
Journal of Applied Mathematics and Physics, 2023, 11, 1634-1655 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2023.116107  Jun. 29, 2023 1634 Journal of Applied Mathematics and Physics 
 

 
 
 

A Study on Stochastic Differential Equation 
Using Fractional Power of Operator in the 
Semigroup Theory 

Emmanuel Hagenimana1*, Charline Uwilingiyimana2, Umuraza Clarisse3 

1Department of Civil Engineering, Institut d’Enseignement Supérieur de Ruhengeri, Musanze, Rwanda 
2Department of Statistics Applied to Economy, Institut d’Enseignement Supérieur de Ruhengeri, Musanze, Rwanda 
3School of Economics, Shandong University Central Campus, Jinan, China 

 
 
 

Abstract 
Stochastic differential equation (SDE) is an ordinary differential equation 
with a stochastic process that can model the unpredictable real-life behavior 
of any continuous systems. It is the combination of differential equations, 
probability theory, and stochastic processes. Stochastic differential equations 
arise in modeling a variety of random dynamic phenomena in physical, bio-
logical and social process. The SDE theory is traditionally used in physical 
science and financial mathematics. Recently, more researchers have been 
conducted in the application of SDE theory to various areas of engineering. 
This dissertation is mainly concerned with the existence of mild solutions for 
impulsive neutral stochastic differential equations with nonlocal conditions in 
Hilbert spaces. The results are obtained by using fractional powers of opera-
tor in the semigroup theory and Sadovskii fixed point theorem. 
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1. Introduction 

A stochastic differential equation is an equation in which one or more terms is 
stochastic process. The solution of stochastic differential equation is also a stochas-
tic process. In mathematics, an equation of de form ( ) ( )d , d , dt t t tx b t x t a t x β= +  
is called a stochastic differential equation, where tx  denotes a stochastic 
process and ( ), tb t x  and ( ), ta t x  are function of t and ,t tx β  denotes the 
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winner process or standard brownian motion. The Wiener process is nondiffe-
rentiable and requires its own rules of calculus. Thus the interpretation of the 
SDE expression requires additional background of mathematics, which is to be 
introduced in the following sections. The SDE theory is traditionally used in 
physical science and financial mathematics. Recently, more researchers have been 
conducted in the application of SDE theory to various areas of engineering. A 
stochastic differential equations has been successfully needed to model and ex-
amine K-distributed electromagnetic scattering, a first order stochastic autore-
gressive model for a flat stationary wireless channel based on stochastic differen-
tial equation theory and Stochastic channel models based on SDEs for cellular 
networks. The theory of stochastic differential equations set down by [1] and 
independently established by [2] with [3], together with the previous mathemat-
ical works of Wiener and Levy on Brownian motion has provided the basic tools 
making the more fertile approach of constructing sample paths feasible. Appli-
cations of stochastic differential equations are found in such areas as economics, 
biology, finance, ecology and other sciences by [4] and [5]. Some of the typical 
applications of nonlinear stochastic differential equations are vibrations of tall 
buildings and bridges under the action of wind or earth quack loads, vehicles 
moving on rough roads, ships and offshore oil platforms subjected to wind and 
ocean waves, aerospace vehicles due to atmospheric turbulence, price processes 
in financial markets as well as electronic circuits subjected to thermal noise. 
Brownian motion have been named after the botanist Robert Brown and re-
ferred to either the random movement of particles expelled in a fluid or the ma-
thematical model used to describe such random movements, often called a 
Wiener process. Brownian motion is among the simplest continuous-time sto-
chastic processes, and it limits both simpler and more complicated stochastic 
processes. This universality is nearly connected to the universality to the normal 
distribution. In both cases, it is often mathematical convenience rather than 
model accuracy that motivates their use. In mathematics, the Wiener process is a 
continuous-time stochastic process named in honour of Norbert Wiener, an 
American theoretical and applied mathematician. He occurred as initiator in the 
study of stochastic and noise processes, promoting work relevant to electronic 
engineering, electronic communication, and control systems. The Wiener process 
performs an significant role both in pure and applied mathematics. The concept 
of dynamic process operating under multi-time scales in sciences and engineer-
ing, a mathematical model described by a system of multi-time scale stochastic 
differential equations is formulated by [6]. The non-instantaneous impulsive 
stochastic differential equations generated by mixed fractional Brownian motion 
with poisson jump in real separable Hilbert space is also discussed by [7] [8] and 
[9]. Specifically, it plays a vital role in stochastic calculus, diffusion processes, 
and even potential theory. In applied mathematics, the Wiener process is used to 
represent the integral of a white noise process, and so is useful as a model of 
noise in electronics engineering, instrument errors in filtering theory, and ma-
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thematical factor which is not known forces in control theory. For more details 
reader may refer to [10] established. 

2. Frame of Stochastic Differential Equations 

Consider the vector ordinary differential equations defined by 

( )d ,
d
x a x t
t
=                           (1) 

Now, we suppose that the system has random components and η  is added 
on it such as 

( ) ( ) ( )d , ,
d
x a x t b x t t
t

η= +                     (2) 

The given solution to this random differential equation is problematic due to 
the presence to the randomness prevents of the system from having bounded 
measures. The outcome is that the derivative does not exist. One way to under-
stand the equations such as (2), is to look at them in differential form, 

( ) ( ) ( )d , d , dx a x t t b x t tη= +                    (3) 

or 

( ) ( ) ( )d , d , dx a x t t b x t W t= +                    (4) 

The solution to (2) or equivalently (3) or (4) can be regarded as the result of 
performing the integration, 

( ) ( ) ( ) ( ) ( )
0 0

0 , d , d
t t

x t x a x s s b x s sη= + +∫ ∫              (5) 

( ) ( ) ( ) ( ) ( )
0 0

0 , d , d
t t

x t x a x s s b x s W s= + +∫ ∫              (6) 

This is known as the solution to the stochastic differential Equation (4). 

