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Abstract 
The traditional simulations may occasionally turn out to be challenging for 
the quantum dynamics, particularly those governed by the nonlinear Hamil-
tonians. In this work, we introduce a nonstandard iterative technique where 
the Liouville space is briefly expanded with an additional (virtual) space only 
within ultrashort subintervals. This tremendously reduces the cost of time- 
consuming calculations. We implement our technique for an example of a 
charged particle in both harmonic and anharmonic potentials. The temporal 
evolutions of the probability for the particle being in the ground state are ob-
tained numerically and compared to the analytical solutions. We further dis-
cuss the physics insight of this technique based on a thought-experiment. Suc-
cessive processes intrinsically “hitchhiking” via virtual space in discrete ul-
trashort time duration, are the hallmark of our technique. We believe that 
this technique has potential for solving numerous problems which often pose 
a challenge when using the traditional approach based on time-ordered expo-
nentials.  
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1. Introduction 

Although the standard approach based on time-ordered exponentials is extremely 
useful [1] [2] [3], it may occasionally turn out to be challenging, particularly, in 
the case of revealing nonlinear quantum dynamics [4] [5] that requires rigorous 
numerical simulations [6] [7] [8]. Quantum dynamics for arbitrary system are 
traditionally realized by time evolutions of wave functions in Hilbert space, 
which can also be expressed in terms of density operators in the Liouville space 
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[2] [3]. In this work, we introduce a new nonstandard iterative technique for-
mulated as follows. 1) Finite time interval is divided into a large number of dis-
crete subintervals with an ultrashort width. 2) The Liouville space is expanded 
with an additional (i.e., virtual) space for this ultrashort time duration. The sys-
tem’s original Hamiltonian is, then, modified for the system’s space plus virtual 
space, where the force terms are replaced with the virtual quantum operators. 3) 
The density operator for the system is extracted by tracing over the virtual oper-
ator space. In principle, various virtual operators can be chosen depending on 
the specific quantum system. Here we choose two-state spin raising and lower-
ing operators because of their simple algebra. In the next section, we present the 
standard approach using S-operator defined as time-ordered exponentials in 
Hilbert, and then, in the Liouville space. In Section 3, we introduce our tech-
nique and implement it to the well-known example of a charged particle in a 
harmonic potential. The temporal evolutions of the probability for the particle 
being in the ground state are obtained by our technique and compared to the 
analytical solutions obtained using the standard S-operator. By extending this 
example, we perform numerical simulations for temporal evolutions for the 
ground state probability for the generalized systems governed by time-depen- 
dent nonlinear Hamiltonians. We further discuss the physics insight of this 
technique based on a thought-experiment, in which a large number of polarized 
atoms successively interact with a lossless cavity field. The last section is a con-
clusion. 

2. Standard Approach 

In this section, the standard approach for quantum dynamics both in Hilbert 
space and the Liouville space is presented. We consider the system with the Ha-
miltonian given by  

0
ˆ ˆ ˆ= +H H V                            (1) 

here 0Ĥ  is the unperturbed (free) and V̂  interaction Hamiltonians and we set 
1≡� .  

2.1. Quantum Dynamics in Hilbert Space 

We begin with the approach for the Hilbert space. In the interaction representa-
tion, the rapid state evolution due to 0Ĥ  is removed as  

( ) ( ) ( )0
ˆexpψ ψ=I St iH t s , 

where ( )ψ I t  and ( )ψ S s  are wave functions in the interaction and Schrö- 
dinger representations, respectively. Unitary transformation of initial state in the 
interaction picture is given as ( ) ( ) ( )ˆ 0ψ ψ=I It U t , here unitary operator 
( )Û t  satisfies ( ) ( )† ˆˆ ˆ 1=U t U t  and is expressed as ( ) ( ) ( )0

ˆ ˆ ˆexp exp= −U t iH t iHt . 
Time evolution of ( )Û t  can be derived from ( ) ( )ˆ ˆ ˆ∂ ∂ = Ii U t V t U t . The Hamil-
tonian is in the interaction representation as ( ) ( )†

0 0
ˆ ˆ ˆ ˆ ˆexp exp= = −I IV V iH t V iH t . 
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Choosing time interval between 2t  and 1t  ( 1 2<t t ), unitary transformation is 
expressed as [1]  

( ) ( ) ( )2 2 1 1
ˆ ,ψ ψ=I It S t t t                       (2) 

with S-operator ( )2 1
ˆ ,S t t . We divide time interval 2 1−t t  into N sub-intervals 

with a width of ∆t . At mid-time ( )1 1 2τ = + − ∆j t j t  in the jth interval, the S- 
operator is written as [1]  

