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m Nowadays, Global warming is a hot topic and which has greatly changed the liv-

ing environment of species. Climate change has caused massive changes in spe-

cies distributions, abundances and diversity of species, and has led to the extinc-
tion of some vulnerable species around the globe, see [1] [2], so we have to take
this factor into account when studying population dynamics.

For the phenomenon that global warming causes habitat quality to change,
many researchers have produced very scientific results, see [3]-[8] etc. In the
past, Berestycki developed the reaction-diffusion equation under shifting en-
vironment and studied the existence of the forced waves for the equation. A
few years ago, Berestycki and Fang in [9] considered the following Fisher-KPP

equation
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ut(x,t)zdum (x,t)+ur(x—ct)—u2, t>0,xeR,

they established the existence and nonexistence of forced waves for this reac-
tion-diffusion equation. It’s called forced waves because the growth function ris
related to x and ¢ The form x—ct was forced into existence by the environ-
mental changes, hence the name. If the rate of environmental change
¢>2,/dr(), there will be forced waves, and if 0<c <2,/dr(x), there will be
no forced waves.

In ecosystems, the dynamic relationship between predator and prey is ubi-
quitous and important, and it has been one of the major themes of ecology. It
has been studied and still is by many researchers who have developed mathe-
matical models to predict the interactions between prey and predator species. Of
course, species interactions with each other are in a variety of ways, including
cooperation, symbiosis and competition. Among them, cooperation is one of the
important interactions among species and is common in both social animals and
in human societies, see [10]. These species interactions are largely critical and
required, see [11] [12], so many researchers built a number of different models
based on these different functional responses.

Yang et al in [13] concerned a Lotka-Volterra cooperation system under cli-
mate change, they obtained the existence and asymptotics of forced waves, the
model as follows

O,y (t,x) = d0 ., (t,x) +u, [ 1 (x—ct)—u, +au, |, o

Oy (1,x) = dy0 uy (1,x) +u, [r2 (x—ct)—u, +a2u1], (-0
where d,,d, >0 respectively represent the diffusion rates of prey and predator,
r.(x—ct), i=1,2 represent the growth function of prey and predator, cis the
positive rate of environment change, a,uu, indicates the cooperative behaviors
with positive constants @, for i=1,2. They showed that for any given positive
speed of the shifting habitat edge, there exists a nondecreasing forced wave with
the speed consistent with the habitat shifting speed. Hu et al concerned with the
forced traveling wave solution for the modified model of (1.1). They proved the
existence of traveling wave solution for any positive constant shifting speed by
constructing appropriate upper and lower solutions and using the method of
monotone iteration, see [14]. The method of monotone iteration used for con-
structing the upper and lower solutions is an effective method for solving diffe-
rential equations, and is widely used in many kinds of initial value problems and
boundary value problems. This method is that if the problem has a pair of or-
dered lower solutions and upper solutions, then under certain conditions, the
monotone iterative sequence can be constructed through the pair of lower solu-
tions and upper solutions, so that they converge uniformly to the minimum and
maximum solutions between the lower solutions and upper solutions of the equ-
ation. If the minimum solution is equal to the maximum solution, then the
minimum solution (or maximum solution) is the forced traveling wave solution

of the equation.

DOI: 10.4236/jamp.2023.116113

1738 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.116113

Q. R. Guo, H. M. Cheng

These prey-predator models are typically represented by the predator function
as the increase in the number of predators after predation, while the decrease in
the number of predators is due to natural death. However, a case shows that the
increase of some predators is also not unlimited, and that the decrease in the
number of predator populations is negatively correlated with the per capita
availability of its preferred food, see [15]. Leslie in [16] first introduced a prey-
predator model, combining the logistic predator equation with the carrying ca-
pacity proportional to the number of prey, in order to emphasize that predators
have an upper limit on the rate of growth as prey. Since then, many researchers
have studied the Leslie-Gower prey-predator model.