3. Impulsive Differential Systems 

In nature, various evolution process under goes abrupt changes of their state at 
certain moments of time between intervals of continuous evolution. In mathe-
matical modeling of such process, it is reasonable to ignore the duration of these 
abrupt changes compared to the total duration of the process and to assume that 
the process changes its state instantaneously, that is in the form of impulses. 
These processes can be modeled more suitably by impulsive differential equa-
tions and the existence of Stepanov-like pseudo almost periodic in distribution 
mild solutions for impulsive partial stochastic functional differential equations 
under non-Lipschitz conditions discussed by [11] [12] and [13]. The theory of 
impulsive differential equations has wide applications in many real world phe-
nomena in which impulses occur. For example, mechanical systems with impact, 
biological systems involving thresholds, bursting rhythm models in medicine 
and biology, optimal control models in economics, frequency modulated sys-
tems, blood flows, population dynamics, chemical technology, pharmacokinetics 
and ecology exhibit impulsive effects. Iimpulsive differential equation is detailed 
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by three components: A continuous-time differential equation, which rules the 
state to the system between impulses; impulse equation, which designs an im-
pulsive jump specified by a jump function at the instant impulsetake pace; and a 
jump criterion, which defines a set of jump events in which the impulse equation 
is active. The mathematical model of an impulsive differential equation takes the 
form, 

( ) ( )( ), , ,kx t f t x t t t t J′ = ≠ ∈
 

( ) ( )( ) , 1,2,3, ,k k kx t I x t k m∆ = = 

 
where J is any real interval such that : n nf J R R× →  is a given function and 

: , 1, 2,3, ,n n
kI R R k m→ =  , and ( ) ( ) ( ) , 1, 2,3, ,k k kx t x t x t k m+ −∆ = − =  . The 

numbers kt  are called instant or moments and kI  represent the jump of the 
state at each kt , ( )kx t+  and ( )kx t−  represent the right and left hand limits re-
spectively of the state at kt t= . The solution of (1.1) is a piecewise continuous 
function that has discontinuous of the first kind at kt t= . satisfying jump func-
tion ( ) ( )( )k k kx t I x t∆ = . The moments of impulse may be fixed or depend on 
the state of the system. In our study, only fixed moments will be considered. The 
theory of impulsive differential equations is greater than to the corresponded 
theory of differential equations without impulse effects. Due to the difficulties 
caused by the specific properties of the impulsive equations such as beating, bi-
furcation, merging, and loss of property of autonomy of the solutions, the theory 
of impulsive differential equations is appearing as an important domain of in-
vestigation. Moreover, such equations represent a natural framework for ma-
thematical modeling of several real world phenomena. The more details about 
this theory and its applications we allude to the monographs of [14] [15] [16] 
[17] and [18]. In many process including physical, chemical, political, economic, 
biological and control systems, time delays are an important factor. The rate of 
change of the state ( )x t′ , may depend on historical values of the state at times 
t s+ , where 0s ≤ , as well as present state values. These processes tend to be 
modeled by differential equations with delay. In practical, many process exhibit 
both impulse and time delay. So, we focus on impulsive differential systems in 
our study. The nonlocal controllability of Hilfer fractional stochastic differential 
equations via almost sectorial operators also discussed in [19]. 

Methods 
Semigroup Theory: The theory of semigroups of bounded linear operators 

may be a part of functional analysis. This theory developed quite rapidly since 
the invention of the generation theorem by Hille and Yosida in 1948. By now, 
it’s an in depth mathematical subject with substantial applications to several 
fields of study. [20] discussed the existence and uniqueness of mild, classical and 
powerful solutions of evolution equations using semigroup theory and glued 
point theorems. 

Fixed Point Technique: The fixed point technique is one among the useful 
methods mainly applied within the existence and uniqueness of solutions of dif-
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ferential equations and therefore the controllability of differential equations. The 
Banach fixed point theorem is a crucial source of proving existence and unique-
ness in several branches of study. In 1967, Sadovskii gave a hard and fast point 
result more general than Darbos theorem using the concept of condensing map. 
Thus, the fixed point theory for condensing mappings allows us to get a rela-
tionship between the 2 theories. In this paper, we use Sadovskii fixed point 
theorem in [21] to prove the existence results for impulsive neutral integrodiffe-
rential systems. The fixed point technique, and measures of noncompactness 
have been disscussed in this research work as it is mentionned in [22]. Among 
the foremost fundamental qualitative properties of differential systems, my pa-
per is especially concerned into existence of solutions for neutral impulsive sto-
chastic differential systems where some researchers have been introduced this 
theory such as [23]. The paper is organized as follows. 

In section 2 of this paper, we will recall some basic definitions and necessary 
preliminaries. 

In section 3, we discuss the existence results for neutral functional differential 
equations by using fractional power of operators and Sadovskii fixed point theo-
rem. 

In section 4, we establish the existence results for stochastic impulsive neutral 
functional differential systems using Sadovskii fixed point theorem. 

Preliminaries 1 
In this case, some basic definitions, lemmas and theorems which are used to 

prove our main theorems. 
Definition 2.1 
A complete normed linear space is known as Banach Space. 
Definition 2.2 
Let ( ),x d  be a metric space and :T X X→  be a mapping which maps X 

onto X. The mapping T is called a contraction mapping of X or simply T is a 
contraction if and only if there is a constant 0 1α≤ <  satisfying the Lipschitz 
condition. 

( ) ( ), , , ,d Tx Ty d x y x y Xα≤ ∀ ∈  
Definition 2.3 
Let Y be the non-empty subset of a metric space X. The subspace Y is said to 

relaticely compact if and only if Y  is known as compact. 
Definition 2.4 
Let X and Y be two metric spaces and f be a family of functions from X to Y 

defined by :F X Y→ , the family F is equicontinuous at a point 0x X∈ , if for 
every 0s > . There exist a 0δ >  such that ( ) ( )( )0 , ,d f x f x s f F< ∀ ∈  and 

x X∀ ∈  such that ( )0 ,d x x δ< . The family is equicontinuous if it is equicon-
tinuous at each point of X. 