( ) ( )ˆˆ 2, 2 e ττ τ − ∆
+ ∆ − ∆ = I jiV t

j jS t t                    (3) 

where →∞N  and 0∆ →t  but 2 1−t t  is finite. Equation (3) leads to the tra-
ditional time-ordered exponential given as [1]  

( ) ( ) ( )2
1

ˆˆ d
2 1

1

ˆ ˆ ˆ, e eτ −− ∆

=

∫   = =     
∏

t
II j t

N i V t tiV t

j
S t t T T               (4) 

where time ordering for boson operators is defined as  
( ) ( ) ( ) ( ) ( ) ( )1 1 2 21 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ τ τ τ τ  = � �
N NN N p p p p p pT O O O t O O O t  with  

1 2
τ τ τ> >�

Np p p .  

2.2. Examples 

As an example, we consider a driven harmonic oscillator. For that temporal evolu-
tions of the ground state using S-operator are given in Equation (4). Let a par-
ticle of a charge 1≡q , mass 1 2≡m  be in a harmonic potential ( 1≡� ). The 
driving electric field is ( ) 1≡E t , if 0> >T t , and otherwise, it is zero and ω  
is the frequency of the oscillator. In the interaction picture, the Hamiltonian is 
written as  

( ) ( ) ( ) ( ) ( )†ˆ ˆ ˆε ε∗= +IV t R t t R t t                   (5) 

where time-dependent operators are ( ) ( )ˆ ˆˆ e ω−= = i tR t b t b  and  
( ) ( )† † †ˆ ˆˆ e ω= = i tR t b t b  and the force terms are ( ) ( ) ( )1ε ε ω∗= = −t t E t . The 

probability ( )p T  for the particle to remain in the ground state 0ψ  after time 
T is written as  

( ) ( )
2

0 0
ˆ ,0ψ ψ=p T S T                     (6) 

The probability amplitude is given by S-operator from Equation (4) as  

( ) ( ) ( )0
ˆ d

0 0 0 0
ˆ ˆ,0 e eψ ψ ψ ψ′ ′− −∫= =

T
Ii V t t iB TS T T           (7) 

where ( ) ( ) ( ) ( )
0

d d ε ε∗′ ′ ′= −∫
T

B T t t t G t t t  and ( )G t  is the Green’s function. For 
this simple example, the Green’s function is well known  

( ) ( )e .ω θ−= − i tG t i t                      (8) 

Therefore, for the particle, its probability to remain in the ground state after 
time T is analytically found to be as [1]  

( ) 2
2

4exp sin
2
ω

ω
  = −     

Tp T                  (9) 

https://doi.org/10.4236/jamp.2023.117121


G. O. Ariunbold 
 

 

DOI: 10.4236/jamp.2023.117121 1874 Journal of Applied Mathematics and Physics 
 

with pulse area ωT . 
This example is the simplest case when a linear Hamiltonian is considered. 

That conveniently ensures to use the well known Green function in Equation (8). 
However, in general, the Green’s functions are mostly unknown and a laborious 
numerical method is often needed. Next, we consider two more examples that 
use nonlinear Hamiltonians. The first example for the nonlinear Hamiltonian is 
a driven anharmonic oscillator. The Hamiltonian is given in the form in Equa-
tion (5) [2] where degenerate two-boson nonlinear operators  
( ) ( )2 2 2ˆ ˆˆ e ω−= = i tR t b t b  and ( ) ( )2 2 2ˆ ˆˆ e ω= = i tR t b t b† † †  and the force terms  
( ) ( ) ( )1 2ε ε ω∗= = −t t E t  are assumed to have a similar form as in the har-

monic oscillator case. The second example for the nonlinear Hamiltonian is a 
driven intensity-dependent oscillator. The Hamiltonian is given in the form in 
Equation (5) [9] with the intensity-dependent nonlinear boson operators  

( ) ( ) †ˆ ˆ ˆˆ =R t b t b b  and ( ) ( )† † †ˆ ˆ ˆˆ =R t b bb t  and ( )ε t  is assumed to be the same  

as before. In Section 3, we numerically solve for the probability time evolutions 
for these nonlinear systems and compare with the approximate analytical results.  

