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Abstract 
The Modified Adomian Decomposition Method (MADM) is presented. A 
number of problems are solved to show the efficiency of the method. Further, 
a new solution scheme for solving boundary value problems with Neumann 
conditions is proposed. The scheme is based on the modified Adomian de-
composition method and the inverse linear operator theorem. Several diffe-
rential equations with Neumann boundary conditions are solved to demon-
strate the high accuracy and efficiency of the proposed scheme. 
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1. Introduction 

The Adomian Decomposition Method (ADM) was developed by George Ado-
mian in the mid 1980’s. It is a semi-analytical method that has a wide range of 
applications. It is used to find solutions of differential equations [1] [2], integral 
equations [3] [4], algebraic equations [5], fractional differential equations [6], 
equations containing radical [7] and systems of equations [8]. The ADM consists 
of decomposing the unknown function ( )u x  of any given equation into an in-
finite number of components 0 1 2, , ,u u u   and it is expressed as, 

( ) ( )
0

.n
n

u x u x
∞

=

= ∑                         (1) 

The nonlinear terms are dealt with by an analytic parametrization in which 
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certain polynomials Ans depend on the nonlinearity and order of the compo-
nents are derived. The solution is then expressed as an infinite series of 

0 1 2, , ,u u u  . Further, the infinite series generally converges very rapidly in real 
physical problems. The convergence of the series has been investigated in [9]. 
This paper is organized as follows. In section 2, we review the ADM and the 
modified Adomian decomposition method. Section 3 deals with the application 
of MADM. In section 4 we modify MADM and have up with the new solution 
scheme. The new method is called New Modified Adomian Decomposition Me-
thod (NMADM). Some examples to illustrate the new method are also included. 
Finally in section 5, we present the conclusion. 

2. Theoretical Presentation of the Adomian Decomposition 
Method and the Modified Adomian Decomposition 
Method 

In this section we present the Adomian and modified Adomian decomposition 
methods for solving initial value differential equations. 

2.1. The Adomian Decomposition Method 

Consider an Initial Value Problem (IVP) for a nonlinear Ordinary Differential 
Equation (ODE) in the form, 

,Lu Ru Nu g+ + =                        (2) 

where L is the linear operator to be inverted, which usually is the highest order 
differential operator, N represents the nonlinear term, R is the linear remainder 
operator and g is the source term. Applying the inverse operator, 1L−  on both 
sides of Equation (2) gives, 

[ ]1 1 1 .L Lu L g L Ru Nu− − −= − +                    (3) 

Solving for u in Equation (3) we get, 

( ) [ ]1 10 ,u L g L Ru Nuϕ − −= + − +                   (4) 

where, 

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2 3

3

2 1

1

d0 if ,
d
d0 0 if ,
d

0 d0 0 0 if .
2! d

d0 0 0 0 if .
2! ! d

n n
n

n

u L
x

u xu L
x

xu xu u L
x

x xu xu u u L
n x

ϕ

+

+

 =

 ′+ =
=  ′ ′′+ + =



 ′ ′′+ + + + =






 
The ADM decomposes the solution in the form of Equation (1), and the non-

linear term Nu is decomposed into a series, 

0
.n

n
Nu A

∞

=

= ∑                           (5) 
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The Ans are obtained for the nonlinearity ( )Nu f u=  by the formular in [10] 
which is given as, 

0 0

1 d , 0,1,2, .
! d

n
k

n kn
k

A F u n
n ξ

ξ
ξ

∞

= =

  = =  
  
∑              (6) 

Upon substituting Equations (1) and (5) into Equation (4) we obtain the fol-
lowing equation: 

( ) 1 1

0 0 0
0 .n n n

n n n
u L g L R u Aϕ

∞ ∞ ∞
− −

= = =

 = + − +  
∑ ∑ ∑              (7) 

The solution components ( )nu x  are determined by the recursive scheme, 

( ) 1
0 0u L gϕ −= +  

[ ]1
1 , 0n n nu L Ru A n−
+ = − + ≥ . 

The n-term approximation of the solution is given by, 

( ) ( )
1

0
.

n

n k
k

x u xφ
−

=

= ∑                        (8) 

Since its introduction, the ADM has seen several modifications with the view 
to improve the accuracy, reduce computational efficiency or improve on the 
range of application of the original method [11] [12] [13] [14]. 