Definition 2.5 
A mapping :A D X→  is said to be completely continuous if it is both con-

tinuous and compact. 
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Definition 2.6 
Let ( ) ( )expt AtΓ =  be strongly continuous. One parameter Semigroup on a 

Banach space ( ).,X  with infinitesimal generator A. Γ  is said to be an Ana-
lytic Semi-group if 

(i) for some 0
2

θ< <
π , the continuous linear operator defined by  

( )exp :At X X→  can be extended to t θ= ∆  where ( ): argt C tθ θ θ∆ = ∪ ∈ <  

and the usual semigroup conditions hold for :,s t θ= ∆  ( )exp 0A id= ; 

( )( ) ( ) ( )exp exp expA t s At As+ = ⋅ , and for each x X∈ , ( )exp At x  is conti-

nuous in t. 
(ii) For all 0t θ= ∆ , ( )exp At  is analytique in t in the sense of uniform op-

erator topology. 
Definition 2.7 
Let X be any space and f be a map of X or of a subset of X onto X. A point 

x X∈  is called fixed point for f if ( )x f x= . 
Definition 2.8 
Let X be a Banach space. A one parameter family ( ) ,0T t t≤ < ∞  of bounded 

linear operator from X onto X is a Semigroup of bounded linear operator on X, 
if 

(i) ( )0T I= , where I is the identity operator on X. 
(ii) ( ) ( ) ( )T t s T t T s+ =  for every , 0t s ≥  is the semigroup property. 
A semigroup of bounded linear operators ( )T t  is uniformly continuous if 

( )lim 0.
t

T t I
θ→

− =
 

The linear operator A defined by 

( ) ( )
0

: lim exists
t

T t x x
D A x X

t→

 − = ∈ 
    

and 

( ) ( )
0

0

d
lim

dt
t

T t x x T t x x
Ax

t t

+

→
=

− −
= =

 
for ( )x D A∈  is the infinitesimal generator of the semigroup ( )T t  where 
( )D A  is the domain of A. 
Definition 2.9 
Let X be a locally convex space and M be a subset of X. A mapping 
:T M X→  is called condensing if for each bounded but not relatively compact 

subset A of M we have 
Theorem 1 (Arzela-Scoli Theorem) Let X be a compact metric space, then a 

non-empty subset of ( )kC X  is relatively compact, if and only if it is bounded 
and equicontinuous on X. 

Theorem 2 (Contraction Mapping Principle) If X is a Banach space and 
:T X X→  is a contraction mapping, then T has a unique fixed point. 
Theorem 3 (Sadovskii Fixed Point Theorem) Let P be a condensing opera-
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tor on a Banach space, that is, P is a continuous and takes bounded sets into 
bounded sets and let ( )( ) ( )P B Bα α≤  for every bounded set B of X with 
( ) 0Bα >  of ( )P H H⊆  for a convex, closed and bounded set H of X, then P 

has a fixed point in H where denotes Kuratowski’s measure of nonCompactness. 
Existence results for neutral functional differential equations 
Neutral differential equations arise in many areas of applied mathematics and 

such equations have received much attention in recent years [24] and [25]. In 
this section, we establish the existence of solutions for semilinear neutral func-
tional differential evolution equations with nonlocal conditions of the form as in 
[26] where it has been specifically discussed by [27]. 

( ) ( ) ( )( ) ( )( )( ) ( )

( ) ( )( ) ( )( )( )
1

1

d , , , ,
d

, , , ,

m

n

x t F t x t x b t x b t Ax t
t
G t x t x a t x a t

 + + 

=





         (7) 

( ) ( ) 00x g x x+ =                         (8) 

Where the linear operators -A generates an analytic semigroup and F, G and g 
are given functions to be specified later. 

Preliminaries 2 
Throught this section, X will be a Banach space with norm .  and  

( ):A D A X− →  will be the infinitesimal generator of a compact of uniformly 
bounded linear operators ( )T t . Let ( )0 Aρ∈ . Then it is possible to define the 
fractional power Aα , for 0 1α< ≤ , as closed linear operator on its domain 
( )D Aα . Furthermore, the subspace ( )D Aα  is dense in X and the expression. 

( ),x A x x D Aα α
α
= ∈

 
define a norm on ( )D Aα . Here after we denote by Xα  the Banach space 
( )D Aα  normed with x

α
. then for each 0 1α< ≤ , Xα  is a Banach Space, 

and X Xα β→  for 0 1β α< < ≤  and the imbedding is compact whenever the 
resolvent operator of A is compact and this can be seen in [28]. 

For a semigroup ( ){ }0tT t
≥

 the following properties will be used: 
(a) there is 1M ≥  such that ( )T t M≤ , for all 0 t a≤ ≤  
(b) for any 0a ≥ , there exists a positive constant Cα  such that 

( ) ,0
C

A T t t a
T

α α
α≤ < ≤                      (9) 

The following assumptions need to be taken into consideration: 
(H1) [ ] 1: 0, mF a X X+× →  is a continuous function and there exists a 
( )0,1β ∈  and 1, 0L L >  such that the function A Fβ  satisfies the Lipschitz 

conditions. 

( ) ( ) ( )1 0 1 1 0 1 1 2 0, ,
, , , , , , , maxm m i ii m

A F s x x x A F s x x x L s s x xβ β

=
− ≤ − + −





 

For any 1 20 ,s s a≤ ≤ , , , 0,1, ,i ix x X I m∈ =   and the inequality 

( ) { }( )0 1 1, , , , max ; 0,1, , 1iA F t x x m L x i mβ ≤ = + 
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holds for any ( ) [ ] 1
0 1, , , , 0, m

mt x x x a X +∈ ×
. 

(H2) The function [ ] 1: 0, mG a X X+× →  satisfies the following conditions. 
(i) For each [ ]0,t a∈ , the function ( ) 1,. : nG t X X+ →  is continuous and for 

each 1
0 1, , , n

nx x x X +∈ , the function ( ) [ ]0 1., , , , : 0,nG x x x a X→  is strong-
ly measurable. 

