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Abstract 
In this paper, we use resolvent operator technology to construct a viscosity 
approximate algorithm to approximate a common solution of split variational 
inclusion problem and split fixed point problem for an averaged mapping in 
real Hilbert spaces. Further, we prove that the sequences generated by the 
proposed iterative method converge strongly to a common solution of split 
variational inclusion problem and split fixed point problem for averaged 
mappings which is also the unique solution of the variational inequality 
problem. The results presented here improve and extend the corresponding 
results in this area. 
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1. Introduction 

Throughout the paper, unless otherwise stated, let 1H  and 2H  be real Hilbert 
spaces with their inner product ,   and norm  . Let C and Q be nonempty 
closed convex subsets of 1H  and 2H , respectively. Let 1 2:A H H→  be a 
bounded linear operator and A∗  is the corresponding adjoint operator of A. A 
mapping 1 1:S H H→  is called contractive, if there exists a constant ( )0,1α ∈  
such that 

1, , .Sx Sy x y x y Hα− ≤ − ∀ ∈  
If 1α = , then S is called nonexpansive. In addition, let’s first review the split 

feasibility problem (SFP): find x C∈  such that Ax Q∈ . The split feasibility 
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problem (SFP) originated from phase recovery and medical image reconstruc-
tion [1] [2] [3], and it has been widely studied, as shown in [4] [5] [6]. When C 
and Q in the split feasibility problem (SFP) are fixed point sets of nonlinear op-
erators, the split feasibility problem (SFP) is called the split fixed point problem 
(SFPP) [7] [8]. More precisely, find 1x H∈  such that 

( ) ( ) and ,x Fix S Ax Fix U∈ ∈                  (1.1) 

where ( )Fix S  and ( )Fix U  denote the fixed point sets of two nonlinear 

1 1:S H H→  and 2 2:U H H→ . The solution set of the SFPP is denoted by F, 
that is, 

( ) ( ){ }1 :  and .F x H x Fix S Ax Fix U∗ ∗ ∗= ∈ ∈ ∈
 

A mapping 1 1:T H H→  is said to be 
1) monotone, if 

1, 0, , ;Tx Ty x y x y H− − ≥ ∀ ∈  
2) α -strongly monotone, if there exists a constant 0α >  such that 

2
1, , , ;Tx Ty x y x y x y Hα− − ≥ − ∀ ∈  

3) β -inverse strong monotone ( β -ism), if there exists a constant 0β >  
such that 

2
1, , , ;Tx Ty x y Tx Ty x y Hβ− − ≥ − ∀ ∈  

4) firmly nonexpansive, if 
2

1, , , .Tx Ty x y Tx Ty x y H− − ≥ − ∀ ∈  
A multivalued mapping 1

1: 2HM H →  is called monotone if for all  

1,x y H∈ , u Mx∈  and v My∈  such that , 0x y u v− − ≥ . And  
1

1: 2HM H →  is maximal if the ( )Graph M  is not properly contained in the 
graph of any other monotone mapping. It is known that a monotone mapping M 
is maximal if and only if for ( ) 1 1,x u H H∈ × , , 0x y u v− − ≥  for 
( ) ( ),y v Graph M∀ ∈  implies that u Mx∈ . Then, the resolvent mapping  

1 1:MJ H Hλ →  associated with M, is defined by 

( ) ( ) ( )1
1: , ,MJ x I M x x Hλ λ −= − ∀ ∈  

for 0λ∀ > , where I stands identity operator on 1H . Noting that MJλ  is single 
valued and firmly nonexpansive. 

Recently, Moudafi [9] introduced the following split monotone variational in-
clusion problem (SMVIP): Find 1x H∗ ∈  such that 

( ) ( )1 10 ,f x B x∗ ∗∈ +                      (1.2) 

and such that 

2y Ax H∗ ∗= ∈  solves ( ) ( )2 20 ,f g B y∗ ∗∈ +            (1.3) 

where 1
1 1: 2HB H →  and 2

2 2: 2HB H →  are multivalued maximal monotone 
mappings. 
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Moudafi [9] introduced an iterative algorithm for solving SMVIP (1.2)-(1.3), 
which is an important extension of the iterative method for split variational in-
equality given by Censor et al. [10] for split variational inequality problem. As 
Moudafi pointed out in [9], SMVIP (1.2)-(1.3) includes as special, the split 
common fixed point problem, splitting variational inclusion problem, splitting 
zero point problem and splitting feasibility problem [1] [8]-[25]. These problems 
have been widely studied and used in practice as a model for intensity mod-
ulated radiation planning (IMRT), see [1] [25]. This is the core of many inverse 
modeling problems caused by phase retrieval and other real-world problems. 
For example, computer tomography and data compression in sensor networks 
are shown in [2] [26]. 

