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Abstract 
Functional brain networks (FBN) based on resting-state functional magnetic 
resonance imaging (rs-fMRI) have become an important tool for exploring 
underlying organization patterns in the brain, which can provide an objective 
basis for brain disorders such as autistic spectrum disorder (ASD). Due to its 
importance, researchers have proposed a number of FBN estimation methods. 
However, most existing methods only model a type of functional connection 
relationship between brain regions-of-interest (ROIs), such as partial correla-
tion or full correlation, which is difficult to fully capture the subtle connec-
tions among ROIs since these connections are extremely complex. Motivated 
by the multi-view learning, in this study we propose a novel Consistent and 
Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first con-
struct multi-view FBNs (i.e., multiple types of FBNs modelling various rela-
tionships among ROIs), and then these FBNs are decomposed into a consis-
tent representation matrix and their own specific matrices which capture their 
common and unique information, respectively. Lastly, to obtain a better brain 
representation, it is fusing the consistent and specific representation matrices 
in the latent representation spaces of FBNs, but not directly fusing the ori- 
ginal FBNs. This potentially makes it more easily to find the comprehen-
sively brain connections. The experimental results of ASD identification on 
the ABIDE datasets validate the effectiveness of our proposed method com-
pared to several state-of-the-art methods. Our proposed CSMF method achie- 
ved 72.8% and 76.67% classification performance on the ABIDE dataset. 
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1. Introduction 

As a widespread neurodevelopmental disability, Autism Spectrum Disorder (ASD) 
is primarily characterised by difficulties with social interaction, communication 
disturbances and limited repetitive interests [1]. The prevalence of ASD has been 
increasing in recent years [2], yet the pathological causes of the emergence and 
development of ASD remain unexplained. Currently, the diagnosis of individu-
als with ASD is based mainly on behavioural descriptions of symptoms and clin-
ical observations, which are prone to subjectivity [3] [4]. There is an urgent need 
for reliable biomarkers for the early and objective diagnosis of patients with ASD 
[5] [6] [7] [8]. 

To tackle this challenge, different neuroimaging techniques have been applied 
to the diagnostic research of ASD, including structural magnetic resonance im-
aging (sMRI) [9]; functional magnetic resonance imaging (fMRI) [10]; diffusion 
tensor imaging (DTI) [11]; and electroencephalogram (EEG) [12]. Among them, 
a large proportion of functional MRI (fMRI) studies involve task-based and res- 
ting-state fMRI (rs-fMRI) data. Compared to task-state fMRI, rs-fMRI avoids 
the challenges of task design and the impact of task triggering, and is more suit-
able for the early detection and diagnosis of ASD. Rs-fMRI data can be used to 
calculate functional connectivities (FCs) between different regions-of-interest 
(ROIs) by detecting synchronous temporal changes in blood oxygen level de-
pendent (BOLD) signals [13], thereby constructing a functional brain network 
(FBN). 

To date, FBN based on rs-fMRI has been an important tool to provide bio-
markers for ASD identification. Furthermore, researchers have invested a great 
deal of effort in developing various FBN construction methods [14] [15] [16], 
such as Pearson’s correlation (PC), Bayesian network, Granger causality model 
(GCM), Structural equation model (SEM), and so on. While these strategies may 
effectively estimate FBNs in certain cases, there is a potential problem that a sin-
gle FBN constructed using a method such as PC or GCM, which often fails to 
adequately capture the subtle disruptions in functional brain tissue caused by 
neuropsychiatric disorders [17], since single constructing strategy tends to im-
pose a singular preference during the process of modeling the relationships be-
tween ROIs. 

Multi-view learning is a popular topic in recent years [18] [19], which uses 
features from multiple level-dependent and integrally represent a thing. In mul-
ti-view learning, the features obtained from different views generally model dif-
ferent priors. Moreover, fusing these different features is easier to obtain a better 
representation, which to some extent mitigates the defects of single-view learn-
ing. Motivated by this idea, for studying functional brain abnormalities, we con-
sider constructing different FBNs based on the same brain as different “views”. 
We hope that each-view FBN captures different features (i.e., correlations be-
tween ROIs), and multi-view FBNs are fused to provide a more comprehensive 
description of the brain, with the aim to improve the performance of brain dis-
ease diagnosis. 

https://doi.org/10.4236/jamp.2023.117124


C. J. Zhang et al. 
 

 