For the predator-prey relationships, a great deal of researchers have discussed
the Leslie-Gower prey-predator model. In [17], Fang mainly concerned the spa-
tial dynamics of a modified Leslie-Gower prey-predator model in a shifting ha-
bitat, the main concerns are the extinction and persistent conditions under the
interaction between two species with different diffusion speed comparing with

the shifting habitat edge constant ¢, the model as follows

u, (t,x)=du, (t,x)+u(t,x)[r1 (x—ct)—u(t,x)—ﬂv(t,x)], t>0,xeR,

v(t,x) (1.2)

v, (t,x):dzvm(t,x)+v(t,x) r (x—ct)— , t>0,xeR.

u(t,x)+a

Changes in the environment lead to changes in the habitat boundaries of preda-
tor and prey, which are represented here by x—ct. Because ¢ > 0, the habitat
range is reduced. Only when the shifting speed of environment ¢ > 2,/d,r, (),
i =1,2, the population density of the two species will eventually reach an equi-
librium state, that is, there is a forced wave. When the rate of species spread is
less than the rate of environmental change, the species will go extinct. Recently,
we considered the existence of forced waves and their asymptotic for (1.2). The
existence of the forced waves indicates that the prey-predator system will even-
tually reach a state of equilibrium. Lee et a/ in [18] noted that the free move-
ment of some species can be over large areas, and nonlocal diffusion can effec-
tively describe this phenomenon. Therefore, many researchers have considered
the nonlocal diffusion species models. For example, Cheng and Yuan in [19]
mainly studied the information about the existence and stability of the invasion
traveling waves for the nonlocal Leslie-Gower predator-prey model. Then moti-
vated by the aforementioned works, we concern a Leslie-Gower predator-prey

model with a nonlocal predation under shifting environment as follows

(t,x):dlum (t,x)—i—u(t,x)[r1 (x—ct)—u(t,x)—ﬂ(]*v)(t,x)], t>0,xelR,

v(t,x) (1.3)

(t,x):dzvxx(t,x)+v(t,x) 7 (x—ct)— t>0,xeR,

u(t,x)+a |
where all parameters are assumed to be positive,
(J=v)(t,x)= IRJ(x—y)v(t,y)dy , J(x) is a continuous and non-negative
probability density function. zand vrespectively stand for the prey populations
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and the predator populations, B denotes the per capita capturing rate of the

prey by a predator per unit time and represents Leslie-Gower term.

u+ao

In this paper, we will concern the forced traveling wave fronts of (1.3) con-
necting the trivial equilibrium and positive equilibrium. The results imply that
for any given positive speed of the shifting habitat edge, there exists a forced
wave with the speed in keeping with the habitat shifting speed. To prove this
conclusion, we assume

(A1) J(x)eC (]R,]R") is symmetric and compactly supported, and
JR J(x)dx=1;

(A2) r(x):R—>R is continuous, nondecreasing with
0 <L =r(-0)<0<r(+0)=K, <+, i=12;

(A3) >0, f>0 and K, >afK,;

(A4) r(x) is continuously differentiable in R and both r/(+x) exist,
i=12.

Note that the system of (1.3) admits four equilibria E,(0,0), E,(X,,0),
E,(0,aK,) and E*(u*,v*),where

o _Ki-apK, . KK +aK,
1+ K, 1+ K,

This paper is organized as follows. In Section 2, by constructing a pair of ap-
propriate upper and lower solutions of the Equation (2.5) and combined with
the monotone iteration approaches, we can establish the existence of forced
wave. In Section 3, we consider the asymptotical behavior of forced wave in two

tails.

2. Existence of Forced Wave

In this section, we always assume that (A1), (A2) and (A3) hold. For simplicity,
denote

g (txuv)=uln(x=ct)—u=p(J*v)],
v } (2.1)

u+ao

g (t,x,u,v) = v|:r2 (x—ct)—

Forany O<u,u, <K, 0<v,v, <K,(K +a) and xeR,wehave

|g1 (t’x’ul’vl)_gl (t,x,uz,vz )| <q U”l _”2|+|V1 _V2|:|’

(2.2)
|g2 (t,%,u,v)— g, (t,x,uz,v2)| < g, [[u, =y |+ v =, ].

where ¢, =2K, - L +B(K, + K, (K, +a)),

2K, (K K2 (K, +a)
q, = (K +a) -L+-2 ( 12+a) , which imply that g, (1,x,u,v),
a a

g, (¢, x,u,v) are Lipschitz continuous in (u,v)e [O,Kl]x[O,K2 (K, +aﬂ for
any xeR, teR". Define