If 1 0f ≡  and 2 0f ≡ , then SMVIP (1.2)-(1.3) can be reduced to the follow-
ing split variational inclusion problem (SVIP): Find 1x H∗ ∈  such that 

( )10 B x∗∈ ,                        (1.4) 

and such that 

2y Ax H∗ ∗= ∈  solves ( )20 B y∗∈ .              (1.5) 

When looked separately (1.4) is the variational inclusion problem and we de-
noted its solution set by ( )1SOLVIP B . The SVIP (1.4)-(1.5) constitutes a pair of 
variational inclusion problems which have to be solved so that the image 
y Ax∗ ∗=  under a given bounded linear operator A, of the solution x∗  of SVIP 

(1.4) in 1H  is the solution of another SVIP (1.5) in another space 2H , we de-
noted the solution set of SVIP (1.5) by ( )2SOLVIP B . And the solution set of 
SVIP (1.4)-(1.5) is denoted by 

( ) ( ){ }1 1 2: andx H x SOLVIP B Ax SOLVIP B∗ ∗ ∗Γ = ∈ ∈ ∈ . 

In 2011, Byrne et al. [24] studied the weak and strong convergence of iterative 
algorithms for SVIP (1.4)-(1.5): For given 0 1x H∈ , calculate the iterative se-
quence { }nx  generated by the following method: 

( )( )1 2
1 .B B

n n nx J x A J I Axλ λγ ∗
+ = + −

 

On the other hand, Censor and Segal [7] studied iterative algorithms for solv-
ing split fixed point problems (SFPP): For given 0 1x H∈ , calculate the sequence 
{ }nx  generated by the following method: 

( )( )1 ,n n nx x A I Axψ τ ϕ∗
+ = − −

 

where ψ  and ϕ  are two directed operators. 
Inspired by Moudafi [9] and Fyrne, Kazmi and Rizvi [27] proposed the fol-

lowing iterative algorithm for SVIP (1.4)-(1.5) and fixed point problems of non-
expansive mappings: 

( )( )
( ) ( )

1 2

1

;

1 ,

B B
n n n

n n n n n

u J x A J I Ax

x f x Su

λ λγ

α α

∗

+

 = + −


= + −  
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where 0λ > , 10,
L

γ  ∈ 
 

, L is the spectral radius of the operator A A∗ . 

Motivated and inspired by the above results and the ongoing research in this 
direction, we suggest and analyze an iterative algorithm, which is proposed to 
solve the split variational inclusion problem SVIP (1.4)-(1.5) and split fixed 
point problem SFPP (1.1) under appropriate conditions. We also prove that the 
iterative sequence generated by the iterative algorithm converges strongly to the 
common solution of SVIP (1.4)-(1.5) and SFPP (1.1). The results presented here 
improve and extend some known results. 

2. Preliminaries 

We denote the weak and the strong convergence of a sequence { }nx  to a point 
x by nx x  and nx x→ , respectively. Let us recall some concepts and results 
which are needed in sequel. For 1x H∀ ∈ , there exists a unique closest point in 
C denoted by CP x  such that 

, ,Cx P x x y y C− ≤ − ∀ ∈  

CP  is called the metric projection of 1H  onto C. As we all know, CP  is 
firmly nonexpansive mapping, that is, 

2
1, , , .C C C Cx y P x P y P x P y x y H− − ≥ − ∀ ∈            (2.1) 

In addition, CP x  is characterized by the fact CP x C∈  and 

, 0,C Cx P x y P x− − ≤                     (2.2) 

and 
2 2 2

1, , .C Cx P x y P x x y x H y C− + − ≤ − ∀ ∈ ∈           (2.3) 