DOI: 10.4236/jamp.2023.117124 1916 Journal of Applied Mathematics and Physics 
 

In the last decade, several studies have explored the principles of constructing 
multiple FBNs for the purpose of fusion based on multi-view learning for brain 
disease diagnosis [20] [21] [22]. For instance, Jie et al. [20] set multiple thre-
sholds on PC-constructed FBNs to generate multi-threshold FBNs and then used 
the multi-kernel Support Vector Machine (SVM) to fuse them to classify brain 
diseases. Huang et al. [21] constructed multiple FBNs with different levels of spar-
sity by setting different [15] regularization parameters for group-constrained sparse 
regression models with the 2,1l  norm, and then fused all FBNs to enhance the 
feature representation. Yang et al. [22] dynamically generated multiple FBNs using 
potentially different thresholds for different elements of the FBNs constructed by 
PC, and then the fused networks are fed into SVM to classify brain diseases. Al-
though they have achieved satisfactory results in brain disease diagnosis, the above 
methods generally obtain multi-view FBNs by setting different thresholds for a 
fixed FBN constructed by a single method such as PC or sparse representation 
(SR). However, such a fixed FBN only models a type of correlations between ROIs. 
For example, a PC-constructed network only captures the full correlation between 
ROIs, and a SR-constructed one corresponds to the partial correlations. That is 
to say, the aforementioned multi-view FBNs in essence model a type of correla-
tions between ROIs with different levels, which is difficult to get a better brain 
representation since the brain is extremely complex. 

To address this problem, recently we have fused different types of FBNs by 
joint embedding [23], but such fused FBNs more considered common informa-
tion among multi-FBNs, ignoring their unique parts. Therefore, in this paper, 
we propose a Consistent and Specific Multi-view FBNs Fusion (CSMF) method. 
Specifically, for each subject, we first constructed multi-view FBNs using mul-
tiple typical construction strategies, including PC, SR, mutual information (MI), 
and correlation’s correlation (CC), which encode full correlation, partial correla-
tion, non-linear, and higher-order relationships between ROIs, respectively. We 
then decompose the multi-view FBNs into a common representation matrix cap-
turing their consistency information, and multiple specific matrices corresponding 
to their unique information. Moreover, the common matrix and the average of 
specific matrices are fused as the final FBN for ASD classification. Finally, the 
classification performance is validated in the Autism Brain Imaging Data Ex-
change (ABIDE) dataset. 

The main contributions of this work are shown below. 
1) We propose a novel multi-view FBNs fusion framework, CSMF, which po-

tentially fuses different types of relationships among ROIs, such as full correla-
tion, partial correlation and higher order correlation, instead of a single rela-
tionship with different levels as in the existing fusion methods. This more bene-
fits to obtain a comprehensive brain representation. 

2) In CSMF, the proposed fusion strategy is in the latent representation spaces 
of multi-view FBNs to simultaneously learn their consistent and specific infor-
mation, rather than directly combining their original features as in most fusion 
methods. Such a fusion approach potentially captures more comprehensively 
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connections among ROIs. 
3) Extensive experiments for ASD diagnosis on the ABIDE dataset have shown 

that our model outperforms several state-of-the-art fusion methods. 

2. Materials and Method 

The process of our proposed framework is shown in Figure 1. It is divided into 
four steps: data preparation, multi-view FBNs construction, multi-view FBNs fu-
sion, feature selection and classification. 

2.1. Data Preparation 

We perform extensive experiments on two ASD datasets to validate the proposed 
method. The rs-fMRI scans for these datasets are obtained from the ABIDE da-
tabase. The ABIDE database is collected from 17 different imaging sites and 
consists of 1112 subjects, including 539 ASD patients and 573 normal controls 
(NCs). Considering the number of data, we select the top two imaging sites with 
the largest amount of subjects, New York University (NYU) and University of 
Michigan (UM), where each site has more than 100 subjects. To be specific, the 
NYU site consists of 79 ASDs and 105 NCs, the UM site has 66 ASDs and 77 
NCs. In addition, images at different sites are obtained using different scanning 
equipment, which results in variations in the scan times. Detailed demographic 
information is listed in Table 1. 
 
Table 1. Demographic information of subjects at two sites. M and F indicate male and 
female. 