2.2. The Modified Adomian Decomposition Method 

In this subsection, we present the modified Adomian decomposition method. The 
method is a modification of the Adomian Decomposition given in [15] [16] [17] 

and requires that we introduce the terms 1 1
0 0

n n
n nn nL a x pL a x∞ ∞− −

= =
   −   ∑ ∑  in 

the ADM calculations. Here p is an artificial parameter and { }( )0n N∀ ∈ ∪ , ans 

are unknown coefficients to be determined. Thus we suggest that Equation (7) 
be rewritten as: 

( ) 1 1 1 1

0 0 0 0 0
0 .n n

n n n n n
n n n n n

u L a x pL a x L g L R u Aϕ
∞ ∞ ∞ ∞ ∞

− − − −

= = = = =

      = + − + − +           
∑ ∑ ∑ ∑ ∑  (9) 

From Equation (9), the recursive relationship for MADM is expressed as fol-
lows: 

( )

( )

( )

1
0 0

1 1 1
1 0 00

1
1

0 ,

,

,

, for 1.

n
nn

n
nn

n n n

u L a x

u L g pL a x L R u A

u L R u A n

ϕ ∞−
=

∞− − −
=

−
+

 = +  
   = − − +  

 = − + ≥ 

∑

∑


 
To avoid calculation of , 0,1, 2,nA n =  , we determine the coefficients na , 

for 0,1,2,n =  . By setting 1 0u =  we immediately verify that 0nu = , 1n∀ ≥ . 
Letting 1p =  we write the solution of Equation (2) as 

( ) ( ) 1

0
0 .n

n
n

u x L a xϕ
∞

−

=

 = +   
∑
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We can observe that the new algorithm reduces the number of iterations be-
cause it uses 0u  and 1u  only hence the size of calculations is minimized com-
pared to the standard ADM. It also reduces the number of Adomian polyno-
mials to be constructed because it involves 0A  only. Thus MADM introduces 
an efficient algorithm that improves the performance of ADM. 

3. Application of the Modified Adomian Decomposition  
Method 

In this section, problems are solved to illustrate the use of MADM. The solutions 
obtained are compared with the exact solutions. Numerical simulations confirm 
the validity of MADM. 

Example 3.1. Let us consider the Korteweg-deVries (KdV) equation taken 
from [18]: 

( ) ( ) ( ) ( )
( ) 2

, , , , 0, 0,

,0 6sech ,
t x xxxu x t u x t u x t u x t t x

u x x

ε+ + = > −∞ ≤ ≤ ∞

=
     (10) 

with 6ε = . The exact solution,  

( )
( ) ( )( )
( ) ( )( )2

12 4cosh 8 2 cosh 64 4 3
,

3cosh 28 cosh 36 3

t x t x
u x t

t x t x

− + + − + +
=

− + + − +
. We rewrite Equation (10) 

as follows: 

( ) ( )

2 1
0

0

1 1 1
1 0 0

0

6sech

6

n n
t

n

n n
t t t xxx

n

u x L a t

u pL a t L A L u

∞
−

=

∞
− − −

=

 = +  
  

  = − − −    


∑

∑


           (11) 

By setting 1p =  and 1 0u =  it can be shown that,  

( ) 2
0 48 6sech 1 sech tanhxa x x= + ; ( )2

1 072sech tanha x x a= ;  

( )2
2 136sech tanha x x a= ; ( )2

3 224sech tanha x x a= ; ( )2
4 318sech tanha x x a= ; 

2
5 0

72 sech tanh
5

a x x a =  
 

; and so on. Therefore, the approximate solution is 

given by, 

( ) ( )2 1

0
, 6sech .n

n
n

u x t x L a x
∞

−

=

 = +   
∑

 
To verify how much the approximate solution is accurate we plot the MADM 

solution and the exact solution. The graph is given in Figure 1 and it shows that 
MADM solution gives a good approximation. 