In a real Hilbert space, for 1,x y H∀ ∈  and Rλ ∈ , the following holds: 

( ) ( ) ( )2 2 2 21 1 1 .x y x y x yλ λ λ λ λ λ+ − = + − − − −       (2.4) 

Noting that every nonexpansive operator 1 1:T H H→  satisfies the inequality 

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) 2

1

,

1 , , .
2

x T x y T y T y T x

T x x T y y x y H

− − − −

≤ − − − ∀ ∈
            (2.5) 

As a result, we have, 

( ) ( ) ( ) ( ) ( )2
1

1, , ,
2

x T x y T x T x x x y H Fix T− − ≤ − ∀ ∈ × ,     (2.6) 

for details, see e.g., ([28], Theorem 3.1) and ([29], Theorem 2.1). 
A mapping 1 1:T H H→  is called averaged if and only if it can be written as 

the average of the identity mapping and a nonexpansive mapping, i.e.,  
( ): 1T I Sα α= − + , where ( )0,1α ∈  and 1 1:S H H→  is nonexpansive and I is 

the identity operator on 1H . 
It is easy to see that every averaged mapping is nonexpansive. In addition, the 
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firmly nonexpansive mapping (especially the projection on the nonempty closed 
convex set and the resolvent operators of the maximal monotone operators) is 
averaged. 

The following are some key properties of averaged operators, see for instance 
[3] [9] [30]. 

Proposition 2.1. (i) If ( )1T S Vα α= − + , where 1 1:S H H→  is averaged, 

1 1:V H H→  is nonexpansive and ( )0,1α ∈ , then T is averaged. 

(ii) The composite of finitely many averaged mappings is averaged. 
(iii) If the mapping { } 1

N
i i

T
=

 is averaged and have a nonempty common fixed 
point, then 

( ) ( )1 2
1

, , ,
N

i N
i

Fix T Fix T T T
=

= 



. 

(iv) If T is τ -inverse strong monotone (τ -ism), then for 0γ > , Tγ  is τ
γ

- 

inverse strong monotone ( τ
γ

-ism). 

(v) T is averaged if and only if its complement I T−  is τ -inverse strong 

monotone (τ -ism) for some 1
2

τ > . 

Lemma 2.1. [31] Assume that T is nonexpansive self-mapping of a closed 
convex subset C of a Hilbert space 1H . If T has a fixed point, then I T−  is 
demiclosed, i.e., whenever { }nx  is a sequence in C converging weakly to some 
x C∈  and the sequence ( ){ }nI T x−  converges strongly to some y, it follows 
that ( )I T x y− = . Here I is the identity mapping on 1H . 

Lemma 2.2. [32] Let { }na  is a sequence of non-negative real numbers such 
that 

( )1 1 , 0n n n na a nβ δ+ ≤ − + ≥ , 

where { }nβ  is a sequence in ( )0,1  and { }nδ  is the sequence in   such that 

(i) 
1

n
n

β
∞

=

= ∞∑ ; (ii) lim sup 0n

n n

δ
β→∞

≤  or 
1

n
n

δ
∞

=

< ∞∑ . Then lim 0nn
a

→∞
= . 

3. Main Results 

In this section, we will prove a strong convergence theorem based on the pro-
posed iterative algorithm to calculate the common approximate solutions of 
SVIP (1.4)-(1.5) and SFPP (1.1). 

Theorem 3.1. Let 1H  and 2H  be two real Hilbert spaces, let 1 2:A H H→  

be a bounded linear operator with its adjoint operator *A . Let 1 1:f H H→  be 

a contraction mapping with ( )0,1α ∈ . Assume that 1
1 1: 2HB H → ,  

2
2 2: 2HB H →  are maximal monotone mappings, 1 1:S H H→ , 2 2:U H H→   

are two average mappings and FΓ ≠ ∅ . For a given 0 1x H∈ , let the iterative 
sequence { }nu , { }ny  and { }nx  be generated by 
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( )( )
( )( )

( ) ( )

1 2

1

;

;

1 .

