJ.
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(47)

IA
—
=
—
o
~
)
+
7/ N\
X
S
+
‘?
S,
+
:/
O
N
3
=
—_
o
e
| I
@D
&
o

Then W(t) =0,u =V, thus uniqueness is proved.

Theorem 3 is proved.

Theorem 4. The global smooth solution of problem (1) - (3) satisfies lemma
1, lemma 2, and theorem 3.

Then the initial boundary value problem (1) - (3) has a family of global at-

tractors

A =w(Dy )= N US(t)Dy k=12,---,2m,

>0t>r
where:
Dy = {(u,v) eE, :"(u,v)"ik = "Dzn”ku"2 +||D"V||2 <R+ RZZ} is a bounded ab-

sorbing setin E, and satisfies the following conditions:

1) S(t)A =A.t>0;
2) !imdist(S(t)Dk,A()zo (where VD, c E, and is a bounded set), where

dist (5 (1) D, A) = sup inf 3 (6)x-

S (t) is the solution semigroup generated by the problem (1) - (3).
Proof. According to theorem 3, there exists a solution semigroup S(t):E, — E,
of the problem (1) - (3).

According to lemma 2, we can obtain
IS (t)(uo.vo )"25k = "u"igm*k(n) +||V"|245(Q) < "Uouigwk(n) +[vo "1245(0) <Rg.

This indicates that {S (t)} (t>0) is uniformly bounded on E, .
Furthermore, for any (U,,V, )€ E,, when t>max{t,t.}, we have

1S ()W, =l M < R RE
Therefore,

D, ={(uv) <, :fumff, o] + o] <R? ]

is a bounded absorbing set for semigroup S(t).

According to the Rellich-Kondrachov’s theorem, E, is compactly embedded
into E,, so the bounded set in E, is the compact set in E,. Therefore, solu-
tion semigroup S(t) is a completely continuous operator, thus the family of

global attractors A, of solution semigroup S(t) is obtained. where
A =o(Dy )= N US(t)Dy, .

720t>7

Theorem 4 is proved.

3. Dimension Estimation for the Family of Global Attractors

In this section, we first linearize the equation to a first order variational equation
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and prove that solution semigroups S(t) is uniformly differentiable on E, .
Finally, we estimate the upper bounds of the Hausdorff dimension and the Frac-
tal dimension by using the generalized Sobolev-Lieb-Thirring inequality.

If we linearize the equation, we get

U, +7M (||D”“U||S)A2mu +7pM’(| D"u Z)i p"y|"™ - D"u-D"Udx - AZ"
+B(AY"U, + 8N (Ju)(a)" U + 26N (Ju ") fu, -Uidx- (4)"u (48)
+aA’"U =0, )
U(X,t)ZO,%IO,i=1,2,-”,2m—l,xeaQ,t>O, (49)
U (x,0)=¢U,(x,0)=7. (50)

And for any (Uy,V,)€E,, the initial value problem (1) - (3) has a solution
(u(0):¥(0)) = S (1) (o).

Lemma 5. Initial value problem (1) - (3) exists a family of attractors A . A
is bounded in E,. The solution semigroup S(t) determined by the initial
value problem (1) - (3) is uniformly differentiable on the compact invariant set
A, . Its derivative is defined as F(t,u0)§ =U (t) U (t) is the solution of the
linear initial value problem (48) - (50). There is a bounded operator
F:(&m)—(U (1)U, (1)).

And let
¢ =(Up,Uy) € By = (U + E,u, +77) € By

then

Jsw-swa-powo) |

-0 ((£&m)—0). (51)
()
Proof. g =(Us,Uy)e E = (o +&,uy+7) € E, and [l ,||¢70||Ek <R.
Let
y=u-u-Ug=y +ey,
then

T, + (A" +yM (”D"‘U"z )Asz +aA?™T + SN (||Ut||2 )Az’"U = £(x),
U+ B(A) " u +yM (”D"‘u"z )Azmu +aA”™u+ SN (||ut ||2)A2mu = f(x),

