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Abstract 
A two-agent scheduling problem on parallel machines is considered in this 
paper. Our objective is to minimize the makespan for agent A, subject to an 
upper bound on the makespan for agent B. In this paper, we provide a new 
approximation algorithm called CLPT. On the one hand, we compare the 
performance between the CLPT algorithm and the optimal solution and find 
that the solution obtained by the CLPT algorithm is very close to the optimal 
solution. On the other hand, we design different experimental frameworks to 
compare the CLPT algorithm and the A-LS algorithm for a comprehensive 
performance evaluation. A large number of numerical simulation results 
show that the CLPT algorithm outperformed the A-LS algorithm. 
 

Keywords 
Parallel Machines, Makespan, Approximation Algorithm, Two-Agent,  
Empirical Results 

 

1. Introduction 

In recent years, management problems in which multiple agents compete on the 
usage of a common processing resource are receiving increasing attention in 
different application environments, such as the scheduling of multiple flights of 
different airlines on a common set of airport runways, berths and material/ 
people movers (cranes, walkways, etc.) at a port for multiple ships, of clerical 
works among different “managers” in an office and of a mechanical/electrical 
workshop for different uses; and in different methodological fields, such as ar-
tificial intelligence, decision theory, and operations research. 

In this paper, we consider an agent scheduling problem. Unlike classic sche-
duling problems, the jobs in agent scheduling problem belong to two or more 
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owners which we call agents. Each agent owns a set of jobs and the objective. Each 
agent has its own goal depending on the schedule of its jobs. All the agents share 
common resource. Zhao et al. [1] provided an algorithm A-LS with per formance 

ratio 12
m

− . In this paper, we study a two-agent scheduling problem. The two  

agents are called agent A and B, respectively. All the jobs of agent A and agent B 
need to be scheduled on identical machines. Our objective is to minimize the 
makespan for agent A while keeping the makespan for agent B under a given 
value. The given value is indicated as threshold value for agent B. We only con-
sider feasible threshold value in every instance of the problem, i.e., there always 
exists a schedule such that the makespan for agent B is no more than the thre-
shold value. According to the notation introduced by Graham et al. [2], the 
problem is denoted by max max|| :A BP C C Q≤ . 

Agent scheduling problems were introduced by Baker et al. [3] and Agnetis et 
al. [4]. The former paper focused on minimizing a linear combination of the 
agents’ criteria on single machine and presented some complex results. The lat-
ter paper mainly focused on two-agent scheduling problems, they summarized 
the complexity of some constrained optimization problems. Agnetis et al. [5] 
extended some of those problems into multi-agent version. Balasubramanian et 
al. [6] first studied the agent scheduling problem on parallel machines. They es-
tablished an iteration SPT-LPT-SPT heuristic and a bicriteria genetic algorithm 
for the two-agent scheduling problem which is ( )max| | , jP inter C C∑ , where 
inter means that the jobs of the different sets interfere with one another. Zhao et 
al. [7] considered two models of two-agent scheduling problem which are 

max max|| :A BPm C C Q≤  and max|| :A B
jPm C C Q≤∑ , and these two problems had 

been proved NP-hard. For the problem max max|| :A BPm C C Q≤ , Zhao et al. [1]  

provided an algorithm A-LS with performance ratio 12
m

− . Moreover, when 

2m = , they presented an algorithm A-LPTE with performance ratio  

1 17 1.28
4

+
≈ . Zhao et al. [8] studied a multi-agent scheduling problem on two 

identical parallel machines which is 1
max max2 | | , , gP CO C C , where CO denotes 

the situation where each agent completes to finish its jobs as early as possible. 
They introduced algorithm MML and proved the performance ratio of algorithm 

MML is ( 1 1 11 , 2 , ,
6 6 6

g+ + + ), which was further shown to be tight. Gu et al. 

[9] extended the problem into m machines: 1
max max| | , , gPm CO C C . An algo-

rithm LLS was proposed for the problem. They proved the agent’s completion 

time is at most 1 1
3 3

i
m

 + − 
 

 times its minimum makespan, where the agent 

with the i-th smallest α  point value is the i-th completed agent. 
The rest of this paper is organized as follows. In section 2 we briefly describe 

an integer programming (IP) model and propose a new algorithm called CLPT. 
In section 3 we compare the performance between the CLPT algorithm and the 
optimal solution first and then compare the performance between the A-LS al-
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gorithm and the CLPT algorithm. Finally, in section 4 we conclude the paper 
and give some fruitful directions for future work. 