G, (t,x,u,v) =qu+g, (t, x,u,v), G, (t,x,u,v) =q,v+g, (t, x,u,v). (2.3)
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Then G, (t,x,u,v) is nondecreasing in u € [O,Kl] and nonincreasing in
ve [0, K, (K, +a)} , G, (t,x,u,v) is nondecreasing in u € [O,Kl] ,
Ve [0, K, (K, +a)] .Let C=C(R) be all continuous functions from R to R

and BC=CnL" (R) be all continuous and bounded functions from R to

R . Denote Z =BCxBC . Then it follows from [[20], Theorem 2.1] that the fol-
lowing conclusion holds.

Theorem 2.1. Considering the Cauchy problem

u, (t,x) =du, (t,x)—qlu +G, (t,x,u,v),t >0,xeR,

v, (t,x)=dyv, (t,x)—q,v+ G, (t,x,u,v),t >0,x € R, (2.4)

(u(O,x),v(O,x)) = (uo (x),vo (x)),x eR,
where G|,G, are defined in (2.3). If u,(x)e BC,v,(x)eBC with
0<u,(x)<K,, 0<v(x)<K,(K +a) in R, then (2.4) has a unique classic
solution (u,v),ueBC,ve BC with 0<u(t,x)<K,, 0<v(1,x)<K, (K, +a)

forall +>0 and xeR.
Let £ =x—ct and plugging it into (1.3), we have

dU"(£)+cU'(&)+U(£)[n(£)-U(£)-B(1*V (¢))]=0,

V(f) ~ (2.5)
U(§)+a} 0

(@) ()1 (E) 5 6)- -
Then we will consider the solution of (2.5) which satisfies the following

asymptotic boundary condition
lim (U(£).1/(£))=(0.0). lim (U(2).V () =(w' ). @9)

Lemma 2.1 1) Let 7, be the positive root of d.A* +cA+L, =0 with
L=r (—oo) <0, i=1,2. Then thereexist o, >n,, o, >n, andsmall
0<e<K,, 0<t<K,(K,+a) such that the functions

Q:{gem(s‘fo)’ E<E,, K:{Teaz(iﬁ))’ E<E,,
&, 24, 7, £24,,
satisfy 0<U(&)<K,, 0<V(&)<K,(K +a) forall £eR, where & satis-

T

fies 1 (&)-¢—BK,(K,+a)=0 and r,(&)- 20.

eta
2) Let & <& <& sosmallthat 7(&)<0 and r,(&,)<0. Assume that

is the positive root of d,A*+cA+75(&)=0 and B, is the positive root of
d,2* +cA+1,(&)=0. Then the functions (&) =min{K,e" %) K, |,
7(£)=min{K, (K, +a)e™ %), K, (K, +a)| satisfy U(¢)<T(¢),

V(E)<V () forall £eR.

Furthermore, there holds

dU"(£)+cU'(E)+U(E)[7(£)-U(&)-B(1+7 (&) ]z0, @)
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sz"((;)+cV’(§)+V(§)[rz(5)—&;&06}20, (2.8)
dU" (£)+cU'(£)+T(&)[#(£)-T(&)-p(J*1(£))] <0, (2.9)

and
di"(é)wf’(é)ﬁ(é){rz(5)—%}so. 210

Proof 1) Let a; be the positive root of the equation

dA*+cA+ L —¢—BK,(K +a)=0,and a, be the positive root of the equation
d, A +cA+ L, ~L20.Dueto 1. be the positive root of d.A*+cA+L =0, we
a

obtain o, >7,, a,>7,.Since 0<e<K,, 0<7<K, (K, +a), wehave
OSQ(§)<K1, OSK(§)<K2(K1+05) forall £eR.

2) Since 7 (-)<0, r(—0)<0, we can obtain that there exists &,
small enough that 7 (£)<0 and 7,(&)<0 with & <& <0<¢&,. By the de-
finition of o, and B, we have ¢, >, >0 for i=1,2. So, when &<¢, we
have U(&)=K, M%) > ge9) > K e®E%) 5 gemE-a) - U(&); when
E>&, U(E)=K, >e>U(&), it can be seen that U(&)<U(&) forall £eR.
Similarly, we can get that Z(f) < 17(6) forall £eR.