D"u D"u

U, +7M (| Z)Az'“u +7pM’(| Z)”D”‘u|p72-Dmu~Dmde~A2’“u
Q

+B(A)" U+ N (Ju [ )(4)"U + 26N (Ju [ ) fu -U,dx-(4) " u+ar™u =0,
Q

Subtracting from three formulas can be obtained:
v+ B(A) " v +aA™y +G =0, (52)

where
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D™u

D"G D"y E)Az"‘u—yM( Z)Asz

p)Asz—yM(

p
“rom (o )]
Q

=N (Ju [ ) A% = SN (Ju | )(a)™ U = 26N (Ju | ) fu, -Uydx-(4)"u
Q

G:yM(

D"u["" - D"y D"Udx- AU + SN ([ ) A"

Let G=g, +0,,where
glzj/M( E)Azmﬁ—)/M(
—7pM (
g, =N ()7 o0 ) a7 - o () (40

_25N’(||ut||2)z[ut Udx- (A" u.

D"u E)Asz

D"u

D"G z)AZ"‘u —M (

D"u

Z)_[|Dmu|p72 -D™u-D"Udx - A*"u,
Q

To deal with

0, =M (|ora]; Ja*a—ym (D7 Ja*u—ym (Jou

P )Asz
p

D"u

e s

+7pM'(||Dmu||Z)i

—7pM'( z)”D"‘u|H~D"‘u-D’“de-A2mu
Q

D"u

p 2m
Jo

D" Z) D™ (T —u)AZ"T +yM (

D"¢

m, |P~2 m m 2m
D"u|  -D"udxD"w -A""u

D"u

—pr'( E)SJ;|Dmu|p_2-Dmudx~Dm(U—u)~A2”‘u

=R"(¢)S, (D" (T-u)) - A%"T
i

# M (o] Ay |

D"u D"u

Z) D" (T —u)-(A”"T - A”"u) (53)

i
p

where ¢ =s,D"U+(1-5,)D"u,g=5,D" ¢ +(1-5,)D"u,s,,5,€(0,1).
(FY s p P\

R(é’)—yM ( p)( p)'

Take the inner product of g, and (—A)k ¢, and deal with it term by using

the Young’s inequality,

[Rr()s. (0" (@-u)) a5 (-a)' o)

+;/M'(

D"u D"u Z) D™y - A*"u.

D" D"

<C,

Dm T—u 2 D2m+km2m+k¢dx
(o (@-u)
Q

(54)
< Cy [T -0} | D*"*4
CZ . _ 1 2
<Sofa-ufl, + 2o o
where C, =|R"(5)S,],C,o =C, -[D*™*].
1956 Journal of Applied Mathematics and Physics

DOI: 10.4236/jamp.2023.117126


https://doi.org/10.4236/jamp.2023.117126

G. G. Lin, B. S. Chen

D"u D"u

o

<C ij (U—U) (DZm k— D2m +k )D2m+k¢dx
Q

Z) D" (T—u)-(A™"T - A"u),(-A) ¢J‘

11

<C,

[D" (T-u)D*™* (T-u) D2m+k¢dx‘
Q

(55)
< C11 ) . D2m+k (U_u)||_||D2m+k¢||
< (o @-u)f o w-uf o]
2/11 2
<2 12 ||D2m +K " Lo |D2m +k "2
where C11=}/|\/|'( " )( " ),1C12 = Crlnl+k .
p p 2]17
[}/M'( D"u z)( D"u z)l D"y - APy, (~A) ¢]‘
SC13 ‘[Dm D2m+kuD2m+k¢dX (56)
<c.i o kWIII D ul oy
S%|D2m+ky/” L1 D2m+k¢|| _
e G (0] [0 - o]
‘7M( D"y p)(Azmy/,(—A)k ¢)
_ ‘}/M ("Dmu”Z)(DkaV/' D2m+k¢) (57)
P %125||D2m+kl//||2 +%| D2m+k¢||2 '
where C, =;/M( D"u Z)
So that
(0 o= G, oo (G E ool
+ S e (g
> .