2. Integer Programming Model and the CLPT Algorithm 
2.1. Problem Formulation 

Agent A has An  jobs, we denote the job set of agent A by  

{ }1 2, , ,
A

A A A A
nJ J J J=  . Agent B has Bn  jobs, we denote the job set of agent B 

by { }1 2, , ,
B

B B B B
nJ J J J=  . Let A Bn n n= + . The processing time of A

jJ  is  
A
jp , 1, 2, , Aj n=   and the processing time of B

jJ  is B
jp , 1, 2, , Bj n=  . 

The two agent are competing agents, i.e., A BJ J∩ =∅ , A BJ J J= ∪ . Let  
( )max CLPTAC  denote the makespan for agent A obtained by the CLPT algorithm, 
( )max CLPTBC  denotes the makespan for agent B obtained by the CLPT algorithm, 
( )max LSAC  denotes the makespan for agent A obtained by the A-LS algorithm and 
( )max LSBC  denotes the makespan for agent B obtained by the A-LS algorithm. Let 

π  be the optimal schedule. Let ( )max
AC π  denote the optimal makespan for agent 

A and let ( )max
BC π  denote the optimal makespan for agent B. 

2.2. An Integer Programming Model for :A BP C C Qmax max|| ≤  

In this subsection, we introduce an integer programming (IP) model which can 
help us obtain the optimal schedule in small-sized instances. Given an arbitrary 
optimal schedule π ′ , Zhao et al. [7] has shown that if ( ) ( )max max

A BC Cπ π′ ′≤ , 
then π ′  can be transformed into a new schedule π  such that A-jobs are all 
scheduled before B-jobs on each machine without increasing the makespan for 
agent A or changing the makespan for agent B, vice versa. Obviously, is also an 
optimal schedule. Let π  be the optimal schedule considered in the following 
analysis in this section. 

The IP model can be formulated as follows: 

max

1 1

1

1

1

min

s.t. 1,  1, ,

1,  1, , ,  1, ,

,  1, ,

,  1, ,

A

m n
l
ij

l i
n

l
ij

j
n

A l
l ij j

j A i
n

B l
l ij j

j B i

C

x j n

x i n l m

L x p l m
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In the (IP) formulation, max A

lL  represents the makespan of A jobs on ma-
chine l and maxB

lL  represents the makespan of B jobs on machine l. l
ijx  

represents the i-th position of the jobs j on the machine l, thus 1, ,i n=  , 
j A B∈ ∪ , 1, ,l m=   and the decision variable 1l

ijx =  when the job j is 
placed at the i-th position on the machine l, otherwise 0l

ijx = . 
In the above integer programming model, the first constraint and the second 

constraint ensure that each job is scheduled exactly once. The third constraint 
A
lL  represents the sum of the total processing time of A jobs on machine l. The 

fourth constraint B
lL  represents the sum of the total processing time of B jobs 

on machine l. The fifth constraint lL  represents the sum of the total processing 
time of A B∪  jobs on machine l. The sixth constraint indicates that the ma-
kespan of machine l is the largest between max A

lL  and maxB

lL . The seventh con-
straint and the eighth constraint give the makespan of agent A and agent B on 
machine l. when max 0

A

l lL L− ≠ , there must be max A

l lL L> , which means that on 
the machine l, the agent A is completed before the agent B, in the optimal solu-
tion: ( ) ( )max max

A BC Cπ π≤ , so the makespan of agent A on machine l is equal to 
the sum of the total processing time of A jobs on machine l and the makespan of 
agent B on machine l is equal to the sum of the total processing time of all jobs 
on machine l which means that max A A

l lL L= , maxB

l lL L= , the seventh constraint 
and the eighth constraint are established; when max 0

B

l lL L− ≠ , there must be 
maxB

l lL L> , which means that on the machine l, the agent B is completed before 
the agent A, in the optimal solution: ( ) ( )max max