(i) If &<¢&, , then l_](g):gea‘(gffo)>0 , Z(g):rea2(575°)<r , and
V(&)<K,(K,+a). By the nondecreasing of 7, (&) and the definition of «,
for i=1,2, we have

AU’ (€)+eU'(£)+U(E)[n()-U(£)-A(s+7(8))]
> gele9) [dlaf +cay + L —¢- K, (K, +a)] =0,

and

PR ENIE AEC

> re(67%0) [dzotz2 +ca, + L, —1} =0.
a
(ii) For £2=¢,, obviously, &> ¢&,, then (_](f) =g, K(f) =7,

I7(§)=K2 (K, +a). Due to the nondecreasing of r,(¢) for i=1,2 and the

chosen of &), it is easy to show that
4" () +eU' () +U (&) (&) -U(2)-A(I+7(£))]
=¢[r(&)-¢-BK, (K, +a)]
Zg[rl (&)-e-BK, (K, +a)}20,

and
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dZZ”(§)+cZ'(§)+K(§)|:V2 (¢)- l_/é()?a}
_{rz(é)—gw}

zf[rz(go)—ﬁa}zo.

Thus we can obtain that (2.7) and (2.8) hold for £eR.

(iii) When &>¢&, then U (f )=K,. According to the nondecreasing of
I (§) and Z(é) >0, we can show

dU"(£)+cT'(£)+T(£)[7(£)-T(&)-p(+¥(£))]
=K, [1(&)-K, - B(Ix1(8))]

<K [K, -K]=0.

If £<¢&, obviously, U(&)= KA and V(&)= 7e®9) 5 0, then the
definition of f, and the nondecreasing of 7 (é‘) can imply that

40" (&)+cU'(&)+T(£)[1(£)-T(&)-B(I*¥(¢))]
=K B+ opy 4 (6)- KT - pa 2 (9))]
<Keﬁ‘ 4 [d,B +cp +r1( )]

SKleﬂl(é @ [duBl +cf, +”1(§1)] =0

That is, (2.9) hold for £eR.

(iv) For £>¢,, 17(5) =K, (K, +a), (7({,‘) <K, and r(&)<K,, then we
can obtain

v (& ( +cV

T
K(K+a{ (@)
<K, (K, +a)[K,-K,]=0

For £<¢,, V(&)=K,(K, +a)eﬂ2(5*52) >0 and U(£)>0. Then by the
definition of B, and the nondecreasing of 7,(¢), we can have

@W@%wV@ﬁV@{Mﬁ—ggga}

<K, (K, +a)e ) [d Jis +Cﬂz+rz(§ﬂ
<K, (K, +a)e =) [dﬂz +Cﬁz+rz(§z)]

Thus we can deduce that (2.10) is right.[]
Define

r={(UV)e2:U<U<UV<V<V inR},

and
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RUY)€)=aU()+U()[A()-U()-A(7+V ()]
_ __rE©)
R @) (6)6) o) (|
Then we can rewrite the system (2.5) as the following form
{dlU"(f)”U'(f)—%U(f)+Fl(UaV)(§)=09
V" (E)+cV'(E)—q,V (&)+F (U V)(&)=0.
Notice that (U,V) is a bounded solution of (2.11) if and only if (U,V) isa
fixed point of the operator Q(U,V )= (Q1 (U.V),0,(U, V)) , where

0,(U.V)(¢) :mf:% (£-s)F(U.V)(s)ds,

(2.11)

and

it £<0, —c+(=1) {Je* +4d g,
J (5): eli¢ Ay =

£>0, 7 2d.

i

A =12, (2.12)

Lemma 2.2. For (U JV)eTl', Q isnondecreasing in U and nonincreasing in

V, and Q, is nondecreasing in (U,V)eT . Moreover, the operator Q maps T
intoT.

Proof. For any (U,,V;),(U,,V,)el’ with U, >U,,V, 2V,, by the choice of
g, for i=1,2,wehave

E (U19V2)(§)_171(U27V1)(§)
=[a,+5(8)-U(&)-U:()- B 1 () Ui (£) - U1 (9)]
+BUL ()1 (£)-15(8)]

>0,
and

E(ULV)(E)-E(U:1)(6)

=q,[V(&) -2 (&) ]+ n (&) (6)-7(8)]- U]V{;ff o UZV({:()? o

R LGEAT)
o re

0@ ] @ra] (6]
> 0.