3. Nonstandard Approach 
3.1. Quantum Dynamics in Liouville Space 

Before introducing our technique, let us first replace the wave functions in Hil-
bert space with density operators in Liouville space [2] [3]. We recall that  

( ) ( ) ( )2 2 2ρ ρ ψ ψ≡ =N I It t t  and ( ) ( ) ( )0 1 1 1ρ ρ ψ ψ≡ = I It t t  from Equation 
(2). Using S-operator in the jth interval from Equation (3), we rewrite Equation 
(2) in terms of density operators rather than wave functions as  

( ) ( )ˆ ˆ

1ˆ ˆe eτ τρ ρ− ∆ ∆
−= I j I jiV t iV t

j j                      (10) 

here ( )ˆ ˆ 2ρ ρ τ= + ∆j j t  and ( )1ˆ ˆ 2ρ ρ τ− = − ∆j j t . In the traditional approach, 
to obtain ( )2ρ̂ t  at later time 2t  for any given initial state ( )1ρ̂ t  at 1t  Equ-
ation (10) is repeatedly evaluated, where 1∆ �t  and 1�N  but 2 1− = ∆t t N t  
is finite. It is also important to note that Equation (10) is the formal solution of 
the Liouville-von Neumann equation [2].  

3.2. Quantum Dynamics in Liouville Space Restructured with a  
Virtual Space 

From this point, we implement our new nonstandard approach, rather directly 
evaluating Equation (10). As before, finite time interval 2 1−t t  is divided into N 
discrete subintervals with an ultrashort width of ∆t . The Liouville space is ex-
panded with a two-state spin operator space for duration of ∆t . The system’s 
original Hamiltonian is, then, modified for the system’s space plus spin space, 
where the force terms are replaced with the spin operators. The density operator 
for the system is extracted by tracing over the spin operator space. In the jth in-
terval with an infinitesimally short width of ∆t , it is an acceptable ansatz where 
we replace the original Hamiltonian ( )ˆ τI jV  by new Hamiltonian expanding it 
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with an additional virtual space ˆ
jA  as  

( ) ( ) ˆˆ ˆτ τ→ ⊗I j I j jV V A                       (11) 

where ( ) ˆ ˆˆ , 0τ  = I j jV A . For the sake of simplicity, ˆ
jA  can be chosen to be a 

two-state spin operator defined as  
2 2ˆ α α β α β β∗ ∗= ↑ ↑ + ↓ ↑ + ↑ ↓ + ↓ ↓j j j j j j jA        (12) 

with 
2 2

1α β+ =j j . For this choice, the force terms are replaced with the rais-
ing ↑ ↓  and lowering ↓ ↑  operators specifically as  

( )
( )

e

e

ωτ

ωτ

ε τ η α β

ε τ η α β

∗

−∗ ∗ ∗

→ ↓ ↑

→ ↑ ↓

j

j

i
j j j j

i
j j j j

                   (13) 

Thus, in the jth interval with ∆t  width, this original Hamiltonian Equation 
(5) can be replaced with a new Hamiltonian ( )ˆ τA jV , also known as the unified 
Jaynes-Cummings Hamiltonian [10] [11] as  

( ) ( ) ( )†ˆ ˆ ˆ .τ η τ η τ∗= ↑ ↓ + ↓ ↑A j j j j jV R R              (14) 

Instead of the original approach given by Equation (10) for ρ̂ j , we introduce 
an iterative relation for new density operator ρ j  using the modified Hamilto-
nian given in Equation (14) as  

( ) ( )ˆ ˆ

1
ˆˆ ˆTr e eτ τ− ∆ ∆

−
 = ⊗  

 A j A jiV t iV t
j A j jA                (15) 

Therefore, our goal is to demonstrate that the two density operators converge  
ˆˆ ρN N                           (16) 

for the same pure initial state.  

3.3. A Thought-Experiment 

The essentials of our iterative technique are explained by the following thought- 
experiment. As sketched in Figure 1, let us consider a monokinetic beam con-
sisting of individual two-level atoms. Each atom is prepared in arbitrary cohe-
rent superposition of the upper and lower states [8] [12] [13]. The atoms are 
then injected into a lossless cavity in a well controlled rate where only one atom 
at a time is present inside the cavity for duration ∆t . At the exit from the cavity  
 

 

Figure 1. A monokinetic beam of N two-level atoms passing through a lossless cavity. 
Each atom interacts with the cavity field for a duration of ∆t . The cavity field builds up 

to its final state ̂N  (or ( )ψ I t ) from initial state 0̂  (or ( )0ψ I ) after a finite time 