Site 
ASD NC 

Scanner 
Age ± SD M/F Age ± SD M/F 

NYU 14.7 ± 17.1 65/10 15.7 ± 6.2 74/26 Allegra 

UM 13.2 ± 2.4 57/9 14.8 ± 3.6 56/18 GE Signa 

 

 

Figure 1. Illustration of the proposed multi-view FBN fusion method, including four major steps: 1) Data preparation: prepro-
cessing the rs-fMRI data; 2) Constructing multiple FBNs: calculate the correlation between each pair of ROI based on multiple 
methods, (e.g., PC, SR, MI and CC); 3) Fusion of multi-view FBNs: multiple FBNs of each subject were decomposed into a consis-
tency matrix and a specificity matrix, and then fused; 4) ASD classification: the fused FBNs were classified by SVM. 
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This study uses the Data Processing Assistant for Resting State fMRI (DPARSFA) 
to pre-process the rs-fMRI data of all subjects [24]. The specific pre-processing 
steps are as follows: 1) slice time and head motion correction; 2) alignment to 
the Montreal Neurological Institute (MNI) space; 3) temporal filtering (0.01 - 0.1 
Hz); 4) nuisance signal regression. Finally, for each subject, the brain is divided 
into 116 predefined ROIs based on anatomical automatic labeling (AAL) atlas 
[25] and the mean time series of each ROI is extracted as a representative signal 
[26]. 

2.2. Preliminaries 

Before introducing the consistency and specificity multi-view FBN fusion me-
thods, we first understand some common notations in this paper, as in Table 2. 

2.3. Multi-View FBNs Construction 

As mentioned earlier, we chose four typical methods to construct FBNs, includ-
ing PC [27], SR [28], MI [29], and CC [30]. These four methods capture differ-
ent types of interactions between ROIs according to different model preferences. 
The equations of these four methods are as follows: 
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where t
ib ∈ ( )1, ,i n= �  is the average BOLD signal of the i-th ROI, and n is 

the number of ROIs, t is the time point. jb  is the average of all elements of ib . 
Equation (1) represents the edge weight between two ROIs calculated using PC. 
Equation (2) obtains the sparse FBN by sparsely encoding the edges in the FBN  
 
Table 2. Some important symbolic notions used in this paper. 

Notation Description 

b Blood oxygenation level dependent 

W Functional brain network 

H Sub-representation matrix 

E Reconstruction error matrix 

C Consistency information 

S Specific information 

F Fuse FBN 
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by the 1l  parametrization and avoiding the tame solutions by constraining  
0iiW = . Equation (3) represents the way the of MI to calculates FBN, where  

( ),i jp b b  is the joint probability distribution of ib  and jb , and ( )ip b  and  

( )jp b  are the marginal probability distributions of ib  and jb , respectively. For 
CC, we treat each column of the PC-based construction of the FBN as a new va-
riable and again use Equation (1) to solve for the correlation’s correlation. 

The above four methods calculate the dependency between pairs of ROIs. 
Among them, the FBNs constructed by PC, MI and CC are dense and contain 
some spurious connections. Therefore, in order to remove redundant informa-
tion, we empirically set a group of sparsity thresholds [ ]0%,10%, ,90%,99%�  
[31]. In addition, for example, 90% means that 10% of the weak edges are filtered 
out from the FBN. Furthermore, for SR, the regularization parameter controls 
the sparsity of the FBN, and we set the parameter range to 5 4 4 52 ,2 , ,2 ,2− −  �  
[32]. Each method for each subject had 11 FBNs generated by different parame-
ters. Among them, the FBN corresponding to the best parameter is selected from 
each method separately for fusion. Specifically, we determine the optimal para-
meter values for each method in the training set by performing an internal loop 
for leave-one-out cross-validation (LOOCV). 

2.4. Multi-View FBNs Fusion 
2.4.1. Formulation 
Considering the limited modelling ability of a single-view FBN, in this subsec-
tion, we fuse multiple different FBNs utilizing multi-view subspace representa-
tion learning [33] [34] [35] [36]. The sub-representation matrix of each FBN is 
as follows: 

( ) ( ) ( ) ( )v v v vW W H E= + ,                     (4) 

where ( ) ( ),v v n nW H ×∈  denotes the adjacency matrix, and the reconstruction 
representation matrix (or called sub-representation matrix) corresponding to the 

thv  FBN, where [ ]1, ,v V∈ � , n and V are the numbers of ROIs and FBNs, re-
spectively. ( )v n nE ×∈  is the reconstruction error term. 