B B
n n n

n n n

n n n n n

u J x A J I Ax

y S u A I U Au

x f x y

λ λγ

τ

α α

∗

∗

+

 = + −

 = − −


= + −

               (3.1) 

where 0λ > , 1, 0,
L

γ τ  ∈ 
 

, L is the spectral radius of the operator A A∗  and 

{ }nα  is a sequences in ( )0,1  such that lim 0nn
α

→∞
= , 

0
n

n
α

∞

=

= ∞∑  and  

1
1

n n
n

α α
∞

−
=

− < ∞∑ . Then the sequence { }ny , { }nu  and { }nx  all converge  

strongly to z F∈ Γ , where ( )Fz P f zΓ=


. 

Proof. We divide the proof into the following steps. 
Step 1 Let p F∈Γ , then 1Bp J pλ= , ( )2BAp J Apλ= , UAp Ap= , Sp p= . 

By (3.1) we have 

( )( )
( )( )

( )

( ) ( )

( ) ( )

1 2

1 2 1

2

2 2

2 2

22

2

2

22 2

22 2

2 ,

2 , .

B B
n n n

B B B
n n

B
n n

B B
n n n n

B B
n n n n

u p J x A J I Ax p

J x A J I Ax J p

x A J I Ax p

x p A J I Ax x p A J I Ax

x p L J I Ax x p A J I Ax

λ λ

λ λ λ

λ

λ λ

λ λ

γ

γ

γ

γ γ

γ γ

∗

∗

∗

∗ ∗

∗

− = + − −

= + − −

≤ + − −

= − + − + − −

≤ − + − + − −

(3.2) 

Denoting ( )22 , B
n nx p A J I Axλγ ∗Λ = − −  and from (2.6), we can obtain 

( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

2

2 2 2

2 2 2

2 2 2

2 2

2

2

2

2

2

2 ,

2 ,

2 ,

2 ,

12
2

.

B
n n

B B B
n n n n

B B B
n n n n n

B B B
n n n

B B
n n

B
n

x p A J I Ax

A x p J I Ax J I Ax J I Ax

Ax Ap J Ax Ax J I Ax J I Ax

J Ax Ap J I Ax J I Ax

J I Ax J I Ax

J I Ax

λ

λ λ λ

λ λ λ

λ λ λ

λ λ

λ

γ

γ

γ

γ

γ

γ

∗Λ = − −

= − + − − − −

 = − + − − − −  

 = − − − −  

 ≤ − − −  

≤ − −

  (3.3) 

It follows from (3.2) and (3.3) that 

( ) ( )2
22 2 1 .B

n n nu p x p L J I Axλγ γ− ≤ − + − −           (3.4) 

Since 10,
L

γ  ∈ 
 

, we have 2 2
n nu p x p− ≤ − . Next we prove  

2 2
n ny p u p− ≤ − . 

By (3.1), we have again 
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( )( )
( )( )

( )

( ) ( )

( ) ( )

22

2

2

22 2

22 2

2 ,

2 , .

n n n

n n

n n

n n n n

n n n n

y p S u A I U Au p

S u A U I Au Sp

u A U I Au p

u p A U I Au u p A U I Au

u p L U I Au u p A U I Au

τ

τ

τ

τ τ

τ τ

∗

∗

∗

∗ ∗

∗

− = − − −

= + − −

≤ + − −

= − + − + − −

≤ − + − + − −

  (3.5) 

Denoting ( )2 ,n nu p A U I Auτ ∗Θ = − − , since U is averaged mapping, it 
follows from (2.6) that 

( )
( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2

2 2

2

2 ,

2 ,

2 ,

2 ,

12
2

.

n n

n n

n n n n

n n n n n

n n

n

u p A U I Au

Au Ap U I Au

Au U I Au U I Au Ap U I Au

Au UAu Au Ap U I Au U I Au

U I Au U I Au

U I Au

τ

τ

τ

τ

τ

τ

∗Θ = − −

= − −

= + − − − − −

= + − − − − −

 ≤ − − −  

≤ − −

     (3.6) 

It follows from (3.5) and (3.6) that 

( ) ( )

( ) ( )

2 22 2 2

22 1 .

n n n n

n n

y p u p L U I Au U I Au

u p L U I Au

τ τ

τ τ

− ≤ − + − − −

≤ − + − −
      (3.7) 