Example 3.2. Consider the nonlinear telegraph equation [19]: 

( ) ( )

2 2 22 e cosh 2e cosh ,
,0 cosh , ,0 cosh .

t t
tt xx t

t

u u u u x x
u x x u x x

− −− + − = −

= = −
           (12) 

The exact solution ( ) ( ), cosh e tu x t x −= . Using the MADM algorithm we 
have the following recursive of Equation (12), 
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( ) ( )

( ) ( )

1
0

0

1 1 2 2 1
1 0

0

1 1
0 0

cosh cosh

e cosh 2e cosh

2

n n
tt

n

n n t t
tt tt tt xx

n

tt t tt

u x t x L a t

u pL a t L x x L u

L u L A

∞
−

=

∞
− − − − −

=

− −

 = − +  
  

  = − + − +  
  

− +



∑

∑



    (13) 

For 1 0u =  and 1p =  we have, 2
0 cosh 3cosha x x= + ;  

2
1 0cosh 2cosh 2a x x a= − − + ; 2

2 1 0cosh cosha a x a x= + − ;  

3 0 1 2
1 2cosh cosh
3 3

a a x a x a= − + ; 4 3 2 1
1 1 1cosh cosh
2 6 3

a a a x a x= − + ;  

5 4 3 2
2 1 1cosh cosh
5 10 6

a a a x a x= − + ;   

Figure 2 shows the comparison between the solution by MADM and the exact  
 

 
Figure 1. Comparison of the exact and MADM solutions for example 3.1 at t = 0.01. 

 

 
Figure 2. Comparison of the exact and MADM solutions for example 3.2 at t = 0.01. 

https://doi.org/10.4236/jamp.2023.116108


J. Mulenga, P. A. Phiri 
 

 

DOI: 10.4236/jamp.2023.116108 1661 Journal of Applied Mathematics and Physics 
 

solution. It is clear that the MADM solution coincides with the exact solution. 
Example 3.3. Let us look at the following wave equation [20]: 

( ) ( )2 2

2 2

, ,
4 0, 0 1, 0 ,

w x t w x t
x t

t x
∂ ∂

− = ≤ ≤ <
∂ ∂

           (14) 

with the boundary conditions, 

( ) ( )0, 1, 0, 0w t w t t= = <  
and initial conditions 

( ) ( ),0
,0 sin , 0 1, 0, 0 1.

w x
w x x x x

t
∂

= π ≤ ≤ = ≤ ≤
∂  

The exact solution is ( ) ( ) ( ), sin cos 2w x t x t= π π . By using the MADM recur-
sive scheme we obtain the following relation for Equation (14): 

( )

( )

1
0

0

2
01 1

1 2
0

sin

,
4

n n
tt

n

n n
tt tt

n

w x L a t

w x t
w pL a t L

x

∞
−

=

∞
− −

=

 = π +  
  

 ∂  = − +     ∂   


∑

∑



             (15) 

By setting 1 0w =  and 1p =  we solve for the constants ans for 0,1,n =   
and find, ( )2

0 sina x= π π , 1 2 3 4 5 0a a a a a= = = = = = . 
Figure 3 depicts the graphical representation of solution obtained by MADM 

compared to the exact solution. It can be seen that MADM gives the same result 
as the exact solution. 

Example 3.4. Consider the nonlinear partial differential equation [21]: 

( )0, ,0 , 0 ,t xu uu u x x t+ = = <                 (16) 

whose exact solution is given by ( ),
1

xw x t
t

=
+

, 1t < . We apply the MADM  

 

 
Figure 3. Comparison of the exact and MADM solutions for example 3.3 at t = 0.01. 
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recursive scheme and obtain the following relation scheme for Equation (16), 

( )

1
0

0

1 1
1 0

0

n n
t

n

n n
t t

n

u x L a t

u pL a t L A

∞
−

=

∞
− −

=

 = +  
  
  = − −    



∑

∑


                 (17) 

By setting 1 0u =  and 1p = , it can be shown that, 0a x= − , 1 0a a= − , 

2 1
1
2

a a= − , 3 2
1
6

a a= − , 4 3
1
4

a a= − , 5 4
1
5

a a= −  and so on. 

Figure 4 shows a comparison between the exact and MADM approaches and 
clearly shows that the two methods give the same results. 