B AC Cπ π≤ , so the makespan of 
agent B on machine l is equal to the sum of the total processing time of agent B 
on machine l and the makespan of agent A on machine l is equal to the sum of 
the total processing time of all jobs on the machine l, which means that 

max A

l lL L= , maxB B
l lL L= , the seventh constraint and the eighth constraint also 

holds. The ninth constraint states that the makespan of agent A is max
AC . The 

tenth constraint states that the makespan of agent B is max
BC . The eleventh con-

straint states that the makespan of the agent B on each machine does not exceed 
Q, where Q is a critical parameter. It directly affects the feasibility of the prob-
lem. If Q is small, then the problem has no feasible solution due to the hard con-
straint of max

BC Q≤ . Finally, the value of decision variable l
ijx  and the range of 

related parameters max max
max max, , , , , ,

A BA B A B
l l l l lL L L C C L L  are given. 

2.3. The CLPT Algorithm 

To describe the algorithm formally, we will introduce some notations. The LPT 
(longest processing time) algorithm assigns a job with maximum processing 
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time to the first available machine. Let A
LPTC  denote the makespan obtained by 

applying LPT to agent A and let B
LPTC  denote the makespan obtained by ap-

plying LPT to agent B, X and Y represent either agent A or agent B. To clarify 
the definition, let’s assume that X represents agent A and Y represents agent B. 

, 1, 2, ,iX i n=   denotes the load of A jobs assigned to the machine i.  
, 1, 2, ,iY i n=   denotes the load of B jobs assigned to the machine i.  
( ) jj Ip I p

∈
= ∑  denotes the totle processing time of any job in subset I. We de-

fine two bounds AQ  and BQ  as follows. 

3 1 1max , ,
2

A A
j LPT

j A

mQ p C
m m ∈

 −
= ⋅ 

 
∑                 (2) 

3 1 1 3 1max , , .
2 2

B B
j LPT

j B

m mQ p C Q
m m m∈

 − −
= ⋅ 

 
∑             (3) 

Algorithm 1 and algorithm 2 for problem max max|| :A BP C C Q≤  are described 
as follows. 

 

 
 

 
 
In Algorithm 1 there may be more than one machine each of which has the 

smallest load. A1 (X, Y) always chooses the one with the minimum index. 
Algorithm 1 takes ( )2O mn  times. Therefore, the complexity of the CLPT 
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algorithm is ( )2O mn . In order to demonstrate the feasibility of the CLPT algo-
rithm, we propose the following lemmas. 

Lemma 1. In Algorithm 1, if j X∈  and ( ) X
s jp X p Q+ > , then iY ≠ ∅  

for any i with ( ) X
i jp X p Q+ ≤ . 

Proof. Since ( ) ( )1mins s i m i ip X Y p X Y≤ ≤∪ = ∪ , we have 

( ) ( ) .X
i i j s s jp X Y p p X Y p Q∪ + ≥ ∪ + >  

Then, iY ≠ ∅ . 
Lemma 2. For any j X∈ , Algorithm 1 can always find rX  such that 
( ) X

r jp X p Q+ ≤ . 
Proof. Suppose to the contrary that j X∈  is the first job that cannot be as-

signed to any iX  in Algorithm 1. Then, after jobs 1, 2, , 1j −  are assigned, it 
holds that 

( ) , 1, 2, , .X
i jp X p Q i m+ > =                   (4) 

Denote { } 1
1, 2, , 1 m

ii
I X j X

=
= ∩ − =



. We have 

( ) ( )

( )

( )

1

3
2 1

3 3 .
2 1 2 1

m

j i j
i

X

j

p I mp p X mp

mQ
m p X

m
m mp I p

m m

=

+ = +

>

≥
+

≥ +
+ +

∑

 

Equivalently, it holds that 

( ) ( )
1

12 ,
m

j i
i

p I
p p X

m m =

> = ∑  

which implies that some Xis have at most one job of I, and no Xis have three or 
more jobs. Since maxX

i I iQ p∈≥ , (4) implies that each Xi contains at least one 
job of I. Without loss of generality, we assume that 1 2, , , uX X X  each have 
one, and 1 2, , ,u u mX X X+ +   each have two jobs of I. Since job j is not longer 
than any job of I, the jobs in 1 2, , , uX X X  must be longer than those in 

1 2, , ,u u mX X X+ +  . Otherwise, job j can be assigned to some Xi among 

1 2, , , uX X X . 
Now consider the situation applying LPT to the job set X. We can schedule 

the job subset I such that iM  processes the job of Xi for 1, 2, ,i u=  , and 

1 2, , ,u u mM M M+ +   each process two jobs of 1 2, , ,u u mX X X+ +  . Then, job j 
cannot be finished by time XQ  in LPT, a contradiction with X X

LPTQ C≥ . 