Noting 10,
L

τ  ∈ 
 

 that 2 2
n ny p u p− ≤ − , thus we have 

2 2 2 .n n ny p u p x p− ≤ − ≤ −                 (3.8) 

Since f is α -contractive, then from (3.1) and (3.8) that 

( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 1

1 1

1

1

1

n n n n n

n n n n n n

n n n n

n n n n

n n n n n

x p f x y p

f x p y p

f x p y p

f x f p f p p y p

x p f p p y p

α α

α α α α

α α

α α

αα α α

+ − = − − −

= − + − + −

≤ − + − −

 ≤ − + − + − − 
≤ − + − + − −

 
( ) ( )

( ) ( )
( )

( )
0

1

1 1

max ,
1

max , .
1

n n n n n

n n n

n

x p f p p x p

x p f p p

f p p
x p

f p p
x p

αα α α

α α α

α

α

≤ − + − + − −

= − − − + −  
 − ≤ − 

−  

 − ≤ − 
−  



        (3.9) 

Hence { }nx  is bounded and so are { }nu  and { }ny . 
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Step 2. Next, we show that { }nx  is asymptotically regular, i.e.,  

( )1 0n nx x n+ − → →∞ . for 10,
L

τ  ∈ 
 

, since S and U are both averaged map-

pings, and hence the mapping ( )( )S I A U I Aτ ∗+ −  is nonexpansive (see [9]). 

Hence, we obtain 

( )( ) ( )( )
( )( ) ( )( )

1 1 1

1

1 .

n n n n n n

n n

n n

y y S u A U I Au S u A U I Au

S I A U I A u S I A U I A u

u u

τ τ

τ τ

∗ ∗
− − −

∗ ∗
−

−

− ≤ + − − + −

= + − − + −

≤ −

 (3.10) 

It follows from (3.1) and (3.10) that 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )
( )

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1

1 1 1 1

1 2

1 2 ,

n n n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

x x f x y f x y

f x f x f x f x

y y y y

x x y y K

x x u u K

α α α α

α α α α

α α α α

αα α α α

αα α α α

+ − − − −

− − − −

− − − −

− − −

− − −

 − = + − − + − 

= − + −

+ − − − + − − −

≤ − + − − + −

≤ − + − − + −

 (3.11) 

where ( ){ }: sup :n nK f x y n N= + ∈ . Since, for 10,
L

γ  ∈ 
 

, the mapping 

( )( )1 2B BJ I A J I Aλ λγ ∗+ −  is averaged and hence nonexpanding (see [27]), then 

we obtain 

( )( ) ( )( )
( )( ) ( )( )

1 2 1 2

1 2 1 2

1 1 1

1

1 .

B B B B
n n n n n n

B B B B
n n

n n

u u J x A J I Ax J x A J I Ax

J I A J I A x J I A J I A x

x x

λ λ λ λ

λ λ λ λ

γ γ

γ γ

∗ ∗
− − −

∗ ∗
−

−

− ≤ + − − + −

= + − − + −

≤ −  
It follows from (3.10) that 

1 1 1 .n n n n n ny y u u x x− − −− ≤ − ≤ −               (3.12) 

Then, from (3.11) and (3.12), we have 

( )( )1 1 11 1 2 .n n n n n n nx x x x Kα α α α+ + −− ≤ − − − + −
 

By applying Lemma 2.2 with ( ): 1n nβ α α= −  and 1: 2n n n Kδ α α −= − , we 
have 

1lim 0.n nn
x x+→∞

− =                      (3.13) 

Next, since 

( )( ) ( )( )11 .n n n n n n n ny x x x f x xα α+− − = − − −
 

Then, we have 

( ) ( )11 .n n n n n n n ny x x x f x xα α+− − ≤ − + −
 

It follows from (3.13) and ( )0n nα → →∞ , we obtain 

lim 0.n nn
y x

→∞
− =                      (3.14) 
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Next, we show that ( )0n nx u n− → →∞ . From (3.18) and (3.4), we have 

( ) ( )
( )( ) ( )( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2

2

22
1

2

2 2

2 2

22 2

22 2

1

1

1

1

1 1

1 .

n n n n n

n n n n

n n n n

n n n n

B
n n n n n

B
n n n n

x p f x y p

f x p y p

f x p y p

f x p u p

f x p x p L J I Ax

f x p x p L J I Ax

λ

λ

α α

α α

α α

α α

α α γ γ

α γ γ

+ − = + − −

= − + − −

≤ − + − −

≤ − + − −

 ≤ − + − − + − −  

≤ − + − + − −

(3.18) 

Therefore, 

( ) ( ) ( )

( ) ( )

2
2 2 2 2

1

2
1 1

1

.