(ii) For each positive number k N∈ , there is a positive function [ ]( )0,kg L a′∈  
such that 

( ) ( )
0

0 1sup , , , ,
n

n k
x x k

G t x x x g t
≤

≤




 
and 

( )
0

1lim inf d
a

kk
g s s

k
γ

→∞
= < ∞∫

 
(H3) [ ] [ ]( ), 0, ; 0, , 1, 2, , ; 1, 2, ,i ja b C a b i n j m∈ = =  . 

( );g C E X∈ , here and hereafter [ ]( )0, ;E C a X=  and g satisfies that 
(i) There exist a positive constant 2L′  and 2L  such that 

( ) 2 2 ,g x L x L x E′≤ + ∀ ∈
 

(ii) g is a completely continuous map. 
Definition: A continuous function ( ) [ ]. : 0,x a X→  is said to be mild solu-

tion of the non-local Cauchy problem (0.7)-(0.8), if the function 

( ) ( ) ( )( ) ( )( )( ) [ )1, , , , , 0,mAT t s F s x s x b s x b s s a− ∈

 
is integrable on [ )0,a  and the following integral equation is verified. 

( ) ( ) ( ) ( )( ) ( )( )( ) ( ))
( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( )( )( )

0 1

1

10

10

= 0, 0 , 0 , , 0

, , , ,

, , , , d

, , , , d .

m

m

t
m

t
n

x t T t x F x x b x b g x

F t x t x b t x b t

T t s F s x s x b x b s s

T t s G s x s x a s x a s s

 + −

−

+ −

+ −

∫

∫









 
Existence Results 
Theorem 4 If assumptions (H1)-(H3) are satisfied and 0x X∈ , then the 

non-local Cauchy problem (0.7)-(0.8) has a mild solution provided that 

( )0 0 1
11 1L L M M C aβ

ββ −
 

= + + ≤ 
 

               (10) 

and 

( )0 1 2 0 1 1 1
1 1M L L M M L C a Lβ

βγ
β −+ + + + ≤             (11) 

where 0M A β−=  
Proof: 
For the sake of brevity, we rewrite that 

( ) ( )( ) ( )( )( ) ( )( )1, , , , ,mt x t x b t x b t t v t=

 
and 
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( ) ( )( ) ( )( )( ) ( )( )1, , , , ,nt x t x a t x a t t u t=

 
Define the operator P on E, by the formula 

( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( )0 0
0, 0 , , d

t
Px t T t x F v g x F t v t AT t s F s v s s = + − − + −  ∫  
For each positive integer k, let 

( ){ }: ,0kB x E x t k t a= ∈ ≤ ≤ ≤
 

Then for each k, kB  is clearly a bounded closed convex set in E. Since by 0.7 
and (H1), the following relation holds: 

( ) ( )( ) ( ) ( )( )
( )

( )11
11, , 1

C
AT t s F s v s A T t s A F s v s L k

t s
ββ β

β
−−

−− ≤ − ≤ −
−  

Then from Bocher’s, theorem, it follows that ( ) ( )( ),AT t s F s v s−  is integr-
able on [ ]0,a , so P is well defined on kB . We claim that there exists a positive 
integer k such that k kPB B⊆ , but k kPx B∉ , that is ( )( )kPx t k>  for some 

[ ]0,kt a∈  where ( )t k  denotes t is independent of k. However, on the other 
hand we have 

( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )

0

0 0

0

0 0

0

0, 0 ,

, d , d

0, 0 ,

, d , d

0, 0 ,

k k k k

t t
k k

k k k

t t
k k

k k k

k Px t T t x g x F v F t v t

AT t s F s v s s T t s G s u s s

T t x g x F v A A F t v t

AT t s F s v s s T t s G s u s s

T t x g x F v F t v t

β β−

 < = − + − 

+ − + −

 ≤ − + 

+ − + −

 ≤ − + 

∫ ∫

∫ ∫

 
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ){ } ( )( )
( ) ( )( ) ( ) ( )( )

( ){ } ( )

( )
( ) ( )

1
0 0

0

1
0 0

0 2 2 0 1 0 1

1
110 0

, d , d

0, 0 ,

, d , d

1 1

1 d d

t t
k k

k k k

t t
k k

t t
k

A T t s A F s v s s T t s G s u s s

T t x g x F v A A F t v t

A T t s A F s v s s T t s G s u s s

M x L k L M L k M L k

C
L k s M g s s

t s

β β

β β

β β

β
β

−

−

−

−
−

+ − + −

≤ + +

+ − + −

′≤ + + + + + +

+ − +
−

∫ ∫

∫ ∫

∫ ∫
 

By dividing both sides by k, we get 

( ) ( ) ( )

( )
( ) ( )

0 2 2 0 1 0 1

1
110 0

1 1 1 11 1 1

1 11 d d
t t

k

M x L k L M L k M L k
k k k k

C
L k s M g s s

k kt s
β

β
−

−

 ′≤ + + + + + + 
 

+ + +
−

∫ ∫
 

Taking the lower limit as k →∞ , we get 

( )0 1 2 0 1 1 1
1 .M L L M M L C a Lβγ β
β

+ + + + −
 

We will show that the operator P has a fixed point on kB  which implies equa-
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tion (0.10)-(0.11) has a mild solution. To this end, we decompose P as 1 2P P P= + , 
where the operators 1 2,P P  are defined on kB  respectively by 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 0
0, 0 , , d

t
P x t T t F v F t v t AT t s F s v s s= − + −∫  

and 

( )( ) ( ) ( ) ( ) ( )( )2 0 0
, d

t
P x t T t x g x T t s G s v s s = − + −  ∫  

For 0 t a≤ ≤ , we will verify that 1P  is a contraction while 2P  is a compact 
operator. 