It can be seen that £, is nondecreasing in Uand nonincreasing in V; and F,
is nondecreasing in (U,V)eI. Hence, according to the definition of O, for

i =1,2 and the nonnegativity of J, defined in (2.12), we can obtain

0 (U,72)(€)-a (U R)(€)
: . >
=il HE AR A K)o

and
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0,(U)(¢) -2 (U2 12)(€)

1 +20
:mj_w L (E=s)[ B (UT)(s)=F (U,.7,)(s) |ds > 0.

So, the above inequalities show that
0 (U.V)(¢)<a(UY)(£)<0(T.7)(&)
0,(U.F) (&)< (UF) ()< (T, V)(rf)

for all (U,V)el. Next we show that Q maps I into I. For &<¢&, then by

(2.7), we can obtain

o.(U.r)(¢)

_; S i(é-s) 7 \(s g (éns) 7\(s
_dl(ﬂ'lz_ﬂﬂ)['l.we § FI(Q’V)( )ds+Lz et F‘(l—]’V)( )ds}

e e )

<[ =AU (s) = U’ (s) + q,U s)Jds
- A€ 6+ 0) - )
#(dds o) U (& +0)-U (& -0)]|.

For &>¢,, wehave

Ql(l_fi)(f)

1 ( 606/1“(5 )+ 5e/111 +j e’112§ ))

x[—dlg )—cU( )+q1 st

:m{‘m‘”ﬂ>Q<5>+dleﬂ““""°’[zz'<§o+o)—g’<§o_o)]

+H(ddy + ) DU (4 +0)-U (& -0)]}.
Similarly, when & <&, then by (2.8), we have
0,(U.Y)(£)

Zm{dz(ﬂzz—ﬂm)fi(fhd ™2 (%) [V'(&+0)-V'(&-0)]

+ (dzﬂzz + c)e/lﬂ(é_%) [Z(Cfo + 0) - Z(‘):o - 0):|}
For &> £, we can obtain

0,(U.V)(¢)

> Ty O () e 6 40) 1 (6,-0)]

i+ e +0)- (-]

Since U(&), V(¢ ) re continuously differentiable in & , we have
>U

a
0 ((_/,17)(5) U(&), O,(U¥)(&)2V (&) for £#& . By the continuity of

(2.13)
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0,,0,, we can further have that Q,(U.V)(&)2U (&), O,(U.V)(&)2V (&)

forall &.
Using a similar argument with (2.9) and (2.10), we have
0,(0.r)(¢)
Sm{ V(A = 200)T (&) +die™ [T (4, +0)-T'(£-0)]
+(d Ay +e)e I [T(4+0)-T(£-0)])
for £<&,
Q,(C.r)()
gm{ (A = 20,)U (8) +de™ D [T(& +0)-T" (& -0)]
H(ddy, + ) [T (& +0)-0(& _o)]}
for £>¢&,and
0,(0.7)(¢)

(O.7)(s)ds + [, (T.7)(5)ds |

[N}

:; ¢ /121(5-5)}7
d, (/122 _/121)['[0Oe

+
—_—

1 $ yi(&-s & Jpy(é-s 0 o (éms
<l e e e e
X[—dzf"(s)—cV'(s)+qZI7(s)st
U =) (e [P +0)-T (6, -0)]

Hdyy +0) [T (& +0)-7(&,-0) )

for £<&,,
0, (U.7)(¢)

el e o
[_dZV ) ( )+Q2 ( )]

m{d (Ao =2 )V () + doe™ 2 [7(&,+0) =77 (&, - 0)

+(dyA, + )27 (& +0) -7 (&, _o)}}

for £>¢&,. Since U(§1+O) ( 0), ( 1+0)<U(§1 0),

(52 +0)= (52 -0), (52 +0)< ( 0) , we can prove that
0,(U.)(£)<U(&) for &, ( T)(&E)<V (&) for &#¢&,. Therefore,
by the continuity of 0,,0,, Q, (U,V)( )<U(&), 0, (U, 17)(5) <V(&) forall
& . These, together with (2.13), we obtain that 0 =(0,,0,) maps T intoI.