B
n n n n n

n n n n n n

L J I Ax f x p x p x p

f x p x x x p x p

λγ γ α

α

+

+ +

− − ≤ − + − − −

≤ − + − − + −
 

Since ( )1 0Lγ− >  and ( )0n nα → →∞  and (3.13), we obtain 

( )2lim 0.B
nn

J I Axλ→∞
− =                    (3.16) 

From (3.7) and (3.8), we have 

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

22
1

2 2

2 22

2 22

2 22

1

1

1 1

1 1

1 .

n n n n n

n n n n

n n n n n

n n n n n

n n n n

x p f x y p

f x p y p

f x p u p L U I Au

f x p x p L U I Au

f x p x p L U I Au

α α

α α

α α τ τ

α α τ τ

α τ τ

+ − = + − −

≤ − + − −

 ≤ − + − − + − −  
 ≤ − + − − + − −  

≤ − + − + − −

 

Therefore 

( ) ( ) ( )

( ) ( )

22 2 2
1

2
1 1

1

.

n n n n n

n n n n n n

L U I Au f x p x p x p

f x p x x x p x p

τ τ α

α

+

+ +

− − ≤ − + − − −

≤ − + − − + −
 

Since ( )1 0Lτ− >  and ( )0n nα → →∞  and (3.13), we obtain 

( ) 2
lim 0.nn

U I Au
→∞

− =                    (3.17) 

In addition, using (3.2), (3.8) and 10,
L

γ  ∈ 
 

, we observe that 

( )( )
( )( )

( )( )
( )( )

( ) ( )( )

1 2

1 2 1

2

2

2

22

2

22

2

,

1
2

B B
n n n

B B B
n n

B
n n n

B
n n n

B
n n n

u p J x A J I Ax p

J x A J I Ax J p

u p x A J I Ax p

u p x A J I Ax p

u p x A J I Ax p

λ λ

λ λ λ

λ

λ

λ

γ

γ

γ

γ

γ

∗

∗

∗

∗

∗

− = + − −

= + − −

≤ − + − −

= − + + − −
− − − + − − 
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( ) ( )( )

( ) ( )

( ) ( )

2

2 2

2

22 2

2 2 2

22

2 2 2

1
2
1
2

2 ,

1
2

2 .

B
n n n n n

n n n n

B B
n n n n

n n n n

B
n n n

u p x p u p x A J I Ax p

u p x p u x

A J I Ax u x A J I Ax

u p x p u x

A u x J I Ax

λ

λ λ

λ

γ

γ γ

γ

∗

∗ ∗

 ≤ − + − − − − + − −  

 ≤ − + − − − 

+ − − − − 

≤ − + − − −

+ − −   

Therefore 

( ) ( )22 2 2 2 .B
n n n n n n nu p x p u x A u x J I Axλγ− ≤ − − − + − −   (3.18) 

It follows from (3.8), (3.15) and (3.18) that 

( ) ( )

( ) ( )
( )
( ) ( )

2

2

22 2 2
1

2 2 2

1

2

2 .

n n n n n n n

B
n n n

n n n n n

B
n n n

x p f x p x p u x

A u x J I Ax

f x p x p u x

A u x J I Ax

λ

λ

α α

γ

α

γ

+
− ≤ − + − − − −

+ − − 

≤ − + − − −

+ − −
 

Implying that 

( )
( ) ( )

( ) ( )
( ) ( )

2

2

22 2 2
1

2
1 1

2

2 .

n n n n n n

B
n n n

n n n n n n

B
n n n

u x f x p x p x p

A u x J I Ax

f x p x p x p x x

A u x J I Ax

λ

λ

α

γ

α

γ

+

+ +

− ≤ − + − − −

+ − −

≤ − + − + − −

+ − −
 

Since ( )0n nα → →∞  and from (3.13) and (3.16), we obtain 

lim 0.n nn
u x

→∞
− =                       (3.19) 