To prove that 1P  is a contraction, we take 1 2, kx x B∈ . Then for each 
[ ]0,t a∈  and by condition (H1) and (0.10), we have 

( )( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 2 2

1 1 10

2 2 20

1 2 1 2

1 20 0

0, 0 , , d

0, 0 , , d

0, 0 0, 0 , ,

, d , d

t

t

t t

P x t P x t

T t F v F t v t AT t s F s v s s

T t F v F t v t AT t s F s v s s

T t F v F v F t v t F t v t

AT t s F s v s s AT t s F s v s s

−

= − + −

− − + −

 ≤ − + − 

+ − − −

∫

∫

∫ ∫  
( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( )( ) ( )( )( )
( ) ( )( ) ( )( )

1 2 1 2

20

1 2

1 2

1
1 20

0, 0 0, 0 , ,

, , d

0, 0 0, 0

, ,

, , d

t

t

T t F v F V F t v t F t v t

AT t s F s v s F s v s s

T t A A F v A F v

A A F t v t A F t v t

A T t s A F s v s A F t v s s

β β β

β β β

β β β

−

−

−

≤ − + −

 + − − 

≤ −

+ −

 + − − 

∫

∫
 

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( )
( ) ( )

1 2

1 2

1
1 20

0 1 2 0 1 2
0 0

1
1 210 0

0, 0 0, 0

, ,

, , d

sup sup

d sup

t

s a s a

t

s a

T t A A F v A F v

A A t F t v t A A t F t v t

A T t s A F s v s A F s v s s

MM L x s x s M L x s x s

C
L s x s x s

t s

β β β

β β β β

β β β

β
β

−

− −

−

≤ ≤ ≤ ≤

−
−

≤ ≤

≤ −

+ −

+ − −

≤ − + −

+ −
−

∫

∫
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 1 2 1 1 2
0 0

0 1 1 2
0

0 1 2
0

11 sup sup

11 sup

sup

s a s a

s a

s a

M M L x s x s L C a x s x s

L M M C a x s x s

L x s x s

β
β

β
β

β

β

−
≤ ≤ ≤ ≤

−
≤ ≤

≤ ≤

≤ + − + −

 
≤ + + − 

 
≤ −

 

( )( ) ( )( ) ( ) ( )1 1 1 2 0 1 2
0
sup

s a
P x t P x t L x s x s

≤ ≤
− ≤ −

 
Thus, 
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1 1 1 2 0 1 2P x P x L x x− ≤ −  
By assumption 00 1L< < , we obseve that 1P  is a contaction. To prove that 

2P  is compact, first we prove that 2P  is continuous on kB . Let { }n kx B⊆  will 
be nx x→  in kB , then by (H2), we have ( )( ) ( )( ), , ,nG s u s G s u s n→ →∞  
Since 

( )( ) ( )( ) ( ), , 2n kG s u s G s u s g s− ≤
 

Therefore by dominated convergence theorem, we have. 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( )( )

2 2

0 00

0 0

00

sup , d

, d

sup , , d

0 as

n

t
n n

t a
t

t
n n

t a

P x P x

T t x g x T t s G s u s s

T t x g x T t s G s u s s

T t g x g x T t s G s u s G s u s s

n

≤ ≤

≤ ≤

−

 = − + − 

 − − − − 

 = − + − − 

→ →∞

∫

∫

∫

 
That is 2P  is continuous. 
Next, we have to prove that { }2 : kP x x B∈  is a family of equicontinuous 

functions. To check this, we have to fix 2 0t >  and we let 2 1t t>  as 0ε >  be 
enough small. Then 

( )( ) ( )( )

( ) ( ){ } ( ) ( ) ( ){ } ( )( )

( ) ( )( )2

1

2 2 2 1

2 1 0 2 10

2

, d

, d

t

t

t

P x t P x t

T t T t x g x T t s T t s G s u s s

T t s G s u s s

−

 ≤ − − + − − − 

+ −

∫

∫
 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

1

1 2

1 1

1

1 2

1 1

2 1 0 2 10

2 1 2

2 1 0 2 10

2 1 2

( ) , d

, d , d

( ) , d

, d , d

t

t t

t t

t

t t

t t

T t T t x g x T t s T t s G s u s s

T t s T t s G s u s s T t s G s u s s

T t T t x g x T t s T t s G s u s s

T t s T t s G s u s s T t s G s u s s

ε

ε

ε

ε

−

−

−

−

≤ − − + − − −

+ − − − + −

≤ − − + − − −

+ − − − + −

∫

∫ ∫

∫

∫ ∫  
Noting that ( )( ) ( ), kG s u s g s≤  and ( ) 1

kg s L∈ , and we see that 
( )( ) ( )( )2 2 2 1 0P x t P x t− →  independently for kx B∈  as 2 1 0t t− → . 

Since the compactness of ( ) , 0T t t >  in t in the set of uniform operators to-
pology. We can prove that the functions 2 , kP x x B∈  are equicontinuous. 

It remains to prove that 

( ) ( )( ){ }2 : kV t P x t x B= ∈
 

is relatively compact in X. Obviously by assumption (H3), ( )0V  is relatively 
compact in X. 

Let 0 t a< ≤  be a fixed point and 0 tε< < . For kx B∈ , we define 

( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2, 0 0

0 0

, d

, d

t

t

P x t T t x g x T t s G s u s s

T t x g x T T t s G s u s s

ε
ε

ε
ε ε

−

−

 = − + − 

 = − + + − − 

∫

∫  
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Then from the compactness of ( ) , 0T ε ε > , we obtain  
( ) ( )( ){ }2, : kV t P x t x Bε ε= ∈  is relatively compact in X for every ε , 0 tε< < . 

Moreover, for every kx B∈ , we have 

( )( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2 2,

0 0

0 0

, d

, d

t

t

P x t P x t

T t x g x T t s G s u s s

T t x g x T t s G s u s s

ε

ε−

−

 = − + − 

 − − − − 

∫

∫
 

( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

( )

2 2,

0

0

, d , d

, d

, d

t t

t

t

t

t

t
kt

P x t P x t

T t s G s u s s T t s G s u s s

T t s G s u s s

T t s G s u s s

M g s

ε

ε

ε

ε

ε

ε

−

−

−

−

−

−

= − + −

− −

= −

=

∫ ∫

∫

∫

∫

 

Therefore, there are relatively compact sets arbitrary closed to the set ( )V t . 
Hence the set ( )V t  is also compact in X. 
Therefore, by Arzela-Ascoli theorem, 2P  is compact operator. Those argu-

ment enable us to conclude that 1 2P P P= +  is a condensing map kB  and by 
the fixed point ( ).x  for P on kB . 