3. Numerical Simulation 
3.1. Compare the Performance between the CLPT Algorithm and 

the Optimal Solution 

To illustrate the effectiveness of the CLPT algorithm, we randomly generate a 
small number of problems to compare the performance between the CLPT algo-
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rithm and the optimal solution. We define the number of machines m, the total 
jobs of two agents n, the range of the maximum and minimum processing time 
of randomly generated jobs ∆  and the value of constraint Q, which is an upper 
bound for the makespan for agent B and we use α  to express, if  

( ),Q aLB bLB= , where 

( ) ( )max ,max B
j

p B
LB p

m
  =  
    

then ( ),a bα = . Define 
( )
( )

max

max

CLPTA

A

C
Pr

C π
= . The experimental parameters fol-

lowed by the average Pr  for 100 replications for the integer programming 
model and the CLPT algorithm. The results are as follows: 

In Table 1: the number of machines is set at three levels: 3, 4 and 5, the total 
jobs of two agents is set at three levels: 5m, 10m and 15m, the constraint of α is 
set at three levels (1, 1.2), (1.2, 1.5) and (1.5, 1.8) and the variation range of the 
maximum and minimum value of the randomly generated jobs processing time 
is set at three levels: (1, 5), (1, 10) and (1, 20). 

It can be seen from the experimental results that when m, n, Δ are fixed, the 
average value of Pr increases with the increase of α. When m, n, α are fixed, the 
average value of Pr decreases with the increase of Δ; when m, α, Δ are fixed, the 
average value of Pr decreases with the increase of n; when n, Δ, α are fixed, the 
average value of Pr increases with the increase of m. In a word, in each case, the 
average value of Pr is very close to 1, which suggests that the results obtained by 
the CLPT algorithm is very close to the optimal solution. The results demon-
strate that the CLPT algorithm is an effective algorithm. 

3.2. Compare the Performance between the CLPT Algorithm and 
the A-LS Algorithm 

The effectiveness and efficiency of heuristic algorithms in finding minimum 
makespan schedules was empirically evaluated by solving a large number of  

 
Table 1. Result for the average Pr . 

m α  (1, 5) (1, 10) (1, 20)  (1, 5) (1, 10) (1, 20)  (1, 5) (1, 10) (1, 20) 

3 (1, 1.2) 5m 1.024 1.02 1.015 10m 1.012 1.007 1.006 15m 1.008 1.004 1.002 

 (1.2, 1.5)  1.021 1.034 1.020  1.009 1.007 1.006  1.009 1.005 1.002 

 (1.5, 1.8)  1.061 1.049 1.039  1.033 1.034 1.076  1.025 1.055 1.051 

4 (1, 1.2)  1.025 1.020 1.018  1.010 1.006 1.005  1.009 1.004 1.003 

 (1.2, 1.5)  1.054 1.019 1.020  1.010 1.006 1.005  1.011 1.004 1.003 

 (1.5, 1.8)  1.076 1.075 1.070  1.185 1.072 1.069  1.095 1.040 1.050 

5 (1, 1.2)  1.024 1.020 1.022  1.014 1.010 1.005  1.008 1.006 1.003 

 (1.2, 1.5)  1.038 1.033 1.015  1.012 1.007 1.021  1.008 1.004 1.004 

 (1.5, 1.8)  1.154 1.118 1.075  1.131 1.170 1.070  1.085 1.043 1.048 
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problems. In this section, we mainly describe the experimental framework used 
and the computational results. 