With the aim to get the consistency/common information across multi-view 
FBNs and their anisotropy/uniqueness, we further decompose the sub-represen- 
tation matrix ( )v n nH ×∈  as ( ) ( )v vH C S= + . ( )v n nC ×∈  denotes the consis-
tency information shared across FBNs and ( )v n nS ×∈  corresponds to the infor-
mation specific to the v-th FBN. Equation (4) can then be further transformed in-
to: 

( ) ( ) ( )( ) ( ) .v v v vW W C S E= + +                      (5) 

Moreover, we introduce some prior information to the consistency matrix and 
the anisotropy matrix by imposing a regularization. In particular, for the consis-
tent matrix C, we explore the shared information between the different FBNs 
using a low-rank constraint on the nuclear norm. The specificity matrices  

( ) ( )1 , , VS S�  with each FBN are constrained using the Frobenius norm. In addi-
tion, we assume that the noise obeys a Gaussian distribution and we penalise the 

https://doi.org/10.4236/jamp.2023.117124


C. J. Zhang et al. 
 

 

DOI: 10.4236/jamp.2023.117124 1920 Journal of Applied Mathematics and Physics 
 

error term using the Frobenius norm. The final objective function can be for-
mulated as follows: 

( ) ( )
( ) ( ) ( )( ) ( )

1

2 2

1 1, , ,
argmin ,V

v v v v
v vC S S

V

F

V

F
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= =∗
− + + +∑ ∑�

   (6) 

where 
∗

⋅  denotes nuclear norm, 2
F⋅  is Frobenius norm and ,α β  are trade- 

off parameters. 
Thus, the consistent and multiple specific representations across multi-view 

FBNs can be obtained via solving the above objective Equation (6). By using 
them, we get the final FBN according to the following formula 

( )
1 .

v
v
V S

F C
V
== + ∑                         (7) 

Furthermore, in order to make the final FBN F symmetric, we rewrite Equa-
tion (7) in the following way: 
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                 (8) 

2.4.2. Optimization 
The variables in Equation (6) are coupled to each other and we use the Alter-
nating Direction Minimization strategy [37] to solve them. In order to make the 
problem separable, we introduce an auxiliary variable J in place of C. Accor-
dingly, Equation (6) can be re-expressed as follows: 
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The Augmented Lagrange Multiplier (ALM) [37] method is then used to solve 
the above equation: 
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where 0µ >  is the penalty parameter, and Y is the Lagrange multiplier. In each 
iteration, each variable is updated as follows. 

J-Subproblem With the other variables fixed, the variable J can be updated by 
optimizing the following minimization problem: 

( ) ( ) ( ) ( )( )
22

1min ,
2

v v v
J v F F

V YJ W W J S J Cµ
µ=

= − + + − +∑      (11) 

taking the partial derivative of J and making it zero, J can be updated as follows: 
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where I is an identity matrix. 
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C-Subproblem With the other variables fixed, the variable C can be updated 
by optimizing the following minimization problem: 

( )
2

min ,
2C

F

YC C J Cµα
µ∗

= + − +               (13) 

this problem can be solved by the Singular Value Thresholding (SVT), as fol-
lows: 

( ) T ,C C CC U Vα
µ

δ← Σ                       (14) 

where T
C C CU VΣ  indicates the singular value decomposition (SVD) of J Y µ+ , 

and α µδ  indicates the shrinkage operator, which is defined as 

( ) max 0, min 0, .C C Cα
µ

α αδ
µ µ

   
Σ = Σ − + Σ +   

   
            (15) 

Sv-Subproblem With the other variables fixed, the variables ( ) ( )1 , , VS S�  can 
be updated by optimizing the following minimization problem: 

( ) ( )
( ) ( )( ) ( ) ( ) ( )( ) ( )
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2 21
1 1, ,
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V v v v v

v vS S FF

V VS S W W J S Sβ
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the anisotropy matrix ( )VS  can be updated separately for each FBN. Equation 
(16) is rewritten as follows: 

( )
( )( ) ( ) ( ) ( )( ) ( )2 2

min ,V
V v v v v

S FF
S W W J S Sβ= − + +           (17) 

taking the partial derivative of ( )VS  and making it zero, ( )VS  can be updated 
as follows: 

( ) ( ) ( )( ) ( ) ( ) ( )
T T1

.V v v v vS W W I W W I Jβ
−
 = + −  

              (18) 

Update Multiplier The multiplier Y is updated by: 

( ).Y Y J Cµ= + −                         (19) 

Multiple variables are alternately iterated until  
( ) ( ) ( )( ) 2 2

1
v v v

v FF

V W W J S η
=

− +∑  converges to a small number   or the num- 

ber of iterations reaches a maximum, where, η  is ( )
1

v
v
V A
=∑ . 