Therefore, the Cauchy problem 0.7 - 0.8 has a mild solution and the proof is 
completed. 

Existence Results for impulsive Stochastic Neutral Differential Equations 
Recently, Stochastic differential systems with impulsive conditions have been 

studied by different authors such as [29] [30] [31] [32] [33]. Therefore, it seems 
interesting to study the impulsive stochastic differential equations with nonlocal 
conditions. studied the existence of solutions for semilinear neutral stochastic 
functional differential equations with nonlocal conditions by using the frac- 
tional powers of operator and Sadovskii’s fixed point theorem, whereas proved 
the existence of mild solutions for a class of impulsive neutral stochastic func-
tional integro-differential systems with nonlocal conditions in Hilbert spaces, 
and [34] established the existence of solutions of impulsive neutral differential 
and integro-differential equations with nonlocal conditions via fractional opera-
tors and Sadvoskii’s fixed point theorem. Motivated by the above mentioned, in 
this chapter, we are interested in studying the existence of solutions of the fol-
lowing impulsive neutral stochastic differential equation with nonlocal condi-
tions. 

( ) ( ) ( )( ) ( )( )( )
( ) ( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( ) ( ) [ ]

1 1

2 1

1

d , , , ,

, , , , d

, , , , d , : 0, , , 1, 2,3, ,

m

m

m

x t f t x t x a t x a t

Ax t f t x t x b t x b t t

G t x t x c t x c t w t t J b t k m

 + 
 = + 

+ ∈ = ∉ =





 

(12) 

( ) ( )00x x g x= +                        (13) 

https://doi.org/10.4236/jamp.2023.116107


E. Hagenimana et al. 
 

 

DOI: 10.4236/jamp.2023.116107 1646 Journal of Applied Mathematics and Physics 
 

where, A is the infinitesimal generator of analytic semigroup of bounded linear 
operators ( ){ }, 0T t t ≤  on a separable Hilbert space with inner product ( ).,.  
and norm . . Let K be the another separable Hilbert space with inner product 
( ).,. k  and norm . k

. 
Suppose that ( ){ } 0t

w t
≤

 is a given K-valued Brownian motion or Wiener 
process with a finite trace nuclear Covarience operator and 0Q ≤  defined on a 
filtered complete space { }( )0, , ,t P

≥
Ω   . The function 1 2, ,f f G  and g are 

the given functions to be defined later. 
Preliminaries 3 
In this section, we recall a few stochastic results, Lemmas and notations which 

are needed to establish our main results. Throughout this paper ( ).,H  and 
( ).,K  denotes the two real separable Hilbert space. Let ( ),K HL  be the set 
of all inner product bounded operator from K into H equiped with the usual 
norm operator . . Let ( ), , ,P HΩ   be the complete probability space fur-
nished with a complete family of right continuous increasing σ -algebra 
{ },t t∈   satisfying t ⊂  . 

An H-valued random variable is an  -measurable function ( ) :x t HΩ→  
and a collection of random variable ( ){ }, : ,S x t H t Jω= Ω→ ∈  is called Sto-
chastic process. Usually we write ( )x t  instead of ( ),x t ω  and ( ) :x t J H→  
in the space of S. Let { } 1i i

e ∞

=
 be a complete orthonormal basis of K. 

Suppose that ( ){ }: 0t tω ≥  is a cylindrical K-valued Wiener process with a 
finite trace nuclear Covariance operator 0Q ≥ , denote  

( ) 0 iiTr Q λ λ∞

=
= = ≤ ∞∑ , which satisfies that i i iQe eλ= . So actually,  

( ) ( )i i iit t eω λω∞= ∑ , where ( ){ } 1i i
tω

∞

=
 are mutually independent one dimen-

sional standard Wiener process. We assume that ( ){ }: 0t s sσ ω= ≤ ≤  is the 
σ -algebra generated by ω  and t =  . Let ( ),K HΨ∈  and define  

( ) 22 *
1 n nnQ Tr Q eλ∞

=
Ψ = Ψ Ψ = Ψ∑  

If QΨ ≤ ∞ , then Ψ  is called a Q-Hilbert Schmidt Operator. Let ( ),Q K H  
denotes the space of of all Q-Hilbert Schmidt Operator : K HΨ → . The com-
pletion ( ),Q K H  of ( ),K H  with respect to the topology induced by the 
norm . Q  where 2 ,QQ = Ψ Ψ  is Hilbert space with the above norm topol-
ogy. 

Let A be the infinitesimal generator of an analytic semigroup ( )T t  in H. 
Suppose that ( )0 Aρ∈  where ( )Aρ  denote the resolvent set of A and that 
semi-group ( ).T  is uniformily bounded that is to say ( )T t M≤  for some 
constant 1TM ≥  and for every 0t ≥ . Then for ( ]0,1α ∈ , it is possible to de-
fine the fractional operator ( )( )A α−  as a closed linear invertible operator on its 
domain ( )( )A α− . Furthermore, the subspace ( )( )A α−  is dense in H and the 
expression 

( ) ( )( ),x A x x D aα α

α
= − ∈ −

 
Define the norm on ( )( )H D A α

α = − . Furthermore of fractional power of 
operator and semigroup refer (16). Then the following property is well known 
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16. Suppose that the following properties are satisfied. 
Let 0 1α≤ ≤ . Then Hα  is a Banach space. 
If 0 1βα≤ ≤ , then H Hα β⊂  and the imbedding is compact whenever the 

resolvent operator of A is compact. For every 0 1α≤ ≤ , there exists a positive 
constant 0Mα >  such that 

( ) ( ) ,
M

A T t
t

α α
α− ≤                      (14) 

for all 0 t b< ≤ . 
The collection of all strongly measurable, square integrable H-valued random 

variables, denoted by ( )( ) ( ){ }2 2, , , , : :J L P H x J L x tΩ = →   is a conti-
nuous every where except for some kt  at which ( )kx t−  and ( )kx t+  exists and 
( ) ( ) , 1, 2,3, ,k kx t x t k m− = =   is the Banach space of piecewise continuous maps 

from J into ( )2 , , ,L P HΩ   satisfying the condition ( ) 2
supt J E x t∈ < ∞ . 