Next, we show that ( )0n ny u n− → →∞ . Now, we can write 

.n n n n n n n n n ny u y x x u y x x u− = − + − ≤ − + −  

From (3.14) and (3.19), we get 

lim 0.n nn
y u

→∞
− =                      (3.20) 

Next, we show that lim 0n nn
Su u

→∞
− = . Note that from (3.13) and (3.19), we 

have 

1lim 0.n nn
u x +→∞

− =                      (3.21) 

And from (3.13) and (3.14) that 

1lim 0.n nn
x y+→∞

− =                      (3.22) 

Finally, it follows form (3.1) that 
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( )( )
( )

( ) .

n n n n n

n n n

n

y Su S u A I U Au Su

u A I U Au u

A U I Au

τ

τ

τ

∗

∗

∗

− = − − −

≤ − − −

≤ −
 

From (3.17), we have 

lim 0.n nn
y Su

→∞
− =                      (3.23) 

Then, from (3.21)-(3.23), we have 

lim 0.n nn
Su u

→∞
− =                      (3.24) 

Step 3. We show that w F∈ Γ . Since { }nu  is bounded, we consider weak 
cluster point w of { }nu . Hence, there exists a subsequence { }knu  of { }nu , 
which converges weakly to w. Since S and U both are both average mappings, 
then S and U are also both nonexpansive mappings. According to (3.17) and 
(3.24) and Lemma 2.1, we have ( )w Fix S∈ , ( )Aw Fix U∈ . Thus w F∈ . 

On the other hand, ( )( )2 2
k k k

B B
n n nu J x A J I Axλ λγ ∗= + −  can be written as 

( ) ( )2

1 .k k k

k

B
n n n

n

x u A J I Ax
B uλγ

λ

∗− + −
∈             (3.25) 

By pass to limit when k →∞  in (3.25) and by taking into (3.16) and (3.19) 
and the fact that graphs of a maximal monotone operators is weakly-strongly 
closed, we obtain ( )10 B w∈ , i.e., ( )1w SOLVIP B∈ . In addition, since { }nx  
and { }nu  have the same asymptotic behavior, { }knAx  weakly convergence to 
Aw. Again, by (3.16) and the fact that the resolvent 2BJλ  is nonexpansive and 
Lemma 2.1, we obtain that ( )2Aw B Aw∈ , i.e., ( )2Aw SOLVIP B∈ . Thus  
w∈Γ . Therefore w F∈ Γ . 

Step 4. We show that ( )nx z n→ →∞ . First, we claim that  

( )lim sup , 0n
n

f z z x z
→∞

− − ≤ . 

Since { }nx  is bounded, there exist a subsequence { }jnx  of { }nx  satisfy 

jnx w  as j →∞  and ( ) ( )lim sup , lim ,
jn njn

f z z x z f z z x z
→∞→∞

− − = − − .  

Since lim 0n nn
x u

→∞
− = , we have

jnu w  as j →∞ . From step 3, we obtain 

w F∈ Γ . Indeed, we have 

( ) ( )

( )

lim sup , lim ,

,

0,

jn njn
f z z x z f z z x z

f z z w z
→∞→∞

− − = − −

= − −

≤

        (3.26) 

where ( )Fz P f zΓ=


. Next, we show that ( )nx z n→ →∞ . 

( ) ( )
( ) ( )
( ) ( ) ( )

2
1 1

1 1

1 1

1 ,

, 1 ,

, ,

n n n n n n

n n n n n n

n n n n n

x z f x y z x z

f x z x z y z x z

f x f z x z f z z x z

α α

α α

α α

+ +

+ +

+ +

− = + − − −

= − − + − − −

= − − + − −
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( )
( )

1

1 1

1 ,

,
n n n

n n n n n

y z x z

x z x z f z z x z

α

αα α
+

+ +

+ − − −

≤ − − + − −
 

( )

( )

( ) ( )

( ) ( )