2.5. Feature Selection and Classification 

As aforementioned, for each subject, the obtained fused FBNs using Equation 
(8) are utilized to identify subjects with ASD from the NCs. The edge weights of 
the FBNs are used as features. To alleviate the problem of high dimensionality, 
we employ the simplest feature selection method (i.e., t-test with 0.001p = ) 
and the SVM classifier (linear kernel with default parameter 1C = ) in our expe-
riments. 

3. Experiments 
3.1. Experimental Setting 

In our experiments we evaluate all methods using leave-one-out cross-validation 
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(LOOCV). In each cross-validation, one subject is left for testing, while the rest 
of the subjects are used for training. On two imaging sites, for our algorithm, we 
tune the tradeoff parameters α and β from the set [0.01, 0.1, 1, 10, 100]. 

Four evaluation metrics are used to evaluate the classification performance of 
the different methods, including accuracy (ACC), sensitivity (SEN), specificity 
(SPE), and the area under the receiver operating characteristic curve (AUC). 

3.2. Comparison Methods 

We compare the proposed method with several state-of-the-art fusion strategies 
based on FBNs. The details are as follows: 
 GKTN [20]: This method extracts features from multiple thresholding brain 

networks and uses multi-kernel learning to integrate them for classification. 
 DTN [22]: This method dynamically constructs multiple FBNs using dynamic 

thresholds for each connection in the PC-based FBN. Then, the similarity 
network fusion (SNF) algorithm is used to fuse these FBNs. 

 MNER [21]: This method generates multiple FBNs with different degrees of 
sparsity by varying the regularization parameters of the group-constrained 
regression model, and then fuse them by means of a multi-kernel combina-
tion. 

 BMGF [38]: This method automatically learns the connectivity of brain re-
gions by fusing a fully connected FBN and a 1 nearest neighbor FBN, consi-
dering the influences of inter-subject variability and across-subject hetero-
geneity. 

3.3. Results 

Table 3 shows the classification results for all methods in the ASD vs. NC classi-
fication task at both NYU and UM sites. From Table 3, it can be found that our 
proposed method outperformed the other compared methods at most cases.  
 
Table 3. Performance of the proposed method with four comparison methods for ASD 
versus NC classification tasks. The best classification performance are shown in bold. 

Site Method ACC (%) SEN (%) SPE (%) AUC (%) 

NYU 

GKTN [20] 69.02 68.35 68.94 73.25 

DTN [22] 68.75 64.29 72.22 70.63 

MNER [21] 70.65 58.82 74.29 73.32 

BMGF [38] 66.30 60.76 70.48 70.56 

Ours 72.83 65.82 78.09 75.23 

UM 

GKTN [20] 63.33 66.67 61.11 70.84 

DTN [22] 66.67 47.78 84.86 66.67 

MNER [21] 73.33 60.00 78.89 69.44 

BMGF [38] 70.01 41.67 88.89 72.56 

Ours 76.67 78.33 75.00 77.61 
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Specifically, our method improves the classification accuracies by 2.18% and 
3.34% on NYU and UM sites respectively, compared to the best performance of 
the compared methods. This may be due to the fact that the multi-view FBNs 
utilised in our method are constructed by several different strategies, which 
model different types of relationships among brain ROIs such as full correlation, 
partial correlation, nonlinear relationship, and high-order correlation. Another 
possible reason is that our fusion strategies takes into account the consistency 
and individual heterogeneity information among multi-view FBNs via multi- 
view subspace representation learning, which is more easier to obtain a compre-
hensive representation of brain. 

4. Discussion 
4.1. Ablation Study 

In this section, we perform an ablation study to compare our proposed fusion 
method CSMF with the two special cases, CMF only considering the consistency 
of all FBNs and SMF only utilising the specificity of each FBNs. The comparison 
results are shown in Table 4. Compared to CMF (SMF), our method improves 
the classification accuracy on the two site data by 3.39% (11.42%) and 9.28% 
(18.05%), respectively. This suggests that our method can better characterize the 
functional connectivity of the brain and improve brain disease classification per-
formance by effectively combining consistent and specific information of mul-
ti-view FBNs. 