3.2.1. A-LS Algorithm 
The LS (list-scheduling) rule is: whenever a machine becomes available, the al-
gorithm iteratively assigns a list of jobs to the least loaded machine. Let we 
briefly review the A−LS algorithm proposed by Zhao and Lu [1] 

 

 

3.2.2. Experimental Framework 
In order to compare the relative performance between the A-LS algorithm and 
the CLPT algorithm, we design three experimental frameworks. In each experi-
ment, we investigate four variables: the number of machines m, the total jobs of 
two agents n, the value of constraint Q and the range of the maximum and 
minimum processing time of randomly generated jobs Δ. In order to investigate 
the effect of the investigated factors on the performance of the two algorithms, 
we use the control variable method to design experiments. For each fixed factors, 
we use Python 3.2 to generate at least 1000 instances randomly to observe the 
effect of the investigated factors on the results. The analysis of variance was ap-
propriate in this case given equal samples and a large number of replications. 
Levene’s test was used to validate the assumption of homogeneous variance. 
Duncan’s post hoc test was used to rank the heuristics. 

We define several parameters to compare the relative performance of the two 

algorithms. Let 
( )
( )

max
1

max

CLPT
LS

A

A

C
C

ρ =  where 1 1ρ ≤  means that the CLPT algo-

rithm has a better performance than the A-LS algorithm, let 
( )
( )

max
2

max

CLPT
LS

B

B

C
C

ρ =  

where 2 1ρ ≤  means that the CLPT algorithm violates fewer constraints than 
the A-LS algorithm. In order to show the relative performance between the two 
algorithms more intuitively. For each case, we generate 1000 instances random-
ly, among which: 
• N1 represents the number of ( ) ( )max maxCLPT LSA AC C< ; 
• N2 represents the number of ( ) ( )max maxCLPT LSA AC C> ; 
• N3 represents the number of ( ) ( )max maxCLPT LSB BC C< ; 
• N4 represents the number of ( ) ( )max maxCLPT LSB BC C> ; 
• N5 represents the number of ( ) ( )max maxCLPT LSA AC C≤  and  

( ) ( )max maxCLPT LSB BC C≤ ; 
• N6 represent the number of ( ) ( )max maxCLPT LSA AC C≥  and  

( ) ( )max maxCLPT LSB BC C≥ ; 
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The above six parameters can compare the performance of the CLPT algo-
rithm and the A-LS algorithm intuitively. A higher value of N5-N6 indicates that 
the performance of the CLPT algorithm is better than that of the A-LS algo-
rithm, and a higher value of N6-N5 indicates that the performance of the A-LS 
algorithm is better than that of the CLPT algorithm. 

Table 2 presents a summary of all three experiments. In experiment E1, the 
number of machines m = 3, the total number of jobs is set at two levels???5m 
and 20m, the variation range of the maximum and minimum value of the ran-
domly generated jobs processing time is set at four levels: (1, 2), (1, 5), (1, 10) 
and (1, 20), and the constraint of α is set at three levels: (1, 1.2), (1.2, 1.5) and 
(1.5, 1.8). In experiment E2, the number of machines is set at three levels: 3, 5 
and 10, the total number of jobs is set at three levels: 5m, 10m and 20m, the Δ is 
set at two levels: (1, 5) and (1, 10), and the constraint of α is set at two levels: (1, 
1.2) and (1.5, 1.8). In experiment E3, the number of machines is set at three le-
vels: 3, 5 and 10, the number of jobs is fixed at n = 10m, the Δ is set at three le-
vels: (1, 5), (1, 10) and (1, 20), and the constraint of α is set at two levels: (1, 1.2) 
and (1.5, 1.8). Under each parameter in all experiments, we generated 1000 in-
stances randomly and calculated the number from N1 to N6 among these 1000 
instances. 

3.2.3. Computational Results 
Table 3 gives the results of experiment E1. Table 3 shows the case of n = 5m and 
n = 20m. In case of m = 3, n = 5m: First, observe the effect of Δ on the results of 
the two algorithms. Table 3 shows that when Δ = (1, 2), α = (1, 1.8), N5-N6 ∈ 
[48, 118]; when Δ = (1, 5), α = (1, 1.8), N5-N6 ∈ [417, 429]; when Δ = (1, 10), α 
= (1, 1.8), N5-N6 ∈ [516, 530]. We can find that when m, n, α are fixed, the per-
formance of the CLPT algorithm better than the A-LS algorithm increased as Δ 
increased. 