Example 3.5. Let us consider the following Laplace equation [20]: 

0,xx yyu u+ =                         (18) 

with boundary conditions 

( ) ( ),0 cos , ,0 0yu x x u x= =  
and exact solution is given by ( ), cos sinhu x y x y= . Applying the MADM re-
cursive scheme, we obtain the relation for Equation (18) as follows: 

( )

1
0

0

1 1
1 0

0

cos n n
yy

n

n n
yy yy xx

n

u y x L a y

u pL a y L u

∞
−

=

∞
− −

=

 = +  
  

  = − −    


∑

∑


                (19) 

For 1 0u =  and 1p =  we find the constants ans for 0,1,n =   as, 0 0a = , 

1 cosa x= , 2 3 4 5 0a a a a= = = = = . 
From Figure 5 we can see that the MADM solution corresponds with the  

 

 
Figure 4. Comparison of the exact and MADM solutions for example 3.4 at t = 0.01. 
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Figure 5. Comparison of the exact and MADM solutions for example 3.5 at y = 0.01. 

 
exact solution. 

Example 3.6. Let us consider the one dimensional unsteady heat conduction 
problem [20], 

4 ,xx tu u=                           (20) 

with initial and boundary conditions given as 

( ) ( ) ( )0, 0, 2, 0, ,0 2sin .
2
xu t u t u x= = =
π

 

Exact solution is given as ( )
2

16, 2sin e
2

txu x t
−ππ

= . By using the MADM recur-

sive scheme we obtain the following relation for Equation (20), 

( )

1
0

0

1 1
1 0

0

2sin
2

1
4

n n
t

n

n n
t t xx

n

xu L a t

u pL a t L u

∞
−

=

∞
− −

=

 = +  


π

 
  = − −    



∑

∑


               (21) 

Setting 1 0u =  and 1p = , we can show that 0 0a = , 2
1

1 sin
8 2

xa π
= − π , 

2 3 4 5 0a a a a= = = = = . 

Figure 6 shows the comparison between the solution by MADM and the exact 
solution. The MADM solution coincides with the exact solution. 

Example 3.7 Consider the Sawada-Kotera (SK) equation from [22] given as: 
245 15 15 0,t xx x xx xx xxxxxu u u u u uu u+ + + + =              (22) 

with initial condition given by 

( ) ( )( )2 2
0 0, 2 sechu x t k k x x= −

 
and the exact answer is given as ( ) ( )( )2 2 2

0, sech 16u x t k k x k t x= − − . Using the 
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MADM recursive scheme we obtain the following relation for Equation (22), 

( )( )

( ) ( ) ( ) ( )

2 2 1
0 0

0

1 1 1 1 1
1 0 0 0 0

0

2 sech

45 15 15

n n
t

n

n n
t t t t t xxxxx

n

u k k x x L a t

u pL a t L A L B L C L u

∞
−

=

∞
− − − − −

=

 = − +  
  

  = − − − − −    


∑

∑


 (23) 

By setting 1 0u =  and 1p =  we find the constants ans for 0,1,n =   and 
obtain the approximate solution. We compare the approximate solution with the 
exact solution. The graph in Figure 7 shows that MADM solution gives a good 
approximation of the exact solution. 

 

 
Figure 6. Comparison of the exact and MADM solutions for example 3.6 at t = 0.01. 

 

 
Figure 7. Comparison of the exact and MADM solutions for example 3.7 at  

00.001, 1, 0.0t k x= = = . 
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Example 3.8. We consider the Lax’s fifth order KdV equation found in refer-
ence [22], 

230 30 10 0,t x x xx xxx xxxxxu u u u u uu u+ + + + =              (24) 

with initial condition given by 

( ) ( )( )( )2 2
0,0 2 2 3tanh .u x k k x x= − −

 
The exact solution is ( ) ( )( )( )2 2 2

0, 2 2 3tanh 56u x t k k x k t x= − − − . By using 
the MADM recursive scheme we obtain the following relation for Equation (24), 

( )( )( )

( ) ( ) ( ) ( )

2 2 1
0 0

0

1 1 1 1 1
1 0 0 0 0

0

2 2 3tanh

30 30 10

n n
t

n

n n
t t t t t xxxxx

n

u k k x x L a t

u pL a t L A L B L C L u

∞
−

=

∞
− − − − −

=

 = − − +  
  

  = − − − − −    


∑

∑


 (25) 

By setting 1 0u =  and 1p =  we solve for the constants ans for 0,1,n =   
and find the approximate solution. Figure 8 depicts the graphical representation 
of solution obtained by MADM compared to the exact solution. It can be seen 
that MADM gives the same result as the exact solution. 