Let ( )( )2, , , ,J L P HΩ   be the closed subspace of  
( )( )2, , , ,J L P HΩ   consisting of measurable  , adapted and H-valued 

processes ( )x t . Then, ( )( )2, , , ,J L P HΩ   is a Banach space endowed with 
the norm. ( ) ( )( ){ }22

2sup : , ,t Jx E x t x J L H∈= < ∞ ∈ Ω


  The existence of 
solution for the system (0.7)-(0.8) is studied with the following assuptions: (H4) 
There exist constant ( )0,1β ∈  such that [ ] 1: 0, m

if b H H+× →  is a conti-
nuous function, and , 0

i if fM M >  such that ( ) iA fβ−  satisfies the Lipschitz 
conditions. 

( ) ( ) ( ) ( )1 0 1 2 2 0 1 2

1 2
0,1, ,

, , , , , , , , , ,

sup
j

i m j m

f i i
i m

A f s x x x x A f s y y y y

M s s x y

β β

=

− − −

 ≤ − + − 
 

 

 
For any 1 20 , , , , 0,1, 2, ,i is s b x y H i m≤ ≤ ∈ =  . However, the inequality 

( ) ( ) { }( )0 1, , , , max : 0,1,2, , 1
jj m f iA f t x x x m x i mβ− ≤ = + 

 (15) 

For every ( ) 1
0 1, , , , , 1, 2,m

mt x x x J H j+∈ × = 
 

(H5) The function [ ] ( )1: 0, ,nG b H L K H+× →  satisfies the following 
(i) for each [ ]0,t b∈ , the function ( ) ( )1,. : ,nG t H L K H+ →  is continuous 

and for each ( ) ( )0 1, , , : ,nx x x J L K H→  is t -measurable. 
(ii) For each positive number l N∈ , there is a positive function ( )2

th L J∈  
such that 

( ) ( )
2 2

0

2
0 1

, ,

sup , , , ,
n

n l
x x l

E G t x x x h t
<

≤




 
and 

( )
0

d
liminf

b

l

h s s

l
µ

→∞
= < +∞∫

 
(H6) [ ] [ ] [ ]( ), , 0, , 0, , 0, , 1, 2,3, ,k k ka b c C b b b k m∈ =  . ( )0

2: ,g L→ Ω   
satisfies that 

(i) There exists a positive constants gM  and gM  such that 
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( ) .g gg x M x M x≤ + ∀ ∈



 

(ii) g is a completely continuous. 
Our main results are based upon the following fixed point theorem (17) (Sa-

dovskii’s fixed point theorem). 
Let Φ  be a condensing operator on Banach space, that is Φ  is continuous 

and takes bounded sets into bounded sets, and let ( )( ) ( )B Bα αΦ ≤  for every 
bounded set B of H with ( ) 0Bα >  of ( )Φ Ω ⊂ Ω  for a convex,closed and 
bounded set Ω  of H, then Φ  has a fixed point in H. Where ( ).α  denotes 
Kuratorawski’s measure of non-compactness. 

Existence Results 
In this section we state and prove our main results, now we define the mild 

solutions of system (0.12)-(0.13). 
Theorem 5. An t -adapted stochastic process ( ) :x t J H→  function 

x∈Ω  is said to be mild solution of the system (0.12)-(0.13) if the following 
conditions are satisfied 

(i) ( ) ( ) ( )0 0
0 2 2, , ,x L H g x L∈ Ω ∈ Ω   

( ) ( ) ( ) ( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )( )
( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( )( ) ( )

0 1 1

1 1

2 10

1 10

10

, 0, 0 , 0 , , 0

, , , ,

, , , , d

, , , , d

, , , , d ,

m

m

t
m

t
m

t
m

x t T t x g x f x x a x a

f t x t x a t x a t

T t s f s x s s b s x b s s

AT t s f s x s x a s x a s s

T t s G s x s x c s x c s w s t J

 = + 

−

+ −

− −

+ − ∈

∫

∫

∫











 

Assume that the conditions (H1)-(H5) are satisfied and ( ) ( )0
20 ,x L H∈ Ω , then 

the non-local Cauchy problem (0.12)-(0.13) has a mild solutions provided that 

( )2 2 2 1
0 0 1 1

2 1i

b

f T
ML M M M β
β

 −
= + + ≤ 

− 
              (16) 

and 

(( ( ) ( ) ( )

( ) ( )1

222 2 2
0 1 0 2

=1

22
0 1 1

36 6 2

12 2 1
2 1

m

T g k
k

f

M M M Mf bM Mf Tr Q M

M Mf M M bβ
β

λ

β −

  + + +   


+ + <
− 

∑
    (17) 

where ( )0M A β−= −  and 1M β−  is defined in (0.12) 

Proof: For the sake of brevity, we write that 

( ) ( )( ) ( )( )( ) ( )( )1, , , , ,mt x t x a t x a t t u t=

 

( ) ( )( ) ( )( )( ) ( )( )1, , , , ,mt x t x a t x b t t v t=

 

( ) ( )( ) ( )( )( ) ( )( )1, , , , ,mt x t x p t x c t t p t=

 
Consider the operator Φ  on   defined by 
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( )( )
( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )[ ( )( ) ( ) ( )( ) ( ) ( ) ( )