1

2 2
1 1

2 2
1

2 2
1 1

2 2
1 1

1

,
2
1

2
1 1

,
2

1 1 1 , ,
2 2

n n n

n
n n n n

n
n n

n
n n n n

n
n n n n

x z x z

x z x z f z z x z

x z x z

x z x z f z z x z

x z x z f z z x z

α

αα
α

α

α α
α

α α
α

+

+ +

+

+ +

+ +

+ − − −

 ≤ − + − + − − 
−  + − + − 

− −  ≤ − + − + − − 

− −
≤ − + − + − −

 
which implies that 

( ) ( )2 2
1 11 1 2 , .n n n n nx z x z f z z x zα α α+ + − ≤ − − − + − −   

Therefore, according to (3.26) and Lemma 2.2, we obtain ( )nx z n→ →∞ . 
Further it follows from 0n nu x− → , nu w F F∈   and ( )nx z n→ →∞  
that z w= . This completes the proof. 

Remark 3.1. Theorem 3.1 improves and extends the corresponding results in 
[7] [24]. 

Remark 3.2. The algorithm is more general than the existing algorithm. The 
disadvantage is that the spectral radius of the operator is calculated, but the 
adaptive step size can be used to overcome the difficulties caused by calculating 
the spectral radius. 

Remark 3.3. Numerical experiments are the direstion of our future efforts. 
At last, we give two examples to illustrate the validity of our considered com-

mon solution problem for SVIP (1.4)-(1.5) and SFPP (1.1) and our convergence 
result of proposed algorithm (3.1). 

Example 3.1. Let 1 2H H H= = =   and : 2HB H →  be defined by 

( )
{ }
[ ]
{ }

1 , 0;

0,1 , 0;

0 , 0.

x

B x x

x

 >


= =
 <  

Then, B is a maximal monotone mapping. We define the mappings  
, , , :A f S U H H→  

By 
1 1 2 1 2 1 3 1 3 2, , , ,
2 3 3 3 3 2 4 4 4 3

Ax x fx x Sx x x x Ux x x x x H= = = = + ⋅ = = + ⋅ ∀ ∈ ,  

respectively. 

It is easy to cheek that A is a bounded linear operator, f is a 
1
3

-contractive 

mapping, Sand U are averaged mappings. Let ( ) ( )1 2B x B x Bx= = . Then 

1 2, : 2HB B H →  are maximal mappings. Let ( ) ( )1 2

2
B B xJ x J xλ λ= =  be the re-

solvent operators. It is easy to see that 0x F= ∈Γ  is the common solution to 
SVIP (1.4)-(1.5) and SFPP (1.1). 
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Example 3.2. Let 3
1 2H H H= = =   with the normal inner product and 

norm. We define the operators 1 2, :B B H H→  by 

1 1

1 2 2

3 3

1 0 0
4

10 0
5

10 0
6

x x
B x x

x x

 
 

     
     =     
           

  

 and 
1 1

2 2 2

3 3

1 0 0
3

10 0
2

0 0 1

x x
B x x

x x

 
 

     
     =     
            

 

. 

Clearly, 1B  and 2B  are maximal monotone operators and their resolvents 
are given by 

1

1 1

2 2

3 3

4 0 0
4

50 0
5

60 0
6

B

x x
J x x

x x
λ

λ

λ

λ

 
 +     

     =     +            + 

 and 2

1 1

2 2

3 3

3 0 0
3

20 0
2

10 0
1

B

x x
J x x

x x
λ

λ

λ

λ

 
 +     

     =     +            + 

. 

For some 0λ > , we also defined the mappings , , , :A f S U H H→  by 

1 1

2 2

3 3

1 2 3
4 5 6
7 8 9

x x
A x x

x x

     
      =      

          

, 
1 1

2 2

3 3

2 0 0
3

20 0
3

20 0
3

x x
f x x

x x

 
 

     
     =     
            

 

, 

1 1

2 2

3 3

1 0 0
3

10 0
3

10 0
3

x x
S x x

x x

 
 

     
     =           

 
 

 and 
1 1

2 2

3 3

3 0 0
4

30 0
4

30 0
4

x x
U x x

x x

 
 

     
     =            

 
 

. 

Clearly, A is a bounded linear mapping, f is a 
2
3

-contractive mapping, S and 

U are two averaged mappings. It is easy to know that ( )0,0,0x F= ∈Γ  is the 
common solution to SVIP (1.4)-(1.5) and SFPP (1.1). 
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