 

 

Figure 8. Comparison of the exact and MADM solutions for example 3.8 at  

00.0, 1, 0.0t k x= = = . 

 
Example 3.9. Consider the following one-dimensional nonhomogeneous 

wave equation in [23], 

sintt xxu u t x− =                        (26) 

with initial conditions given by 

( ) ( ),0 sin , ,0 sin3 .tu x x u x x= =  

and exact solution is ( ) ( )1, sin cos sin 3 sin 3 sin sin
3

u x t x t x t t t x= + + −  By using 

the MADM recursive scheme we obtain the following relation for Equation (26), 
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( ) ( )

1
0

0

1 1 1
1 0

0

sin sin 3

sin

n n
tt

n

n n
tt tt tt xx

n

u x t x L a t

u pL a t L t x L u

∞
−

=

∞
− − −

=

 = + +  
  

  = − + +    


∑

∑


           (27) 

By setting 1 0u =  and 1p =  we solve for the constants ans for 0,1,n =   
and find the approximate solution. From Figure 9 we can see that the MADM 
solution matches with the exact solution. 

4. The New Modified Adomian Decomposition Method 

In this section we modify MADM by incorporating the inverse linear operator 
theorem in [24] into the relation scheme of MADM. The new method is called 
New Modified Adomian Decomposition Method (NMADM). The NMADM 
gives a simplified way of solving complicated linear and nonlinear boundary 
value problems with Nuemann boundary conditions. 

4.1. Theoretical Presentation of the NMADM 

We first present the inverse operator theorem, without proof, that is used in the 
new method. The proof of the theorem is found in reference [24]. 

The Inverse Linear Operator Theorem [24] 
Theorem 1. If ( )u a α′ =  and ( )u b β′ =  are Neumann boundary condi-

tions of a second-order ordinary differential equation then, 

( ) ( ) ( ) ( ) ( ) ( )1
0

1 d d ,
2xxL u x u x x u a u b u x x x a x b

Ω− Ω′′ ′ ′= − −Ω − − ≤ ≤
Ω ∫  

where, 

[ ] [ ] [ ]( )1
0

1d d d d
x x x

xx a b
L x x x x x

′ ′Ω−

Ω
′ ′′ ′ ′ ′′⋅ = ⋅ + ⋅

Ω∫ ∫ ∫ ∫ , 

where Ω  is an arbitrary finite element. 
 

 
Figure 9. Comparison of the exact and MADM solutions for example 3.9 at t = 0.01. 
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To illustrate the NMADM let us consider the following equation, 

( ) ( ) ( ) ( ) ( )( ) ( ) [ ], for ,u x m x u x n x h u x g x x a b′′ ′+ + = ∈       (28) 

with Nuemann boundary conditions 

( ) ( )1 2, .u a u bβ β′ ′= =                     (29) 

We rewrite Equation (28) as 

( ) ( ) ( ) ( ) ( ) ( )( ) ,u x g x m x u x n x h u x′′ ′= − −             (30) 

where ( ) ( )m x u x′  is a linear term, ( ) ( )( )n x h u x  is a nonlinear term and 
( )g x  is a source term. We combine the inverse linear operator theorem and 

MADM recursive relation to come up with the new solution equation for Equa-
tion (28) and condition Equation (29) as, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
0

0

1 1 1 1

0 0 0

1 d
2

.

n
n xx n

n

n
xx n xx xx n xx n

n n n

u x x u a u b u x x L a x

pL a x L g x m x L u x L A

∞Ω −

=

∞ ∞ ∞
− − − −

= = =

Ω  ′ ′= −Ω + + +  Ω  
     ′− + − −          

∑∫

∑ ∑ ∑
  (31) 

From Equation (31), the recursive scheme for NMADM is given as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]

( ) ( ) [ ]

1
0

0

1 1 1 1
1 0 0 00

0

1 1
1

2
1 d

, 1.

n
xx n

n

n
xx n xx xx xx

n

n xx n xx n

u x u a u b L a x

u u x x pL a x L g x m x L u x L A

u m x L u x L A n

∞
−

=

∞Ω − − − −

=

− −
+

Ω  ′ ′= −Ω + +    
  ′= − + − −    Ω   

′ = − − ≥   

∑

∑∫
(32) 