4.2. Sensitivity to Parameters 

In this section, we discuss the effect of the model parameters α and β on the clas-
sification performance. In Equation (3), α and β are used to balance the consis-
tency constraint term and the anisotropy constraint term of multiple FBNs, re-
spectively. Figure 2 reports the classification accuracy of our method under dif-
ferent parameters on both NYU and UM sites. From it, we find that the classifi-
cation performance decreases rapidly when α or β tends to 0, which is concor-
dant with the results of the ablation study. Furthermore, favorable classification  
 
Table 4. Classification result of ablaton study on consistency and specifity. The best clas-
sification performance are shown in bold. 

Site Method ACC(%) SEN(%) SPE(%) AUC(%) 

NYU 

CMF 69.44 52.22 67.06 62.00 

SMF 61.41 44.30 74.29 64.21 

CSMF 72.83 65.82 78.09 75.23 

UM 

CMF 67.39 65.48 68.57 71.26 

SMF 58.62 44.54 58.57 51.09 

CSMF 76.67 78.33 75.00 77.61 
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Figure 2. Based on ABIDE dataset, influence of parameters α and β on classification performance, where (a) represents NYU site, 
and (b) represents UM site. 

 
results can be achieved when the two parameters are set to appropriate thresholds 
for the different site data. This verifies that whether the consistency information 
or the specific information among multi-view FBNs are essential to the improve-
ment of classification performance. 

4.3. Influence of Proposed Fusion Strategy 

In this section, to further verify the validity of our proposed fusion strategy, in 
Table 5 we compare CSMF with the single-view FBN cases (i.e., PC, SR, MI, CC). 
From it we can be observed that CSMF outperforms the other four approaches. 
For example, our method improves the classification accuracy by 8.35% and 
10.00% compared to the second-best methods, in the NYU and UM data, re-
spectively. Such results demonstrate the existence of complementary informa-
tion between different types of FBNs, which can improve the classification per-
formance of brain diseases. 

4.4. Identified Discriminative Features 

As mentioned previously, we view the functional connectivity between the ROIs 
as features that identify ASDs from the NCs in the dataset. To visualize the fea-
tures associated with ASD, we choose the 27 and 51 most discriminative features 
for NYU and UM sites based on a t-test with a p-value of 0.001, as shown in 
Figure 3. The thickness of the arcs indicates the discriminative power of the 
functional connectivities. The colors of the arcs are randomly generated just to 
show them more clearly. As we can see in Figure 3, the ROIs associated with the 
top discriminative features on the NYU site include right middle frontal gyrus, 
right hippocampus, right amygdala, bilateral putamen; on the UM site, the ROIs 
associated with the top discriminative features include the bilateral thalamus, the 
right parahippocampal gurus. These results are consistent with the results of 
previous studies [39] [40] [41]. 
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Figure 3. The most discriminating connections identified at (a) the NYU site and (b) the UM site. The thickness of the connection 
is inversely proportional to the p-value. 

 
Table 5. Classification results for the CSMF and four single-view methods (i.e., PC, SR, 
MI, CC). The best classification performance are shown in bold. 

Site Method ACC (%) SEN (%) SPE (%) AUC (%) 

NYU 

PC 66.30 65.82 66.67 70.71 

SR 63.04 51.90 71.43 64.68 

MI 64.13 62.03 65.71 72.56 

CC 70.11 64.56 74.29 73.26 

Ours 72.83 65.82 78.09 75.23 

UM 

PC 65.91 65.38 66.67 70.21 

SR 55.09 50.77 68.02 69.24 

MI 56.82 46.15 72.11 56.84 

CC 66.67 70.38 61.90 72.02 

Ours 76.67 78.33 75.00 77.61 

5. Conclusion 

In this paper, we propose a novel multi-view FBNs fusion method, named Con-
sistent and Specific Multi-view FBN Fusion (CSMF). The method draws on the 
idea of multi-view subspace learning to reconstruct FBNs by fusing the consis-
tency and specificity information among multiple different types of FBNs cap-
turing different types of relationships among ROIs. The experimental results ve-
rified its effectiveness of identifying ASD patients on the two sites compared to 
several single-view FBN methods and state-of-the-art fusion strategies. However, 
the whole fusion process in CSMF is separated from the subsequent task such as 
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brain disease diagnosis, which is difficult to make the fused FBN is beneficial to 
the final task. In the future work, we will integrate the fusion process and the fi-
nal task into a unified framework, downstream classification tasks can effectively 
guide the fusion of FBNs. 
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