Then, observe the effect of α on the results of the two algorithms. Table 3 
shows that when Δ = (1, 2): α = (1, 1.2), N5-N6 = 118; α = (1.2, 1.5), N5-N6 = 48; 
α = (1.5, 1.8), N5-N6 = 91; when Δ = (1, 5): α = (1, 1.2), N5-N6 = 420; α = (1.2, 
1.5), N5-N6 = 429; α = (1.5, 1.8), N5-N6 = 417; when Δ = (1, 10): α = (1, 1.2), 
N5-N6 = 530; α = (1.2, 1.5), N5-N6 = 530; α = (1.5, 1.8), N5-N6 = 516; when Δ = 
(1, 20): α = (1, 1.2), N5-N6 = 584; α = (1.2, 1.5), N5-N6 = 560; α = (1.5, 1.8), 
N5-N6 = 474. We can find that when m, n, Δ are fixed, the performance of the 
CLPT algorithm better than the A-LS algorithm decreased as α increased on the 
whole. 

 
Table 2. Summary of the experimental frameworks. 

 m n Δ α 

E1 3 5m, 20m (1, 2), (1, 5), (1, 10), (1, 20) (1, 1.2), (1.2, 1.5), (1.5, 1.8) 

E2 3, 5, 10 5m, 10m, 20m (1, 5), (1, 50) (1, 1.2), (1.5, 1.8) 

E3 3, 5, 10 10m (1, 5), (1, 10), (1, 20) (1.1.2), (1.5, 1.8) 
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Table 3. Result for experiment El. 

n 5m 20m 

m Δ α N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6 

3 (1, 2) (1, 1.2) 138 152 291 142 706 588 142 309 227 393 298 636 

  (1.2, 1.5) 124 136 250 185 679 631 126 416 269 294 290 606 

  (1.5, 1.8) 115 128 270 151 721 630 114 446 248 278 276 643 

3 (1, 5) (1, 1.2) 386 139 458 222 639 219 413 292 377 456 252 245 

  (1.2, 1.5) 377 134 490 218 649 220 341 402 441 347 251 254 

  (1.5, 1.8) 278 196 558 174 632 215 297 454 497 327 219 231 

3 (1, 10) (1, 1.2) 498 129 523 237 636 106 526 347 477 433 220 59 

  (1.2, 1.5) 442 158 599 224 619 89 470 412 534 374 214 70 

  (1.5, 1.8) 358 210 666 187 606 90 358 527 623 298 175 75 

3 (1, 20) (1, 1.2) 535 133 574 237 634 50 548 332 516 423 245 27 

  (1.2, 1.5) 477 145 621 238 622 62 496 415 570 373 213 20 

  (1.5, 1.8) 400 233 671 233 542 68 398 507 669 288 206 19 

 
In case of m = 3, n = 20m: First observe the influence of Δ on the results of the 

two algorithms. When Δ = (1, 2), α = (1, 1.8), N6-N5 ∈ [316, 367], which indi-
cates that the A-LS algorithm outperformed the CLPT algorithm, and this ad-
vantage is very obvious. when Δ = (1, 5), α = (1, 1.8), N5-N6 ∈ [3, 12]; when Δ = 
(1, 10), α = (1, 1.8), N5-N6 ∈ [100, 161]; when Δ = (1, 20), α = (1, 1.8), N5-N6 ∈ 
[187, 218]. We can find that when m, n, α are fixed, the performance of the 
CLPT algorithm better than the A-LS algorithm increased as Δ increased, which 
is consistent with the results presented when m = 3, n = 5m. Then, we observe 
the effect of α. We can find that when m, n, Δ are fixed, the performance of the 
CLPT algorithm better than the A-LS algorithm decreased as α increased on the 
whole. which is also consistent with the results presented when m = 3, n = 5m. 

Table 4 shows the results of experiment E2. Table 4 mainly observes the effect 
of the number of machines m and the number of jobs n on the experimental re-
sults. Since α and Δ have a great effect on the two algorithms, in order to avoid 
subjectivity, we set α at two levels: (1, 1.2) and (1.5, 1.8) and set Δ at two levels: 
(1, 5) and (1, 50). 