It should be noted that in the evaluation of 0u  and 1u , 0Ω→  and conse-

quently ( ) 0
2

u bΩ ′ =  and after evaluation, ( )00

1 d 0u x x
Ω

=
Ω ∫ . We compute the 

coefficients na , 0n ≥ , by putting 1 0u =  and setting 1p = . This yields the 
solution of Equation (28) and the boundary condition Equation (29) in the form: 

( ) 1
1

0
.n

xx n
n

u x x L a xβ
∞

−

=

 = +   
∑                    (33) 

4.2. Application of New Modified Adomian Decomposition Method 

We now test the efficiency of the proposed method on different boundary value 
problems with Neumann conditions. Numerical simulations are done to com-
pare the solutions from NMADM and the exact solutions.  

Example 4.1 Let us consider the nonlinear Boundary Value Problem (BVP) 
which is taken from reference [24] 

( )2 0, 0 1,y y x′′ ′− = ≤ ≤                    (34) 

with conditions, 

( ) ( ) 10 1, 1 .
2

y y′ ′= − = −                     (35) 

Exact solution is given by ( ) ( )log 1y x x= − + . The NMADM solution 
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scheme for equations (34) and (35) is given by 

( )( )

( ) ( )

1
0

0

1 1
1 0 00

0

11
2 2

1 , d

n
xx n

n

n
xx n xx

n

y x L a x

y y x t x pL a x L A

∞
−

=

∞Ω − −

=

Ω −   = −Ω − + +       
  = − −  Ω   



∑

∑∫


          (36) 

We can easily show that 0 1 2 31, 2, 3, 4,a a a a= = − = = −   so that the solution 
of Equations (34)-(35) is given by: 

( ) 2 3 4 51 1 1 1 .
2 3 4 5

y x x x x x x= − + − + − +
 

The numerical results shown in Figure 10 implies the effectiveness of 
NMADM. 

Example 4.2. In this example we look at the nonlinear Burger equation which 
is in reference [24] 

( )1 sin 2 , 0 ,
2 2

y yy y x x π′′ ′+ + = ≤ ≤               (37) 

with conditions, 

( )0 1, 0.
2

y y π ′ ′= = 
 

                    (38) 

The exact solution is given by ( ) ( )siny x x= . The NMADM solution scheme 
for Equations (37) and (38) is given by 

( )( ) ( )

( ) ( ) ( ) ( )

1
0

0

1 1 1 1
1 0 0 00

0

1 0
2

sin 21 , d
2

n
xx n

n

n
xx n xx xx xx

n

y x L a x

x
y y x t x pL a x L L y L A

∞
−

=

∞Ω − − − −

=

Ω  = −Ω + +  
  

   = − + − −   Ω     


∑

∑∫


 (39) 

 

 
Figure 10. Comparison of the exact and NMADM solutions for example 4.1. 
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It can be shown that if 1 0u =  and 1p = , then  

0 1 2 3
10, 1, 0, ,
6

a a a a= = − = =   so that the solution of Equations ((37), (38)) is 

written as 

( ) 3 5 7 91 1 1 1 .
3! 5! 7! 9!

y x x x x x x= − + − + +
 

Figure 11 shows that the result by NMADM is accurate. 
Example 4.3. Consider the following linear partial BVP for the heat equation 

in [25], 
2

2 , 0 1, 0,y y x t
t x

∂ ∂
= ≤ ≤ ≥

∂ ∂
                  (40) 

with specified conditions, 

( ) ( ) ( )0, e , 1, e cosh 1 ,t t
x xy t y t= =                (41) 

and the exact solution is given by ( ) ( ), e sinhty x t x= . We apply NMADM and 
write the solution scheme for Equations (40) and (41) as, 

( ) ( )( )

( ) ( )

1
0

0

1 1
1 0 00

0

e e cosh 1
2

1 , d

t t n
xx n

n

n
xx n xx t

n

y x L a x

y y x t x pL a x L L y

∞
−

=

∞Ω − −

=

Ω  = −Ω + +  
  

  = − +  Ω   


∑

∑∫


         (42) 

It can be shown that 0 1 2 3 4 5
e e0, e , 0, , 0, ,
6 120

t t
ta a a a a a= = = = = =   so that 

the solution of Equations ((40), (41)) is given by 

( ) 3 5 7 91 1 1 1, e .
3! 5! 7! 9!

ty x t x x x x x = + + + + + 
 



 
From Figure 12, it is easily seen that the NMADM and the exact solutions are  

 

 

Figure 11. Comparison of the exact and NMADM solutions for example 4.2. 
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Figure 12. Comparison of the exact and NMADM solutions for example 4.3 at t = 0.5. 

 
the same. 