Theorem 2.2. Assume that (A1), (A2) and (A3) hold. Then (1.3) has a forced
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Proof Deﬁne u£ =U, v(o) =y, u" =0, vﬁo) =V, then we have

Define the following iterations

k k-1 k-1 1 +o k-1 -1
uf’)(g‘):Ql(uf Y >)(§)=—dl(ﬂ“_ﬂﬂ) (&= s) R (a0 ) (s) ds,

T A

+00

=0 (™))
v (5) =0, (u ) ﬂm).[:sz (f—S)FZ (uf"‘l),v(""‘))(s)ds,
()

J
ﬁzl) -
for k=1,2,---. Next, when k=1, ufl)(§)>u0)( )=U(¢),
D(EO<(=T(&) , (&)= (E=1(E) . W[ (e

' (

apparently hold, according to induction, when 4 =n, u™ (&)= u"™
u (&)<l (£), W (&)= (g), W(§) v (&) hold

Moreover, since F, is nondecreasing in U and nonincreasing in V; and F,
is nondecreasing in (U,V) €T, we have when & =1,

u)(£)-u (£)

d
>0,
w0 (9&)_\{1) ((:)
~d; (ﬂzzl—zz At =) A (" 0)(5) = B (1”17 )5) [as
>0,

apparently, u!" (&)= ul! (£) and e (&)= >y (¢) hold, according to induc-
tion, when k=n, u!" (&)= u™ (&) and W) (&)= e (&) hold.
From all of these, we can conclude that

U=u® <u® <u® <o < <) <<y < < =
T ’ oo T T (214)
V= <l <@ <) <0 << <0 <00 o

- - + + + +

for all k&
lim v( ) = =v, all exist. By (2.14), it is easy to see that

- U(&)su’ (&)<u, (E)SU(E),V(E)sv (&) <v,(&)<V (&) foréeR

By the continuity of F, and F,, we know that F( ) v(k)>, E (u(k),vfk)),
(

=1,2,--- and £eR. Thus limu(k)—u*, llmu()_u:, limv(k):vi
k—oo k—w

F, (ufk),vfk)), F, (uﬁk),vﬂk)) converge point-wise to F( N :)),

F, (uE) , W) ) , F, (uf*) ) ) , F, (ui*) ,vf) ) , respectively. Since
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F (Y, )‘s
F(ul, "‘)‘s
Fz(u (k) ‘s (K, +a)
P (u ”,vﬁ ))‘<q2K (K, +a)

then by the Lebesgue’s dominated convergence theorem, we have

(€)= limu) (£)=lim, () (¢)

and

k—

v(£) = limot (¢) = im, (w7 (8)

_ i 1 LD LD (6
girroeni B S A

i a0, (@)
Similar to the proof of Theorem 4.2.7 in [21], we can obtain that
u, (§)=ul()=U(g), vi(£)=V (£)=V (&) forseR.
Thus (U (£),V (£)) isa solution of (2.11) and satisfies
U($)<u()<u(&).L()<r(£)=<r(s)

Next, we prove that (U (&).V (& )) satisfies the asymptotical boundary con-
ditions (2.6). Since

(U (=), ¥ (-»))=(0,0). (2.15)
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Since U(&)<U(E)<U(E), V(E)<V(E)<V (&) and U(E), U(),
Z(é), 17(5) are bounded in £ e R, we can obtain that ﬁU(ﬁ),

&>+

lim U(f), 5@01/(5)’ ﬁﬁ_ﬂl V(f) exist and denote them by y,,¥,,z,2,,

&+

respectively. Also, y,,¥, €(0,K,], z.z, €(0,K, (K, +a)] and

lim F(U.V)(&) =g+ 0 (K =3 - Bz),

&+

s‘m FUV)E)=qy, +y, (K —», —Bz),

11mF(U,V)(§)zq221+zl[K2— adl ]

£t n+a

z
lim F, (U,V = K, ——2—|
é% 2( )(f) q222+22( 2 y2+a]
In view of L’Hopital’s rule, we can obtain
3 = Jim U (&)= fim 0,(U.7)(¢)
— 1 £ a(e-s) W a(és) ]
=11m—|: eV E (U V) s)ds+ | eV E(U,V)(s)ds
égprwdl(ﬂ,lz_ﬁ{”) .[—oo ]( )( ) _Lz 1( )( )