= ∆t N t . 
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the individual atoms are not intended to be measured. Total number of atoms is 
N and the jth atom-field coupling constant is η j . Although the present model 
can be generalized to multi-level atoms [8] [9] [14], for the sake of simplicity, we 
consider only two-level atoms, where ↑  and ↓  are upper and lower atom-
ic states, respectively. Correspondingly, α j  and β j  are probability amplitudes 
for the jth atomic upper and lower states. Thus, as a result of numerically solving 
Equation (15), the final cavity field state is evaluated from the existing initial 
quantum state in the cavity after time = ∆t tN . For example, when atoms are 
prepared in the same phase then the cavity field evolves to the so-called superra-
diant state [5] [8] [15] [16] [17] [18]. The mean number of photons created in 
the cavity (i.e., field intensity) is proportional to N2 rather than N. On the other 
hand, when each successive pair of atoms are prepared in perfectly out-of-phase, 
then the cavity field evolves to the sub-radiant state [5] [8]. Moreover, we justify 
that time evolutions involve pure states after tracing over the virtual space oper-
ator. As demonstrated in our earlier work [8], an initial coherent state given as 

0γ  evolves into ( ) 0γ γ γ+� At , with γ ηαβ ∗= −A i t  at later time t. There-
fore, the above statement that our technique maintains time evolutions for pure 
states is justified not only for infinitesimally short ∆t  interval, but also for fi-
nite time t.  

3.4. Examples 

Here we employ our technique for the previous example for a charged particle in 
harmonic potential. We evaluate Equation (15) using the Hamiltonian given in 
Equation (14) both numerically and analytically, however, for the sake of sim-
plicity, only for initial vacuum state. Thus, the modified Hamiltonian ( )ˆ τA jV  
in Equation (14) is written in terms of ( ) ( )ˆˆ ≡R t b t . Comparing the Hamiltonian 
in Equation (5) with the ansatz in Equation (13), we obtain  

( )e ωτε τ η α β η ζ∗ ∗= − = −ji
j j j j j j . The parameter ζ α β∗=j j j  stands for a cohe-

rence between spin states. For example, for parameters chosen to be as 1η =j , 
1 2α β= =j j , it is given by e 2ωτ− ji  with 1 2ζ =j . In the Fock state re-

presentation, the jth density matrix elements are ( ) ˆ,ρ ρ′ ′=j jn n n n . We nu-
merically evaluate ( ), ′N n n  from Equation (15), to obtain ( )0,0N , at  

2 1− =t t T  with 1 0=t  to compare the probability ( )p T  given in Equation (9). 
Equation (9) is rewritten in terms of time-independent parameters 1η =j , 
ζ ζ=j  associated to the virtual operator space as  

( )
2

2
2

4
exp sin

2
ζ ω
ω

  = −  
   

Tp T                   (17) 

In Figure 2, the density matrix elements for ( )0,0ρN  (red circles) and ( )p t  
(black curves) are plotted as functions of pulse area per π , ω πt . For the plots 
in Figure 2(a) and Figure 3(a), the parameters include coherence 1 2ζ = , total 
number 3750=N , width of the subintervals 0.001∆ =t , time 3.75= ∆ =T N t  
frequency 2 5ω = π . For the plot in Figure 2(a’), except for the larger total  
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Figure 2. Analytical (black curves) and numerical (red circles) results for temporal evolu-
tions of the probability ( )p t  for a charged particle driving by the external field being in 

the ground state as functions of ω πt . Left column: The system with a linear Hamilto-
nian. Middle column: The system with the degenerate two-boson Hamiltonian. Right 
column: The system with the intensity-dependent Hamiltonian. 
 

 

Figure 3. Realizations of dynamics of quantum states from initial vacuum. Numerical 
calculations of the temporal evolutions displayed by the contour plots of the Husimi 
Q-functions accompanied with the trajectories (red curves) of the centers of these con-
tours. Left column: The system with a linear Hamiltonian. Middle column: The system 
with the degenerate two-boson Hamiltonian. Right column: The system with the intensi-
ty-dependent Hamiltonian. All parameters are the same as used in Figure 2. 
 