Similarly for g,,
g, = SN ([ ) AT =N (Ju [ ) A*"u =N lu " (4)" U
—25N'(||ut||2)J'ut U, dx-(A)"u
Q
=N (o )i ) (@ o) a =N (Juf ) () (5 ) (a)"
+6N (||u li )(AZ"‘ )+5N'(||ut||2)(||ut||2 )' v (A" u
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=N (JoilF (Il ) (@ —ue) a2 - N ) ) (@ —u) a2
+oN(Ju ) () (3 - (A”“U—( Y™ u)+ N (fuf? )(Azm )
N (Ju ) () v
=2"(c)S, (4 -u,)’ A2mU+f5N’(||ut|| J(llF) (@ - ) (T - (a)"u)
N (Ju ) (a) N () ) e -(2)"
2'(@)=oN (ol )l ) .o = .8+ (15 w1 = g0 + (1=
Take the inner product of g, and (-A)‘¢, and deal with the term by using

Young’s inequality,

Poincare’s inequality,
(27(@)8, (3 —u,)* 4", (-A) )

od]< -l +5]o'of

(59)
< CyelT -~ u";

where Cj =||Z"(a)t)S4A2mU .

o 0w s o) )

D2m+k ||

<Cy & ~u |||

C
17 2m+k
< (o (@ - +|

24, 2
<CyllT— u||2Ek ||DZ"‘+k¢

D2m+k lT—U |||

(60)

D2m+k ” )||D2m+k

D2m+k¢||2 ,

C2,_ 1
<Sfrut 1]

Cy,

2m+k :

22,12
5anwmﬂ%<m%uﬂf4

on'(Ju ) ) | .

where C; =

(61)

(

(
a|((#-v).(-a) 9)

(

<Sr et oyf v, o]

o (|
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%128||D2m+k¢ 2 +%||D2m+ky/ |2, (62)

‘(5N () (a2 ). (-a) ¢ <
N )|

where Cj =

Then

(92'(_A)k ¢)

(S oot o LG

Aoy G oo

Take the inner product of (—A)k ¢ and the Formula (52), and combine the
above formula to get

Sailloel e oo +(a=pe)o o)

+° [Py + (- e |o |

< (6‘ 1+ 2C17 J"D ¢||2 1+ C14 +C18 |

D2m+k

D2m+kl//||2 (64)

N C? +C;5 +C2 "U_u"Ek +%"D2m+k (U—u)"4

oSl 22 o]

d m+

(o [0l -l | .

N R T e R S

where C, =2mz:1x{e+1+2C17 ,1+C1242+C128 - 6—,382,%52 —53}.
From the Gronwall’s inequality
R w
66

<Cpe® || o2 (T —u ||4dr£CZZeCzst ||«§—77||4 :
o]+ (a—pe) o v s Cae®™ o, (67)

So S(t)ao— ()¢0—( (t)U t(t)) is bounded.
When ||(§,77)||2Ek — 0, there is

s )8 -5()4 -0 O U O)f
le.mf

<Ce & - 77"2@ 0.

Lemma 5 is proved.
Theorem 5. By lemma 5, for some n, define
1 ,
g, (t)= sup sup ({J.;t”: (S(7)¥,)-Q, (r)drj <0,

YoeDok nj eEy
”JHEk <1
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then a family of global attracters A, of the initial boundary value problem (1) -
(3) has Hausdorff dimension and Fractal dimension is finite, and

2 4
dH(Ak)<7n’dF(Ak)<7n-

Proof. Let P,: {u, U} = {u,u, +u} bean isomorphic mapping, then
¥=Pp=(UV),
where
g=(UU,)" V=U+eU.

The Frechet differentiability of S(t):E, — E, is known from lemma 5 to es-
timate the Hausdorff dimension and Fractal dimension of problem (48) - (50).
The variational equation of Equation (49) under initial conditions is considered