_ 1 {413/1"‘)’1(1(1_J’1_ﬂzz)+‘J1J’1+y1(K1_J’1_ﬂZz):|
dl(ﬂ'lz_ﬂ’ll)

_ﬂn 2'12
K —yp —
:i[‘hh+Y1(K1_y1_ﬁzz)]:)ﬁ+yl( L= ﬂZZ):
4q, q
Vs =§11_H10U(§)=§li_m oU.Y)(€)
¢ M(E) 0 A (é-s)
—Qi‘ild (11 U E(UV)(s)ds+]"e FI(U,V)(s)ds}
_ 1 |:Q1yz+J/2(K1_J’2_ﬂzl)+Q1yZ+)’2(K1_J’2_ﬁ21):|
dl(jn _ﬁ'n) _An /112
K —v. —
:i[‘hJ’z+y2(K1_J’2_ﬂZ1)]:yz+y2( e ﬂZI),
4q, q,
2= T ¥ (6) = im 0, (U.1)(£)
T 1 $ () *O An(é-s)
- Jim O] _%I)U_we F(U)(s)ds+[ e FZ(U,V)(s)ds]
9z, + 7z, [Kz _Zl) 4,7, + (Kz — j
_ 1 nta . yta
dz (Z'zz _221) _’121 222

>

z
1 z Zl(Kz_y -:-C{j
= QZZI+ZI(K2_ . J :Zl+—l
q,

nta 9,

and
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z, = lim V(&) = lim Q, (U,V)(&)
E+0 &+
_ 1 1 ¢ Aai(é-s) R Ay (&-s)
i L R e T )0

) )
9,2, +2, | K, — 9,2, +2, | K, —
y2 +a y2 +a

1
- dz (122 _121) _121 122

1
=—1q,2, t 2, [Kz -
q,

2y
z & Kz_y +a
hta 9,

Hence, y, (Kl -0 —ﬂzz):() > W (Kl W —ﬂzl)zo >

zl[Kz— i ]:o, Zz[KQ— % ]:O.Since vy €(0,K,],
y1+a y2+a

2.2, €(0.K, (K, +a)],itmustbe K, -y —fz, =0, K, -y, -fz =0,

z z
K,-——=0, K,——=2—=0. By some trivial calculations, we can show
»n+a »ta
K, -afK .
that )/12)/22—1 p 2=,
1+ BK,
KK, +aK, . . . .
| =2, =—————==v , that are U(+©)=u, V(+0)=v . Combining
1+ pBK,

with (2.15), the asymptotic boundary conditions (2.6) are satisfied.[]

3. Asymptotic Behaviors of Forced Waves

To obtain more asymptotic information of the forced waves at oo, we denote
the solution of (2.5) with (2.6) as
(U(éf),V(f)) = (uo (é),v0 (f)) for —oo < & < 400,
Differentiating (2.5) with respect to &, then we show that
(U'(&).1"(£)=(a.0,) satisfies
! (&) +co) (5)—1—[}’1 (&)-2u" - p(J %" )] @ — Bu’ (Jx@,)+r (£)u’ =0,

" ' 2VO V02 % , (31)
4,95 (&) + e (z:){rz (&) }02 L T
u+a (u +a)
B .
Theorem 3.1. Assume that (A1)-(A4) hold and —; <1. Then there exist
u +a

positive constants M,, N,, S, with i=1,2 such that the forced wave front

(U (&).v (5)) to (1.3) has the following asymptotic properties

(U(g)} (M, +o(1))e 4
V(&) el

(M2 +0(l))e 2%
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as & — —oojand

(U(f)} _ (u (N, +o(1))e =(S, +o(1))e™ J

V(ég) V*—(N2+0(1))e‘25_(SZ+0(1))6/146

as & —>+oo provided d, =d,.Here 4,,4, aregivenin (3.7).
Proof. For & — —oo, the limiting equations for (3.1) is rewritten as the fol-

lowing form

{dlz//l (&)+ew! (&)+ Ly, (£)=0, (3.2)

dyyy (&) +ey, (&)+ Ly, (£)=0.