Example 4.4. Let us consider the nonlinear Burger equation in [24] 

0, 0 , 0,
2t x xxy yy y x tπ

+ − = ≤ ≤ ≥               (43) 

with conditions, 

( ) ( )
2 2

2
2 2

1 10, , 2, sech .
2 2x xy t y t

t t tt t
π π π = − = −  

 
          (44) 

The exact solution is given as ( ), tanh
2 2

x x xy x t
t t

π = −  
 

. Using NMADM, the 

solution scheme for Equation (43) and conditions Equation (44) is given by 

( )

( ) ( ) ( )

2 2
2 1

0 2 2
0

1 1 1
1 0 0 00

0

1 1 sech
22 2

1 , d

n
xx n

n

n
xx n xx t xx

n

y x L a x
t t tt t

y y x t x pL a x L L y L A

∞
−

=

∞Ω − − −

=

   π Ω π π   = −Ω − + − +              
 = − + +  Ω   


∑

∑∫


    (45) 

where 0A  is the Adomian polynomial of the nonlinear term xyy . 0A  is given 
by 0 0xy y . By setting 1 0u =  and 1p − , we solve for the coefficients na  for 

0,1,2,3,n =   and obtain 0 0a = , 
4

1 44
a

t
π

= , 2 0a = , 
4 6

3 5 66 12
a

t t
π π

= − , 4 0a = , 

4 2 8

5 6 7 8

17
20 20 960

a
t t t

π π π
= − + ,  . Thus the solution of Equations ((43), (44)) is, 

( )
3 5 7

7
1 2 17, ,

2 3 2 15 2 315 2
x x x x xy x t
t t t t t t

ξ
 π π π π π       = − − + − + +        
         



 
where 7ξ  is a constant. It is noted from Figure 13 that NMADM is effective. 

Example 4.5. We consider the following nonlinear oscillator equation which 
is found in reference [24] 

2 , 0 1, 0,my y y x tω λ′′ + = ≤ ≤ ≥                (46) 
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Figure 13. Comparison of the exact and NMADM solutions for example 4.4 at t = 0.5. 

 
with conditions, 

( ) ( ) 1 10 1, 1 1| 1 | ,
4 4

y y cn dn   ′ ′= =    
   

              (47) 

where m is a positive integer. The problem has the exact solution 1|
4

y sn x =  
 

 

where 3m =  (Duffing oscillator), 1
2

λ =  and 2 5
4

ω =  and , ,sn cn dn  are Ja-

cobi elliptic functions. Using NMADM solution scheme the recursive relation 
for Equation (46) and conditions Equation (47) can be easily given as, 

( )( )

( ) ( ) ( )

1
0

0

1 1 1
1 0 0 00

0

1 11 1| 1 |
2 4 4

1 5 1, d
4 2

n
xx n

n

n
xx n xx xx

n

y x cn dn L a x

y y x t x pL a x L y L A

∞
−

=

∞Ω − − −

=

Ω       = −Ω + +              
 = − − +  Ω   


∑

∑∫


    (48) 

where 0A  is the Adomian polynomial of the nonlinear term 3y  and it is given 

by 3
0y . It can also be shown that  

0 1 2 3 4 5
5 73 5530, , 0, , 0, ,
4 96 1536

a a a a a a= = − = = = = −   so that the solution of 

Equations ((46), (47)) is given by, 

( ) 3 5 75 73 79 .
24 1920 9216

y x x x x x= − + − +
 

In Figure 14 the comparison between NMADM and the exact solution is 
shown. It is clear that NMADM gives an accurate solution. 

Example 4.6. Consider the following linear ordinary boundary problem [24], 

( ) ( ) 0, 0 1u x u x x x′′ + + = ≤ ≤                  (49) 

with boundary conditions, 

( ) ( ) ( ) ( )0 1 csc 1 , 1 1 cot 1u u′ ′= − + = − +              (50) 
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Figure 14. Comparison of the exact and NMADM solutions for example 4.5. 