number 10000=N  and later time 10=T , the rest of parameters remain the 
same as that given in Figure 1(a). In Figure 3, the quasi-distributions given by 
the Husimi Q-functions are plotted. The Husimi Q-function [2] [4] [5] is de-
fined as ( ) ˆ, α α π= NQ x y , here ( )2 2 exp atanα  = +  x y i y x . Because 
of coherent state representations, the Q-functions conveniently illustrate the co-
herent state as a displaced vacuum state with a perfect ring shape [8], preserved 
for entire time. In Figure 3, the red curves indicate the trajectories of displace-
ments of the initial coherent state over time. These trajectories are the centers of 
single selected contour plots with the fixed value of the Q-functions at any given 
time t. For example, in Figure 3(a), this trajectory follows a circle but is not yet 
complete circle opposite to that case in Figure 3(a’). The parameters used for 
the plots in Figures 3(a)-(c) and Figures 3(a’)-(c’) are the same as those used in 
Figures 2(a)-(c) and Figures 2(a’)-(c’), respectively. In Figure 2(b) and Figure 
2(b’) and Figure 2(c) and Figure 2(c’), the realizations of quantum dynamics 
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for nonlinear Hamiltonians with ( ) ( )2ˆˆ =R t b t  in (b, b’) representing two-boson 
processes and ( ) ( ) †ˆ ˆ ˆˆ =R t b t b b  in (c, c’) representing intensity-dependent 
processes are demonstrated. Similar to Figure 2, the numerical results for ( )0,0N  
are compared to approximate analytical expressions for time evolutions for the 
probabilities being in the ground state ( )p T  after time T in Figure 3(b) and 
Figure 3(c). In the case of two-boson transition processes, the approximate 
analytical expressions are obtained to be  

( )
2

2
2

8
exp sin

2
ζ ω
ω

  ≈ −  
   

Tp T                   (18) 

For Figure 2(b) and Figure 2(c), the parameters are given as 8000=N ,  
0.0001∆ =t , 0.8=T , ω = π  and 0.8ω π =T , while for Figure 2(b’) and 

Figure 2(c’), the parameters are the same as in (b) except for frequency 4ω = π  
and, thus, 3.2ω π =T . In Figure 3(b), the Q-functions display how the initial 
vacuum state with a ring shape is transformed to the significantly squeezed states 
with its signature oval shape [2] [8] [19] [20] for a slower process with a fre-
quency of ω = π . However, for the fast process with 4ω = π , the state remains 
merely in vacuum state without observable squeezing. Lastly, Figure 2(c) and 
Figure 2(c’) and Figure 3(c) and Figure 3(c’) represent the temporal evolutions 
for the Holstein-Primakoff ( )SU 1,1  transformed states [9] [21]. Similarly, the 
probabilities for slow (Figure 2(c)) versus fast (Figure 2(c’)) processes are com-
pared. It is important to note that the analytical formula for the probability for 
these processes is identical to Equation (17). However, the deviation (i.e., dis-
placement) is not as much pronounced as for coherent states (see, Figure 3(c) 
and Figure 3(c’)).  

4. Conclusions 

In the standard approach, quantum dynamics for arbitrary system are realized 
by the time evolutions of wave functions in Hilbert space, which can also be ex-
pressed in terms of density operators in Liouville space. However, the standard 
quantum simulations may occasionally turn out to be challenging, particularly, 
for nonlinear dynamical systems. 

In this work, we introduce a new nonstandard iterative technique, formulated 
as follows. 1) A finite time interval is divided into a large number of discrete 
subintervals with an ultrashort width. 2) The Liouville space is synthesized with 
an additional virtual space for ultrashort time duration and the quantum sys-
tem’s original Hamiltonian is modified accordingly. In particular, the force terms 
are replaced with virtual quantum operators. 3) The density operator for the 
system is extracted by tracing over the virtual operator space. In principle, vari-
ous virtual operators can be chosen depending on specific quantum system. For 
example, the simple algebra of using two-state spin raising and lowering opera-
tors reduces the cost of time-consuming calculations. After introducing our 
technique, we implement it to the well-known example of a charged particle in a 
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harmonic potential. Temporal evolutions of the probability for the particle being 
in the ground state are obtained by the present technique and compared to the 
analytical solutions given by the standard approach. We further discuss the phys-
ics insight of this technique based on a thought-experiment. Lastly, we perform 
numerical simulations for temporal evolutions for the ground state probability 
for generalized systems governed by the time-dependent nonlinear Hamilto-
nians. The quantum dynamics are realized by using the quasi-distributions. 

Successive processes implicitly “hitchhiking” via virtual space for discrete ul-
trashort time duration, are the hallmark of our technique. We believe that this 
novel technique has potential for solving numerous problems otherwise chal-
lenging to address using the standard approach based on time-ordered exponen-
tials. 
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