So, the first equation of (3.2) has two independent solutions
yi(§)=e % andyi(§)=e M
Combining (3.1) with (3.2), we have that ¢, admits the following property as
&> —o,
@ (&) =m[1+0(1) Jr (&) +m[1+0(1) Jur ().
Since ghﬂlw @ (£)=0, it mustbe m =0.Hence, for &— -,
U'(&)=g(&)=n[1+o()]e * .
Similarly, we can deduce that for & — —,

el 4dls
V,(‘f):¢’z(§)=n2[1+o(1):|e 2d,

Using the integration on U'(¢) and V'(£) from —© to &, there are
two constants M, >0 and M, >0 such that

—Cty 62*4d|L| ¢
(U(é) _ (M, +o(1))e
V (5) *C+x,€2 —4dyLy ¢

(M2 +o(l))e 2%

as & —>—o.For & — +owo, the limiting equations for (3.1) are

{dla)]'(é)+ca)]'(§)+Ma)l (&)-Na, (£)=0,

(3.3)
d, 0 (§)+co, (§)-So (§)+Tw, (£)=0,

where

M:K,—Zu*—ﬁv*z—u*<0, N:ﬂu*>0,
* * *2
T-k,——2 -V g 5-—"
u +a u +a u*+a

> 0.

2

Note that in (3.3), we have used the fact that r,.'(-I-OO) =0 with i=12. In-
deed, by applying L’Hopital’s rule, we have

tim (&)= tim <) _ pi EGE{C] . [1(£)+7(£)],

&+ &40 e &>+ e° &40
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which implies 7'(+%0)=0. Choosing @/ =@, @, =@,, then we can rewrite

(3.3) as the following first-order differential equations

a)ll(é:):ajh

i €~ M

1(5)— d, 2 d, w1+d1 @,, oo
@, (5):652’ .
- . S T
2(§)z—éa)z+za)l—za)z.

Then we can get the characteristic equation of (3.4) as

2 (mij(z+i]+lz[z+i]+ﬂz[z+i]+u:o. (3.5)
dl 2 2 1 1 d2 dldz

If d, =d, =d,then (3.5) can be simplified as

2
e (/1 +§] +$(M +T)l(/1+§j+%(MT—NS)=O.

Define s=:l(l+§j.Then s satisfies s2+%(M+T)s+dL2(MT—NS):O.

Since
(M +T)" —4(MT ~NS)=(M ~T)" +4NS >0,
kK * *2
Mr="2Ys PV s Mt <0,
u+a (u*+a)
—(M +T)+(=1) (M +T)’ —=4(MT - NS
We have s, = ( ) ( )\/( ) ( )>O, j=12.

2d
Thus the general solution corresponding to (3.4) can be expressed as

~ ~ \T
(0,0, 0,,0,) =lxe" +Lx,e”" +Lx,e™ +1,x,e™ (3.6)

E

where

—c+4/c” +4d’s, - ct+4d’s,

c—+f

A= >0, A, = <0,
2d 2d (3.7)

—c+4/c +4d’s, —c—+Jc* +4ds,

y=——m———=>0, } =———=<0,
2d 2d

and x, are eigenvectors corresponding to A, [/ are arbitrary constants with
i=1,2,3,4. Since (a,d,0,,o, )T —(0,0,0,0) as &— +o0, we deduce that
=0 and [,=0 from (3.6). Thus, (@,®,o,, @) =Lx,e™ +lx.e™ .

Thus, (¢,¢,) satisfies the following property

[(pl (5)] {cl (4, +0(1))e™ +¢,(a, +0(1))ew}

2(¢)) ¢ (b1 +o(1))e‘25 +c, (b2 +0(1))e‘4’5

as & — 4w, where a,,b,c; are constants and ¢, cannot be zero simulta-
neously, i=1,2. Meanwhile, a, #0, b, #0. For the solution xieﬂ""; to (3.4),
if one of the first and third components of the eigenvectors x, is zero, then the
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linear system (3.4) leads to the other components are also zero. By integrating

from & to +oo, it follows that

(U@)J_ W' =(M+o(1)e (5, +o(1)e

V(&) (v = (N, +o(1))e™ —(8, +o(1))e™
as &>+ and d, =d,.
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