 
The NMADM solution scheme for Equation (49) and conditions Equation 

(50) is given by 

( ) ( )( ) ( )( )

( ) ( ) ( )

1
0

0

1 1 1
1 0 00

0

1 csc 1 1 cot 1
2

1 , d

n
xx n

n

n
xx n xx xx

n

u x L a x

u u x t x pL a x L x L u

∞
−

=

∞Ω − − −

=

Ω  = −Ω − + + − + +  
 

  = − − −  Ω   


∑

∑∫


      (51) 

For 1 0u =  and 1p = , it can be shown that: 0 0a = , ( )1 csc 1a = − , 2 0a = , 

( )3
1 csc 1
6

a = , 4 0a = , ( )5
1 csc 1

120
a = − ,   so that the solution of Equations 

((49), (50)) is calculated as: 

( ) ( ) ( ) ( ) ( ) ( )
3 7

csc 1 csc 1 csc 1 csc 1 sin
120 5040
x xu x x x x x= − + − + + = − + , 

as obtained in reference [24]. 
Example 4.7. Consider the following linear second-order two-point BVP [25], 

( ) ( ) ( )2 33 sin 4 cos , 0 1y xy x x x x x x x′′ + = − − + + ≤ ≤        (52) 

with boundary conditions 

( ) ( ) ( )0 1, 1 2sin 1 .y y′ ′= − =                   (53) 

Exact solution is ( ) ( )2 1 siny x x x= − . The NMADM solution scheme for 
Equation (52) and conditions Equation (53) is given by 

( )( ) ( )( )

( ) ( )( )
( )

1
0

0

1 1 2 3
1 00

0
1

0

1 2sin 1
2

1 , d 3 sin 4 cos

n
xx n

n

n
xx n xx

n

xx

y x L a x

y y x t x pL a x L x x x x x x

L xy

∞
−

=

∞Ω − −

=
−

Ω  = −Ω − + +  
  

 = − + − − + +  Ω   
−



∑

∑∫



(54) 
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For 1 0y =  and 1p = , it can be shown that, 0 0a = , 1 7a = , 2 0a = , 

3
2
7

a = − , 4 0a = , 5
43

120
a = ,  . Thus the solution to equations (52) and (53) 

is given by 

( ) 3 5 77 21 43
3! 5! 7!

y x x x x x= − + − + + . 

The numerical results shown in Figure 15 implies the effectiveness of the new 
method discussed in this section. 

Example 4.8. Consider the following nonlinear second order two-point BVP 
[25]: 

2e 0, 0 1yy x−′′ + = ≤ ≤                     (55) 

with boundary conditions 

( ) ( ) 10 1, 1 .
2

y y′ ′= =                      (56) 

The exact solution is ( ) ( )ln 1y x x= + . The NMADM solution scheme for 
Equation (55) and conditions Equation (56) is given by 

( )( )

( ) ( )

1
0

0

1 1
1 0 00

0

11
2 2

1 , d

n
xx n

n

n
xx n xx

n

y x L a x

y y x t x pL a x L A

∞
−

=

∞Ω − −

=

Ω   = −Ω + +       
  = − −  Ω   



∑

∑∫


          (57) 

where 02
0 e yA −=  is the Adomian polynomial of the nonlinear term 2e y− . For 

1 0y =  and 1p = , it can be shown that  

0 1 2 3 4 51, 2, 3, 4, 5, 6,a a a a a a= − = = − = = − =   
Therefore the solution of Equations (55) and (56) is given as 

( ) 2 3 4 5 6 71 1 1 1 1 1
2 3 4 5 6 7

y x x x x x x x x= − + − + − + + . 

 

 

Figure 15. Comparison of the exact and NMADM solutions for example 4.7. 
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Figure 16. Comparison of the exact and NMADM solutions for example 4.8. 

 
In Figure 16, the NMADM solution is plotted against the exact solution. It is 

seen that NMADM is effective. 

5. Conclusion 

The modifications of Adomian decomposition method for solving different 
types of differential equations is presented and provided with the solution 
schemes. The proposed schemes need one Adomian polynomial (A0), for nonli-
near terms hence the steps are really short. The comparisons between the new 
schemes and the exact solutions show that the solutions are the same. The me-
thods give alternative ways of solutions of differential equations. 
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