1 2

0 1 1 20

20 0

0 1 1

0, 0 , , d

, d , d ,

0, 0 , ,

t

t t

u v P
f f G

x t

T t x g x f u f t u t T t s f s v s s

AT t s f s u s s T t s G s p s s t J

T t x f u g x f t u t I t I t I t t J

Φ

 = + + − + − 

− − + − ∈

= + + − − + + ∈

∫

∫ ∫

 
We shall show that the operator Φ  has a fixed point which is a solution of 

the system (0.12)-(0.13). For each positive integer l, let 

( ){ }2
: ,0lB x E x t l t b= ∈ ≤ ≤ ≤




 
It is clear that for each l, lB ⊆   is clearly a bounded closed convex set in 
 . In addition to the familiar Young Holder and Minkowskii the inequalities 
of the form ( )1 1

mn nm m
i ii ia n a

= =
≤∑ ∑  where ia  are non-negative constants  

1,2,3, ,i n=   and ,m n N∈  is helpful in establishing various estimates, from 
(0.14) and (0.15) together with Holder inequality, yields the following relation: 
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   (18) 

and 

( ) ( ) ( )( )
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2
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f

T f i
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∫


     (19) 

It follows that ( ) ( ) ( )( )1 , dA T t s f s u s s− −  and ( ) ( )( )2 ,T t s f s v s−  is in-
tegrable on J, so Φ  is well defined on qB . Similarly, from (H2) (ii) and togeth-
er with the ito’s formula, a compution can be performed to obtain the following: 

( ) ( ) ( )( ) ( )
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∫

∫

∫

           (20) 

Step1: We claim that there exists a positive number l such that l lB BΦ ⊆ . If it 
is not true, then for each positive number l, there is a function ( ).l lx B∈  and 

( ).l lx BΦ ∈ , but ( )l t lΦ >  for some ( )t l J∈ , where ( )t l  denotes that t is 
independent of l. However on the other hand we have, 

( ) 2
ll x t< Φ  

( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
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∫ ∫  

https://doi.org/10.4236/jamp.2023.116107


E. Hagenimana et al. 
 

 

DOI: 10.4236/jamp.2023.116107 1650 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

2 22 2 2 2
0 0 0

2 2 2
0 1 0

36 3 4 2 1 2 1

12 1 2 1 d
2 1

T g g f fD

t
T f f T t

M x M l M M M l M M l

b M M M l M M b l Tr Q M h s sβ
ββ −

 ≤ + + + + +  

+ + + + +
− ∫

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2

1

2 2 22* 2
0 0 0

2 2
1 0

36 2

1 12 d
2 1

T g f f t f

t
f T t

M M M l M M l M M l b M M M l

M M b l Tr Q M l h s s
l

β
ββ −

  + + + +   


+ + − 
∫

 
where 

( )

( )

2

1

22* 2 2
0 0 0

2

1

36 3 4 2 2

1 2
2 1

T g g T f

f

M M x M M M b M M M

M M bβ
ββ −

  = + + +  


+ 
−   

By dividing both side by l and taking the lower limit as t →∞ , we get 
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This is a contracts to (0.17). Hence for a positive integer l, l lB BΦ ⊆ . Steps2: 

Next we will show that the operator Φ  has a fixed point on lB . Now we de-
compose 1 2Φ = Φ +Φ  is condensing where 1Φ  is contraction and 2Φ  is 
compact. 

The operator 1 2,Φ Φ  are defined on lB  respectively by 
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∫

∫  
We would like to verify that 1Φ  is a contraction while 2Φ  is a completely 

continuous operator. 
To prove that 1Φ  is a contraction, we take 1 2, lx x B∈  arbitrarily. Then for 

each t J∈  and by condition (H1) and (0.16) we have 
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Hence, 
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Thus, 

( ) ( ) 2 2
1 1 1 2 0 1 2x x L x xΦ − Φ ≤ −  

By the assumption 00 0L≤ < , we see that 1Φ  is a contraction. 
To prove that 2Φ  is compact, first we prove that 2Phi  is a contraction on 

lB . Let { } 0n ln
x B∞

=
⊆  with n lx x B→ ∈ , then (H2) (i) and (H4) 

(i) , 1, 2,3, ,kI k m=   is continuous. 
(ii) ( )( ) ( )( ), , ,nG s P s G s P s n→ →∞ . 
Since 
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Therefore, by dominated convergence theorem, we have 
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Thus, 2Φ  is continuous. 
Next, we prove that { }:x tx BΦ ∈  is a family of equicontinuous functions. 
Let lx B∈  and 1 2, Jτ τ ∈ . 
Thus if 10 bτ τ< < <  and ( )2N xϕ ∈ , then for each t J∈ , we have 
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The right hand side is independent of lx B∈  and thend to zero as 2 2 0τ τ− → , 
since the compactness of ( ){ } 0t

T t
≥

 implies the continuity in the uniform oper-
ator topology. Similarly, using the compactness of the set ( )lg B  we can prove 
that the functions , lx x BΦ ∈  are equicontinuous functions. 

It remains to prove that ( )2 lxB tΦ  is relatively compact for each t J∈ , 

where ( ) ( )( ){ }2 : ,lV t t x B t J= Φ ∈ ∈ . Obviously, by conditions (H3), ( )0v  is 

relatively compact in lB , we have 
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Since ( ){ } 0t
T t

≥
 is compact, the set ( ) ( ){ }2 : lV t t x Bε

ε = Φ ∈  is relatively 

compact in H for every 0 tε< < . Moreover, for every lx B∈ . 
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Therefore, letting 0ε → , we see that, there are relatively compact sets arbi-

trarly close to the set ( ) ( ){ }2 : lV t t x B= Φ ∈  
Hence, the set ( )V t  is relatively compact in lB . A consequence of the above 

steps and the Arzela-Ascoli theorem, we can conclude that 2Φ  is a compact 
operator. These arguments enable us to conclude that 1 2=Φ Φ +Φ  is con-
densing map on lB , and by the fixed point theorem of Sadovskii there exists a 
fixed point ( ).x  for Φ  on lB . 

Therefore the non-local system (0.12)-(0.13) has a mild solution which has 
studied by [35]. 

Hence the proof is completed. 

4. Conclusion 

In this paper, we presented the existence results for impulsive stochastic neutral 
differential systems through fractional power operators. We proved the results 
using semigroup theory and fixed point technique. Therefore, by Sadovskii fixed 
point theorem, it was possible to prove the existence for stochastic impulsive 
neutral differential system. 
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