In case of Δ = (1, 5), ( ) ( )1,1.2 1.5,1.8α = ∪ : when m = 3, n = 5m, N5-N6 ∈ 
[380, 401]; when m = 3, n = 10m, N5-N6 ∈ [146, 220]; when m = 3, n = 20m, 
N5-N6 ∈ [−18, 32]. This indicates that when m, α, Δ are fixed, the performance 
of the CLPT algorithm better than the A-LS algorithm decreased as n increased. 
In particular, when m = 3, n = 20m, α = (1.5, 1.8), the performance of the A-LS 
algorithm is better than the CLPT algorithm. When m = 5, n = 5m, N5-N6 ∈ 
[477, 500]; when m = 5, n = 10m, N5-N6 ∈ [227, 284]; when m = 5, n = 20m, 
N5-N6 ∈ [66, 94]. This indicates that when m, α, Δ are fixed, the performance of 
the CLPT algorithm better than the A-LS algorithm decreased as n increased,  
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Table 4. Result for experiment E2. 

Δ (1, 5) (1, 50) 

m n α N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6 

3 5m (1, 1.2) 431 134 416 233 634 233 574 142 594 277 587 29 

  (1.5, 1.8) 301 192 557 216 593 213 429 242 669 230 540 43 

 10m (1, 1.2) 411 229 443 346 425 205 611 227 545 381 396 16 

  (1.5, 1.8) 306 385 522 241 374 228 439 398 671 287 320 18 

 20m (1, 1.2) 420 320 400 420 261 229 608 315 492 467 219 6 

  (1.5, 1.8) 289 500 526 305 195 213 418 512 661 322 167 7 

5 5m (1, 1.2) 494 130 488 272 599 99 574 136 562 322 548 8 

  (1.5, 1.8) 291 270 719 162 568 91 411 298 726 214 492 8 

 10m (1, 1.2) 506 269 488 375 356 72 588 270 532 421 309 0 

  (1.5, 1.8) 325 413 623 265 322 95 414 443 677 292 266 2 

 20m (1, 1.2) 487 362 458 452 186 92 542 399 521 448 153 0 

  (1.5, 1.8) 322 552 626 304 144 78 369 567 683 298 135 0 

10 5m (1, 1.2) 540 139 538 325 536 16 638 112 508 391 497 0 

  (1.5, 1.8) 316 264 792 144 592 18 404 324 778 160 516 0 

 10m (1, 1.2) 528 287 519 408 305 16 581 271 523 431 298 0 

  (1.5, 1.8) 373 428 675 285 287 9 435 432 644 319 249 0 

 20m (1, 1.2) 530 373 491 470 157 15 553 377 502 465 158 0 

  (1.5, 1.8) 335 568 688 280 152 12 373 560 665 327 113 0 

 
which is consistent with the results presented when m = 3, n = 5m. When m = 
10, n = 10m, the above results still holds. And we can also find that when n, Δ, α 
are fixed, the performance of the CLPT algorithm better than the A-LS algo-
rithm increased as m increased on the whole. 

In case of Δ = (1, 50), ( ) ( )1,1.2 1.5,1.8α = ∪ : when m = 3, n = 5m, N5-N6 ∈ 
[497, 558]; when m = 3, n = 10m, N5-N6 ∈ [302, 380]; when m = 3, n = 20m, 
N5-N6 ∈ [160, 213]. This indicates that This indicates that when m, α, Δ are 
fixed, the performance of the CLPT algorithm better than the A-LS algorithm 
decreased as n increased, which is consistent with the results presented when Δ 
= (1, 5), ( ) ( )1,1.2 1.5,1.8α = ∪ . When m = 5 and m = 10, the above results still 
holds. By comparing Δ = (1, 5) and Δ = (1, 50), it can be found that when Δ in-
creases from (1, 5) to (1, 50), the value of N5-N6 also increases gradually, which 
is consistent with the results presented in Table 3. Moreover, when Δ = (1, 50), 
the number of machines m ≥ 5 and the number of jobs is greater than 20m, N6 
is always equal to 0, which clearly indicates that the performance of the CLPT 
algorithm outperformed the A-LS algorithm in this case. 

Table 5 shows the results of experiment E3. Table 5 mainly observes the effect  
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Table 5. Result for experiment E3. 