Y, +A¥=0, (68)
el _l

|2) +yM (| Z) +a - fe)(A)™"
Ac = wym (D] (Dl yatuD™) (BAY" +5N'(
(A)*"uD™ - &)l

(6N(|D"y, D™y

Moy

D"u,

D"u Dmut

—ek, (A)*"uD"
&)l

D"u D"u,

2 2\
I )loruf -

For fixed (Ug,V,)€E,,let 7,,7,,-,7, be nelementsof E,,and let
U,(t),U,(t),--,U,(t) be n solutions of the linear Equation (68) with corres-

ponding initial values of U,(0)=7,,U,(0)=7,,---,U,(0)=y, respectively, we

where K, =0N '(|

can obtain

U, () AU, (0)A--AU, ()],
= ||71A7/1A- Ay, ||AEk exp(ﬁtrF’(‘P(r)) -Q, (T)dz'),

where A represents the outer product, #r represents the trace of the operator,

and Q, is the orthogonal projection from the space E, to

span{Ul(t),Uz(t),---,Un(t)}. ]
For a given time 7, let 2 (z’) = §j (Z‘),?]j (T)) ,1=12,---,n be an standard
orthonormal basis for span {Ul(t),U2 (t),--U, (t)} .

Define an inner product on E,
((5177):(6?177)) _ ((D2m+k§’ D2m+k§_) +(Dk77’ Dkﬁ))_
And

(¥ (7))-Qu(7) =~
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where
(Ao o)
:[(ggj —77],[(5N( D"y, Z)+;/M( D"u Z)+a)(A)2m

Y ( pmu|’ (o™

g
— &N '(||Dmut||2)( 2)' (A)"UD"E, + 6%, + B(A)" 7,

+6N '(||D"‘ut||2)( 2 ) (A)"uD"; ~em, J’(sﬂ 7l )]

= 8||D2m+k§j ||z _(06 -Pe-1+C+ A)(D2m+k77]_ , D2m+k§j)

z) AZPGD" —gﬂ}ﬂ

D"u,

m
D"y,

+(BA™u - £k, A™"u)(D™&;, D'y, ) + &% (D*¢;, D7)
+k,A2"u(D™*y,, D¥y, )+ B(A%",, A, ) - £(D¥n,, Dn))
:g||D2m+k§j||2_a_ﬁg_2:1-+C+A| 2_06—/38—21+C+A

282

2

2
|| D2m+k gl ||

D2m+k77j ||

2 2
1 i e e B L e L s |

N R L e N

>(e- k1)| D2m+k§j "2 + k2| D2m+k’7j "2 ’

where

k1=min{a_ﬂg_21+C+A, Bl/; }

k,=p—

_ _ 2
a-pe-1+C+A (B & B, ), m B w
2 2 2 2 2
2

(A, (®(2)) ey (2)., () 2(e =)D & [ +k, D™ n,[ . (69)

k

Owing to the
T .
o;(r)=(§(v).m;(z)) .i=12-n,
is an orthonormal basis for span {Ul(t),U2 ('[),---,Un (t)} , SO

Zn:(F'('//(r))a’j (7). ;7)) <-n(e-k)+ rjzn;|

D2m+kggj ||2’ (70)

For any ¢ there is
n K 2 n 1
2l <24
j=1 j=1
So

TrF/((1))-Q, (7)< =nCyy + 1Y A5 (71)

i
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Let

0, (t)= sup sup GI;trF’(S(T)‘Po)'Qn(T)df)qn=!Lr25“pqn(t):

¥oeDok U eEy
il <

then

Qy S—NCypy +r) A

j=1

Therefore, the Lyapunov exponent jz, ii,,+, i,

of Dy, is uniformly bounded,
and

fy + fiy -+ f1; S—NCoy + 1Y 07 (72)
=1

Thereisa se [0,1) , such that

(qj) s—nC24+rZAf‘1erljs‘ls&. (73)
* j=1 j=1 8
where A, isthe eigenvalue of (—A)",and 4 <2, <-</,,.
nC r & 7
<21 AT < —=—nC,,. 74
t 2 [ ncz“-z:; I ] 16 74)
Then
max(q")+ 2 (75)
1<j<n |qn| 7

It can be concluded that n-dimensional volume elements decay exponentially
in E, and d,(A)< ;n, de (A) <;n , so the Hausdorff dimension and Frac-

tal dimension of the whole attractor family are limited. Theorem 5 is proved.

4. Conclusion

We prove the existence and uniqueness of the global solution and the existence
of a family of global attractors, and estimate the upper bound of the Hausdorff
dimension for the family global attractors, and obtain the global stability of the
problem.
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