α (1, 1.2) (1.5, 1.8) 

m n Δ N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6 

3 10m (1, 5) 440 210 401 348 443 226 324 350 521 270 380 213 

  (1, 10) 537 224 505 361 416 63 378 382 636 253 366 79 

  (1, 20) 581 229 531 363 408 28 396 404 679 267 331 29 

5 10m (1, 5) 456 267 510 367 366 96 316 434 626 263 303 109 

  (1, 10) 561 245 511 403 352 15 387 424 679 268 308 20 

  (1, 20) 555 267 575 360 373 0 427 424 650 313 263 1 

10 10m (1, 5) 516 278 514 398 324 18 367 455 671 287 258 16 

  (1, 10) 535 291 543 409 300 0 422 429 642 319 252 1 

  (1, 20) 570 282 503 443 275 0 395 460 672 294 246 0 

 
of Δ on the experimental results. Because α has a significant effect on the expe-
rimental results, to avoid subjectivity, we set α = (1, 1.2) and α = (1.5, 1.8). 

In case of α = (1, 1.2), n = 10m. When m = 3: Δ = (1, 5), N5-N6 = 217; Δ = (1, 
10), N5-N6 = 253; Δ = (1, 20), N5-N6 = 380. When m = 5: Δ = (1, 5), N5-N6 = 
270; Δ = (1, 10), N5-N6 = 337; Δ = (1, 20), N5-N6 = 373. When m = 10: Δ = (1, 
5), N5-N6 = 306; Δ = (1, 10), N5-N6 = 300; Δ = (1, 20), N5-N6 = 275. We can 
find that when m, n, α are fixed, the range of N5-N6 increased as Δ increased on 
the whole and when n, Δ, α are fixed, the range of N5-N6 increased as m in-
creased on the whole, which are consistent with the results presented in Table 3 
and Table 4. 

In case of α = (1.5, 1.8), n = 10m. When m = 3: Δ = (1, 5), N5-N6 = 167; Δ = 
(1, 10), N5-N6 = 287; Δ = (1, 20), N5-N6 = 302. When m = 5: Δ = (1, 5), N5-N6 
= 194; Δ = (1, 10), N5-N6 = 288; Δ = (1, 20), N5-N6 = 262. When m = 10: Δ = (1, 
5), N5-N6 = 242; Δ = (1, 10), N5-N6 = 251; Δ = (1, 20), N5-N6 = 246. We can 
find that the number of machines and Δ have the same effect on the experimen-
tal results of the two algorithms as the case of α = (1, 1.2), n = 10m. By compar-
ing α = (1, 1.2) and α = (1.5, 1.8), we can study the effects of constraint α on the 
experimental results. It is found that the result of α = (1, 1.2) is better than that 
of α = (1.5, 1.8), which is also consistent with the results presented in Table 3 
and Table 4. 

3.2.4. Summary of Results 
As expected, in most case, N1 ≥ N2, N3 ≥ N4, N5 ≥ N6, Which shows that the 
CLPT algorithm outperformed the A-LS algorithm. The data results show that 
among the four parameters: the number of machines m, the total job of two 
agents n, the constraint α and the Δ, the α and the Δ have significant effects on 
the results of the experiment. We can find that when m, n, α are fixed, the range 
of N5-N6 increased as the range of Δ increased on the whole and when n, Δ, α 
are fixed, the range of N5-N6 decreased as α increased on the whole. 
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4. Conclusions and Suggestions  

This paper presents a new heuristic algorithm CLPT for the problem  

max max|| :A BP C C Q≤ . Firstly, in order to study the relative performance between 
the CLPT algorithm and the optimal solution, we design the integer program-
ming model to obtain the optimal solutions in small scale cases. The experimen-
tal results show that the result obtained by the CLPT algorithm is very close to 
the optimal solution. Then, we design three experimental frameworks to com-
pare the relative performance between the A-LS algorithm and the CLPT algo-
rithm. The experimental results show that the CLPT algorithm outperformed 
the A-LS algorithm. 

Several issues are worthy of future investigations. Firstly, it can be seen from 
the experimental results of the CLPT algorithm that the makespan of agent A  

obtained by the CLPT algorithm is no more than 3 1
2
m

m
−  times the optimal value, 

while the makespan for agent B is no more than 3 1
2
m

m
−  times the threshold 

value. This provides a research direction: to prove that the performance ratio 

of the CLPT algorithm for this problem is 3 1 3 1,
2 2
m m

m m
− − 

 
 

, which is a  

better performance ratio than the one currently exists. Secondly, we can extend 
the two-agent scheduling problem to the model of multi-agent scheduling prob-
lem. Finally, we can also consider changing the objective function of each agent, 
such as changing the maximum completion time to the sum of completion time, 
the sum of weighted completion time and a linear combination of two agents. 
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